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Abstract. In the present paper, we define g—matrix polynomials in several variables which reduces
Chan-Chyan-Srivastava and Lagrange-Hermite matrix polynomials in [6]. Then several results involving
generating matrix functions for these matrix polynomials are derived.

1. Introduction

In the last twenty years, special matrix functions seem in the studies of applied mathematics [6, 8,9, 18]
and other application areas [3, 4, 10-12]. Furthermore, g—calculus has became an active research area in
special functions in [1, 5, 13, 15-17, 20, 22] and approximation theory in [14, 19, 21]. Therefore, we use g—
calculus in the theory of special matrix functions in this paper.

All this paper, for a matrix P in CN*V, its spectrum o(P) denotes the set of all eigenvalues of P and {i(P)
denotes

f(P) =min{z:z e o [(P+P)/2]}

where P* denotes the transpose conjugate of P. Let f(z) and g(z) be holomorphic functions in z, which are
defined in an open set Q of the complex plane and A is a matrix in CN*N with g(A) c Q, then from the
properties of the matrix functional calculus in [7], it follows that:

f(A)g(A) = g(A)f(A).
The two-norm of A, which will be denoted by ||A]|, is defined by

[|Ax]|
IA|l = sup ——2, (1)
x#0 Hx”Z

1/2
where, for a vector y € CV, y”2 = (yTy) / is the Euclidean norm of y.

In 2012, Salem extended g—special functions of complex variable to g—special matrix functions. Firstly,
he defined
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A

(Al = = qq g#1, g = A8 @

and g—sifted factorial matrix function given by

n—-1

Ao =1, (A =[]0~ Ag), n=12,.. 3)
k=0

for any complex square matrix A (see [18]). The generalization of (3) is

<1,

Aige = [[a-4d,
k=0

converges. Then, he gave some following required some theorems related to g-analysis:

Theorem 1.1. [18] Let A be a complex square matrix and |q| < 1, then infinite products of matrices

(o)

@0 = [ [a- ™)

k=0
converges invertibly if fi(A) > 0and g™ ¢ o(q*), n=0,1,2, ...

<landgq™ ¢ o(A), n=0,1,2, .., then we have

Theorem 1.2. [18] Let A be a complex square matrix,

(@; q)n
A; A; 7)o ; ||1A 1.
;(q,q)n = (A D@4 9w ; Al <

Theorem 1.3. [18] For any two matrices A,B € CNN with AB = BA, g™ ¢ o(A), n=0,1,2,... and |q| <1, we
have

o)

Z = () AB; ) s 1Al < 1. (4)
= q)n

On the other hand, Chan-Chyan-Srivastava polynomials, given in [22], have been studied systematically
and comprehensively in the literature. For example, g—extension in [1], umbral calculus presentations in
[24] and matrix extension in [6] of these multivariable polynomials have been given. Therefore, in the
present paper, we construct to g—matrix polynomials in several variables and to derive different families
of mixed multilateral and multilinear generating matrix functions for these matrix polynomials. Also we
define some special cases of our matrix polynomials such as g—Chan-Chyan-Srivastava matrix polynomials
and g—Lagrange-Hermite matrix polynomials and give some results for these matrix polynomials.

2. g—Matrix Polynomials in Several Variables

The main object of this section is to present g— matrix polynomials in several variables generated by

r m;
) - £t o

1
[t < m1n{|x1| ey 1] ’”’}

(5)
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where 0 < ‘q| <1,A; e CN*Nand m; € N fori =1,2,...,r. Note that g must satisfy the condition |arg(q)( <m
in the above equation and the rest of paper at the same time. This condition hasn’t be rewritten again in
the rest of paper.

With the help of (4), take B — qA, A — xt"I, we have

o (7% q)n( Py = (et q%; )eo
4 (q;9)n (xt™; q) oo

where 0 < |q| < 1 and ||A|| < 1 in Theorem 1.3 reduces || < |x|_% .Here g7 ¢ o(A) forn = 0,1,2,... and
AB = BA in Theorem 1.3 are achieved.
Thus, (5) yields the following explicit representation:

(Al r) (x )

k
1 x}rc,

(4; q) (@D,

= }: @5 .a"; ),

miky+...+mk,=n

(6)

1 1 .
where A; be a matrixin CNN fori = 1,2, ..., rand || < min {|x1| | i } . For the special caseq — 17, (5)
reduces to

I {(1 - xitm")_A"} =

i=1

""" A’)(xl, ey X )"

i
§A
S

)

1 1
[t < min{|x1| T ey 1| ”"}

given by Erkus-Duman in [6]. Also, for m; = 1 in (7), we have Chan-Chyan-Srivastava matrix polynomials
in [6] and for m; = i in (7), we get multivariable Lagrange- Hermite matrix polynomials in [6].

We notice that the case N = 1, A; = a; in (5) reduces to the g—extension of the Erkus-Srivastava
polynomials in several variables introduced by Erkus-Duman [5]. In this case, it is generated by

.
Hl{M} Zu(“l """ (1, oony X )
i= 1

1 (®)

0 <min{|x1| el *} ai e C.

It is clear that the case N = 1, m; = 1, A; = a; of the matrix polynomials given by (5) reduces to
g—Lagrange polynomials in several variables, which are generated by [1]:

©)

. -1
|t|<m1n{|x1| ,...,|x,| },ozieC

and also ¢ — 17 in (9), it reduces Lagrange polynomials in several variables or Chan-Chyan-Srivastava
polynomials are given in [22]. For N = 1, if m; = i, A; = a; and also ¢ — 17 in (5), it also reduces
Lagrange-Hermite polynomials, which are given by [2].

3. Bilinear and Bilateral Generating Matrix Functions

In this part, we obtain a number of families of bilateral and bilinear generating matrix functions for
g—multivariable polynomials which have generating function in (5) and explicit representation in (6) with
the help of the similar way as in [23].

We begin the following main theorem.
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Theorem 3.1. Corresponding to an non-vanishing function ,(y ) of (s complex variables y1, ..., ys (s € IN)) with
complex order u, let

e

App(y;w) = Z akawk(y)wk (10)
k=0

where (ax #0, p,veC)and

[n/p]
WV A,..., "
1Oy 06y;2) = ) a0, iy )2 (1)
k=0

where n,p € N; A; € CVN ; x =(x1,..,%); y =(y1, -, ¥r); (i = 1,2, ..., 7). Then we have
(o] r . .
(xit" g% g)eo
u,v _ n __ .
Z Oy (x, Y tp)t H {—(xi ) App(y;n) (12)
n=0 =1
provided that (12) exists for 0 < |q( <1, |t < min{|x1|_% S Ixr|_$} andm; e N (i=1,2,...,7).

Proof. The left-hand side of the equality (12) of Theorem 3.1 is denoted by S. Then, upon substituting for
the polynomials

LV n
@15 (i)

from the definition of function (11) into the left-hand side of (12), we obtain

oo [n/p]
S=) Y w00y . (13)
n=0 k=0
Write n + pk instead of n, we have
s = Zaku“l ''''' MOy I
n=0 k=0

Il
/—~
:

,,,,, i)

_ Xi tmlq q>00 .
B H { (xl tm1/ q)oo } A,UrV (y, T])I

i=1

Y e Oyly )nk]

k=0

which is the desired result. [

In a similar way, we can obtain the next lemma.

Lemma 3.2. For ul2"*)(xy, ..., x,), the following formula holds:

n,q
(A1+By,...,A;+B,)
un,,; ! (X1, .0y X)
n
_ (A1) (BrB)) (g A A
= Zun_lkq (x1, .. xr)u1 (1™, ., xg7)
k=0

Al <t

where A; and B; are matrices in CN*N satisfying conditions ¢ ¢ o(xit"ig), n = 0,1,2,...,

1
fori=1,2,..,r, these matrices which commute with one another, 0 < ‘q| <1, |t < min{|xq| ™ , ..., |xr|_ﬁ and
meN (i=1,2,..,71).
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Proof. It is enough to take A; — A; + B; in (5) and use Theorem 1.3 for proof. [

Theorem 3.3. For a non-vanishing function Q,(y) of s complex variables y1, ..., ys (s € N) and forp € N, u,v € C,
y =1, Ys), Ai, B € CNVN for i = 1,2, ..., r satisfy the conditions in Lemma 3.2, let

[n/p]

=1, Ay+B1,...,A+B,

qazl’;(x; y;z) = Z ”k”qup;,; * )(xl, ...,xr)QHwk(y)zk (14)
k=0

where ar # 0; n,k € INg. Then we derive

n [kip)
(Al/-“/Ar) (Bl V) A, 1
Z Z ap, (X1, ey X Juy plq (x1 q e Xeg7) Quii(Z)w (15)
k=0 1=0
= ELy2)

provided that (15) exists where all matrices are commutative and 0 < |q| <1

For example, setting

s=1 and Q‘u+vk(]/) = Liii;){(]/) ’ (,U/V € NO)

in Theorem 3.1, where the n—th Laguerre matrix polynomials LEV (x) are given by [8]

(MM

(E+1D), [(E+ D] " &,

where E is a matrix in CN*N, E + 5] is an invertible matrix for every integer s > 0 and A is a complex number
satisfying Re (1) > 0 and they have generating function

ZL(E”(XM =(1-n) E”)eXp( Axg), (16)

|n(<1,0<x<oo,

then we derive a new kind of bilateral generating matrix functions for u,(ji; """ A’)(xl, .y Xy) and L,(qE’A)(x).

Corollary 3.4. If Ay, (y;w) := Z akL(EA (y)wk where (ar #0, w,v € Ny); and

u+vk

[n/p]
Oy = Y aur A OLEN ()2

k=0
where n,p € IN, then it satisfies

i 1®p (/yr—) _ﬁ{%}/\w(%ﬂ) (17)
i=1 e

n=0

provided that (17) exists for 0 < |q( <1, |t < min{lxll_% P ' } andm; e N (i=1,2,..,7).



B. Cekim / Filomat 29:9 (2015), 2059-2067 2064

Remark 3.5. For the Laguerre matrix polynomials, by the generating relation (16) and ay =1, u = 0, v = 1, we have

o [n/p]

Z Y e LED (e

n=0 k=0

- (xit’”"qf"‘;q)oo} (E+D) ( Ayn)
N B L e
H{ (xit™i; )oo (1=n) P n

i=1

where |r]( <1, 0<y<oo.

Remark 3.6. In Theorem 3.1, setting €y,,,x(z) = B B’)(yl, o Yr)(Bi € CNNY and takingay =1, u=0,v=1,

A
A T
1 )(xl, e Xp):

we obtain bilinear generating matrix function for u(
Z A COMNIE Tl (I TAT N
" g oo } H {(ym’”"fo; s }
Xit"™; Qe ) 11 U (in™; 9o

_1
| m’}and meN (i=1,2,.,7.

l

—
—~~
—~| &

where 0 <[q| <1, [s] < min{[ya| ™,

For every appropriate option of the a; (k € INy), if the multivariable function 1.k (y), y =(y1, .-, ¥s), (s €
IN), is represented as an appropriate product of a number of simpler functions, the results of Theorem

3.1 can be carried out in order to derive varied families of multilateral and multilinear generating matrix

(A 1

functions for function u, A (%1, ey X given explicitly by (6).

4. g—Chan-Chyan-Srivastava Matrix Polynomials

Form;=1and 0 < |q| < 11in (5), we define g—Chan-Chyan-Srivastava matrix polynomials as follows:

r A7)0 Ar, Ay
H{(xy?qu) } Z g( 1 )(xll---,xr)tn

i1 (18)
It < mm{|x1| i
where A; e CNN (i=1,2,...,r) or
gquql """ A")(xl,...,xy)
kl s
= Y @@ f (19)

(4 q)kl (@ 9k,

ki+..+k,=n

where A; be a matrix in CNV fori =1,2,...,r and |f| < min {|x1|_1 L |xr|_1} .

Theorem 4.1. Corresponding to an non-vanishing function Q,(y) ( s complex variables y1, ..., ys (s € IN)) with
complex order u, let

(9]

Al w) = ) s Oy ly)nt (20)
k=0
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where (ax #0, u,v € C) and

[n/p]

Ol 6y;2) = ) mgn (00, (y)Z (21)
k=0

wheren,p € N; A; € CVN ; x =(x1, .., %); y =1, ¥r); (i =1,2,...,7). Then we obtain
] T
(xitg™; @)oo
v HAV .
Z O (x T )t H { (xit; oo Ay 1) (22)
n=0 =1
provided that (22) exists for 0 < |q( <1, |{ < min{lxll_1 S e |x,|_1}.

Lemma 4.2. For g(Al A ’)(xl, ..., Xy), the following formula holds:

(A] +Bjy,.. LA+B, )
Ing T(x

Ay By,...B, .
z |g£z—1k,q )(x xr)g( ! )(xlqu, e xrqA )
k=0

1, --/xr)

7! for

where A; and B; are matrices in CN*N satisfying conditions q~" ¢ o(xithi), n=2012..,
i=1,2,...,r, these matrices which commute with one another, 0 < )q| <1, [{| < min {lel_1 S |x,|_1}.

Theorem 4.3. For a non-vanishing function (,,(y) of s complex variables y1, ..., ys (s € IN) and forp € N, u,v € C,
y =1, - ys), Ai, Bi € CVN for i = 1,2, ..., r satisfy the conditions in Lemma 4.2, let

[n/p]

=1, A1+By,...,Ay+B,
1Ein0Gyz) = Y ag e At ) O ()2 (23)
k=0

where a # 0; n,k € Ny. One can get

n k/P
Aty.fr Bi,....B: .
Z Z ag o )(x1,...,xr)g,i_;,,q 1™, o xe0™) Qi (@)
k=0 I=0
= JELy2) (24)

provided that (24) exists where all matrices are commutative, 0 < |q| <1, [t < min {|x1|‘1 L |xr|—1}.

5. g—Lagrange-Hermite matrix polynomials

Form; =iand 0 < )q| < 1in (5), we define g—Lagrange-Hermite matrix polynomials as follows:

r (o]
(xitiq’i ﬂ)m} _ h(Al ,,,,, Ay) X n
- = 1y oeey Xp )t
131{ (it iq)eo n§o ma r) (25)

it < min {jral ™, bl
where A; e CNN fori=1,2,...,ror
=) @) S (26)
i T 0 G o,

k1+2ky+...+rk,=n

. . _1 _1
where A; be a matrix in C™N fori =1,2,...,rand |f| < m1n{|x1| T, r}.
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Theorem 5.1. Corresponding to an non-vanishing function Q,(y) ( s complex variables y1, ..., ys (s € IN)) with
complex order u, let

(e8]

Apslyiw) = Y s Oy ily)nt 27)
k=0

where (ax #0, u,veC);y =(y1, ..., ys) and

[n/p]
Ol 06y;2) = Y a0, iy )2t (28)
k=0

wheren,p € N; A; € CVN ; x =(x1,..,%); y =1, vr); (i=1,2,..., 7). Then we have

i=1 A

n=

provided that (29) exists for 0 < |q( <1, |{ < min{lxll_% S e |xr|_%},

Lemma 5.2. For hqulql""’A’)(xl, ..., Xy), the following formula holds:

h(A1+B1 ..... A, +By)(x1 = xr)
A1,..,Ar Bi,...,B,
Zhl A e T g )

(x,-t"(_l for

where A; and B; are matrices in CN*N satisfying conditions ¢~ ¢ o(x;t'g™), n = 0,1,2,...,

i=1,2,..., 1, these matrices which commute with one another, 0 < )q| <1, |t < min{lxll’% S e |xr|’%}.

Theorem 5.3. For a non-vanishing function Q,(y) of s complex variables y1, ..., ys (s € N) and forp € N, u,v € C,
y =1, Ys), Ai, Bi € CNVN for i = 1,2, ..., r satisfy the condition Lemma 5.2, let

[n/p]

—n, Ay+Bi,.... A, +B, k

GEnh (6 y2) ::Z B A ) Opi(y)2 (30)
k=0

where a; # 0; n,k € INg. Then it is hold

n [k

Z Z ll[h(Al ’’’’’ Ar )(x xr)h( """" b )(quA1/ [y quAy) Q[J+vl(z)wl (31)

k—pl.q
k=0 1=0
= LEnxy2)
provided that (31) exists where all matrices are commutative, 0 < |q| <1, |{ < min{|x1|_% by |x,|‘%}.
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