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Abstract. In this paper, we define the superposition operator P, where g : N> x R — R by P, ((x:s)) =
g (k, s, xis) for all real double sequence (xi;). Chew & Lee [4] and Petranuarat & Kemprasit [7] have char-
acterized P, : [, — Iy and P, : [, — [, where 1 < p,q < oo, respectively. The main goal of this paper is to
construct the necessary and sufficient conditions for the continuity of P, : £, — £, and P, : £, — L, where
1<p,q<oco.

1. Introduction

Let R be set of all real numbers, IN be the set of all natural numbers, N2 = N x N and Q denotes
the space of all real double sequences which is the vector space with coordinatewise addition and scalar
multiplication. Let x = (x4;) € Q. If for any ¢ > 0 there exist N € IN and / € R such that |x;; — /| < ¢ for all
k,s > N, then we call that the double sequence x = (x;;) is convergent in the Pringsheim’s sense and denoted
by p —lim xis = [. The space of all convergent double sequences in the Pringsheim’s sense is denoted by C,.
The space of all bounded double sequences is denoted by M,,, that is,

My = qx = (xks) € Q ¢ [xllyg, = sup |xis| < o0
k,seN

which is a Banach space with the norm ||-[|,. It's known that there are such sequences in the space C,, but
not in the space M,,. The space £, is defined by

L=dx=(m) eQ: ) el < oo

k,s=1

wherel <p<ocoand } =} ). . L, isaBanach space with the norm
k,s=1 k=1s=1

1
[eS) r
Il = [2 |xks|f’] :

k,s=1
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It’s know that £, ¢ M, and £, C £; where 1 <p < g < oo If given the sequence f : N XN — R defined
by f (k,s) = x4 and given the increasing functions i : N — IN defined by i (k) = i, j : N — IN defined by
j(s) = js , then we define h : N X IN — IN X IN with £ (k, s) = (i, js). In this case, the composite function such
that f o h (k,s) = x;,j, is called subsequence of the sequence (xs). The sequence ¢** (e’“) defined by

i 0, otherwise

o _ {1, (ks) = (i, )

If we consider the sequence (s,,) defined by s, = Y., ). x5 (1, m € IN), then the pair of ((xks) , (Sum)) is called
k=1s=1
double series. Also (xy;) is called general term of the series and (s,,) is called the sequence of partial sum.

If the sequence of partial sum (s,,) is convergent to a real number s in the Pringsheim’s sense, i.e.,

- hmZZxks =5

k=1 s=1

then the series ((xxs), (Sum)) is called convergent in the Pringsheim’s sense ,i.e., p—convergent and the sum
of series equal to s, and is denoted by

(o)

Zxks =S.

k,s=1
It's know that if the series is p—convergent, then the p—limit of the general term of the series is zero. The

remaining term of the series ), ) xk is defined by

k=1s=1
n-1 oo oo m—1 (SIS
Lo+ L) e+ L) 9
k=1 s=m k=n s=1 k=n s=m

We will demonstrate the formula (1) briefly with

), e

maxik,s}>N

for n = m = N. It's known that if the series is p—convergent, then the p—limit of the remaining term of the
series is zero. Once find before mentioned and more details in [1], [2], [3], [10].

Superposition operators on sequence spaces are discussed by some authors. Chew and Lee [4] have
given the necessary and sufficient conditions for the superposition operator acting from the sequence space
I, into I; with the continuity hypothesis. The characterization of the superposition operator acting from
the sequence space I, into [, with 1 < p,q < oo has given by Dedagich and Zabrejko [5]. Petranuarat
and Kemprasit [7] have characterlzed the superposition operator acting from sequence space [, into I,
with 1 < p,q < oo by generalizing works in [4]. The reader may refer for relevant terminology on the
superposition operators to [4], [5], [6], [7], [8], [9].

We extend the definition of superposition operators to double sequence spaces as follows. Let X, Y be
two double sequence spaces. A superposition operator P, on X is a mapping from X into Q) defined by
Py (x)=(g9(k,s, xks));;:1 where the function g : N? X R — R satisfies
(1) g(k,s,0) =0 forall k,s € IN.

If P;(x) € Y for all x € X, we say that P, acts from X into Y and write P, : X — Y. Moreover, we shall
assume the additionally some of the following conditions:

(2) g (k,s,.) is continuous for all k,s € N

(2") g (k,s,.) is bounded on every bounded subset of R for all k,s € IN.

It’s obvious that if the function g (k, s, .) satisfies (2), then g satisfies (2’) from [9].
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In this paper, we characterize the superposition operator acting from the double sequence space £, into
L1 where 1 < p < oo under the hypothesis that the function g (k, s, .) satisfies (2’) and its continuity by using
the methods in [4], [7]. Then we generalize our works as the superposition operator acting from the space
L, into £, where 1 < p,q < oo without assuming that the function g (k,s, .) is satisfies (2) by using the
methods in [7].

2. Superposition Operators of £, into £ (1 < p < )

Theorem 2.1. Let us suppose that g : N*> x R — R satisfies (2'). Then Py : L, — Ly if and only if there exist
a, B> 0and (crs)yooq € L1 such that

g (k,s,8)| < cxs + at’
for each k, s € IN whenever |t| < .
Proof. Assume that there exist a, § > 0 and (cks);.-; € L1 such that |g (k, s, t)| < ¢ + altff for each k,s € N
whenever [f| < B. Let x = (x) € L,. Then, Y, |x[’ < e < p? for sufficiently large N € IN. Hence it’s
obvious that [xi| < 8 for all k, s € IN such thaTﬁgiz{ll\c], s} > N. Thus,

|_1J (k/ S, xks)| <csta |ka|P

for all k, s € N such that max {k, s} > N. Then we get

00 N-1
Y ks, i) Y loksxdl+ Y, |gtes x|

k,s=1 k,s=1 maxik,s}=N
< A+ Y aera Y bl
maxik,s}>=N maxik,s}=N
(o]
< A+ chs + ocZ |xgslP < oo.
k,s=1 k,s=1

Since P, (x) = (g (k,s, xks));:f’s:l, we obtain that P, (x) € £;. So, P, acts from £, to .£;.
Conversely, suppose that P, acts from £, to £;. For all a,f > 0 and k, s € N, we define

A(k,s,a,B) = {t eR: |t <min {ﬁ, a’! |g (k,s, t)|}}
and
B(k,s,a,B) = sup“g(k,s,t)) ite A(k,s,a,ﬁ)}.

If |t <pand t € A(k,s,a,p), then |g (k,s,1)| < B(k,s,a,p). If |t < Band t ¢ A(k,s,a,B), then |g (k,s,1)| < 1]
Thus we have

|lg(k,s,t)| < B(k,s,a,B) +altf

whenever || < f. Now, we shall show that B (k, s, a, ) € £; for some a, [3 > 0. Suppose that this does not

hold, i.e, forall o, > 0, Z B(k s,a,B) = co. Therefore for every i € IN, Z B(k 5,21, ‘i) = oo. Then there
k,s=1

exist the increasing sequences of positive integers (11;) and (m;) such that the pair of n;, m; is the least positive
integers satisfying

ni i

Z Z B(k,s,2,277) > 1.

k=n;j_1+1s=m;_1+1



B. Sagir, N. Giingor / Filomat 29:9 (2015), 2107-2118 2110

So, we see that

Z Z B(k,s,2,27) <1. )

k=n;_1+1s=m;_1+1

For each i € IN, there is ¢; > 0 such that

n; ;i

Yo Y B(ks2,27) - i — i) (i = mi) > 1. 3)

k=n;_1+1s=mj_1+1

Let i € IN be fixed. Since g satisfies (2"), 0 < B (k, s, 2 2‘i) < oo forall k,s € Nsuchthatn;_;1 +1 <k < n;
and m;_; + 1 < s < m;. From the definition of B(k, s, 2i,2‘i) for all k,s € N with n,_; +1 < k < n; and

mi_1 +1 <s < m;, there is x3; € A (k, s, 2 2‘i) such that

|g (k,s, xks)| > B (k, 5,2, 2") - & 4)

From (3) and (4), we have

ni i ni

L, L lotssl Z i B(ks2,27) - ) i €i

k=n;j_1+1s=m;_1+1 k=n;_1+1s=m;_1+1 k=n;j_1+1s=m;_1+1

Z Z ks 20,2 _i —é‘i(ni—ﬂi—l)(mi—mi—l)

k=n;_1+1s=m;_1+1

\

> 1.
Thus Y ( 2 |g (k,s, xks)|) = oo, that is, (g (k, s, Xks))p ey & L1 Since xis € A (k, s, 2i,2‘i),
i=1 \k=nj_1+1s=m;_ 1+1 ”
Pl P < i
bl < o and bl < 27'[g (k, 5, )| (5)

forall k,s € N with n;_1 + 1 <k <n; and m;_1 + 1 <5 < m;. Therefore, we obtain using (2) and (5) that

n; m; ni—1 mi—1
P
Z Z |xks|p = Z Z |xks|p + |xmmi|
k=ni_1+1s=m; 1+1 k=ni_1+1s=m; 1+1

279 (k, s, x15)| +

M >
1

k=n;_1+1s=m;_1+1

11,‘—1 m,‘—l

1

< 2 Z Z B(k,s,2,27) +
k=n;_1+1s=m;_1+1
1 1 2
< =4+ ===
2172 T i

which shows that (xis) € £,. This contradicts the assumption that P, : £, —» £;. O
Example 2.2. Let g: IN?> X R — R defined by

3k+ + |t|p+1

gk,s,t) =
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forall k,s € N and for all t € R. Since g (k,s,.) is continuous on R for all k,s € IN, g satisfies (2"). Let p = 2 and
[t| < 2. Then for all k,s € IN,
It]

|g (k/ S, t)| = ?ﬁ + |t|p+1

e
= et

2
3k+s

< + 2|t

Since Y, % < 00, we put ¢ = ﬁfor all k,s € N. If we take o = 2, then we have )g (k,s, t)| < ks + a |t whenever
k,s=1
|t| < B. By Theorem 2.1, we find that P, acts from L, to L;.

Theorem 2.3. If P, : L, — Ly, then P, is continuous on L, if and only if the function g (k, s, .) is continuous on R
forallk,s € N.

Proof. Assume that P, is continuous on L,,. Let ¢ > 0 be given. Also, let m,n € N and t € R. Since P, is

continuous at te™" € L, there exists 6 > 0 such that ||z — te""||, < 6 implies ||P9 (z2) - Py (t‘e””’)”1 < ¢ for all
z = (zks) € L. Let u € R such that [u — [ < 6 and define y;s by

_Ju, k=mands=n
Yis = 0, otherwise '

Hencey = (yxs) € Lyand |u —t| = “y - te’”"”p < 6. Therefore, we get |g (k,s,u) — g (k,s, t)| = ”Py (v) - P, (i.‘e’””)”1 <
€.

Conversely, suppose that g (k, s, .) is continuous on R for all k,s € IN. So, g satisfies (2). Since P, : £, —
Ly, there exist a, > 0 and (cks); 51 € L1 such that for each k,s € IN,

|g (k,s, t)| < ¢ + atf’ whenever |t < B (6)

by Theorem 2.1. Since x = (xs) € £, and (cxs) € Ly, there exists sufficiently large N € IN such that

p e 1 (i)}
max;:}w sl < mm{6a’ 2r \6a @
xks| < ‘g for all k, s € IN such that max {k,s} > N (8)

and

Y, <z

max{k,s}>N

From (6) and (8), we find |g (k,s, xks)| < s + alxglP for all k,s € IN such that max {k, s} > N. Hence, we find

Z |9 (k,s, 2)| < Z Cps + ¥ Z |xks|’7<§. )

max{k,s}>N max{k,s}>N max{k,s}>N

1
There exists 6 > 0 with 6 < min{g, % (&)”} such that forallk,s € {1,2,..,N—1}and t € R,

&

10
3(N-1) (10)

[t — xis| < 6 implies (g (k,s,t) —g(k,s, xk5)| <
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because g (k, s, .) is continuous at xis for allk,s € {1,2,..., N — 1}. Let z € £, such that ||z — x||, < 6. Then
|st - xks| <o (11)

forall k,s € N. Forallk,s € {1,2,..., N — 1}, we find

£
k,s,zks) — g (k, s, Xps)| < —————
|7 K5, 215) = 9 (k. 5, %) TN_17
by (10). Therefore
N-1 .
Y ltes,z) = g ks, x0)] < 5 (12)
k,s=1

1
We see that ||(zs)maxiisjzn — (xks)maXGk,s]ZN”p <3 (g—a)” So,

1

»
Y,
maxlk,s}>N

||(st)max{k,s}ZN”p

IN

”(st)max[k,s}zN - (xks)max[k,s}zN”p + ”(xks)max[k,s}ZNH
)
6a

from (7). For all k, s € IN such that max {k, s} > N, we find

A

|st| < |st - xks| + |xks| <0+ ‘g < ,B
by (11). It’s follows that,

|9 (6,5, 2i)| < s + sl

for all k, s € IN such that max {k, s} > N from (6). Therefore,

Z |_l](k,S,st)| < Z Cks + 0 Z |zislP < g

max{k,s}>N maxik,s}>N maxik,s}>N

Then, we obtain

Py @-Py @, = Y lotksz0)—gks,x)|+ |7 (5, 216) = g (k. 5, x1)|
k,s=1 max{k,s}=N
N-1
< Y lgtks ) —gks,x)|+ g tes,zl+ Y lgts x|
ks=1 max{k,s}=N max{k,s}>=N
< &

by (9) and (12). O
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3. Superposition Operators of £, into L, (1 < p,q < o)

Proposition 3.1. Let X be a double sequence space. If L1 € X and P, : X — M,,, then there exist N € N and a > 0
such that (g (k,s, '));:s:N is uniformly bounded on [-a, a].
Proof. Suppose that the converse of this holds. Then there is a subsequence (i, js),-; of (i, );;_, and a

(S8
sequence (x,-k i )k . such that

X € [_2—(k+s)’2—(k+5)] and ’g (ik, ]‘s,x,-kjs) >k+s

for all k,s € N. Then we find (xik is ):5:1 € L1 and (g (ik, Jor Xi js)):;:l ¢ M,. Let (yi j) . defined by

oo
i,j=

e iy =iandj; =j
Yii 0, otherwise ’

Hence, we obtain (yij) L € L1 € Xand (g (i, J ]/ij))oj.:l ¢ M,,. Therefore, P, : X » M,. O

ij= 2
Theorem 3.2. P, : L, — L, if and only if there exist a > 0, > 0, N € N and (cys); .-, € L1 such that

|g (k, s, t)|q < ¢k + a [t whenever |t < B (13)
for all k,s € N with max {k,s} > N.

Proof. Suppose that P, acts from £, to £,;. Since £, ¢ M,, P, : £, — M,. Also since £L; C £,, we see
that there exist &g and N € N such that (g (k, s, .)),‘z’s:N is uniformly bounded on [—ay, ap] by Proposition 3.1.
Therefore,

sup |g (k,s, t)|q < oo

te[~ap,a0]

for all k,s > N. We define A (k, s, o, B) C [-ao, ag] by
Ak s, a,B) = {t € [~ag, ao] : [t € min {ﬁ,a‘l (g (k,s, t))q}} (14)
and

B(k,s,a,B) = sup{(g (k, s, t))q :te Ak,s, a,ﬁ)} (15)

foralla > 0,8 > 0and k,s = N. We assert that ), B(k,s,a,B) < o for some a, > 0. To show the validity
k,s=N

of this fact, we assume the converse, thatis, ), B (k, s,2/,277 ) = oo for each j € IN U {0}. Therefore, we see

k,s=N
that for all j € N U {0} and nn > N there exist n’ > n and m’ > n such that

ii}g (k, 5,2/, 2—1') > 1. (16)

k=n s=n
Then there exist n] > N and m) > N such that

’

1

’

z B(k,s,ZO,Z‘O) > 1.
k=N+1s=N+1

n m
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Let
n’ m’
no = min{n’ eN/m €N, w',m >N,and Y Y B(ks2°27)> 1}
k=N+1s=N+1
n m’
m = min{m' €N|n’ €N, n’,m" > N, and Z B(k,s,20,2_0) > 1}.
k=N+1s=N+1

Also there exist n), > n; and m;, > my such that

’

2

’
m,

Z B(ks,2',271) > 1

k=ni+1s=mi+1

n

by using (16) . We write

’ ’

n m

ny, = min{n’ € N|m’ € N, n’ > ny, m’ > my, and Z B(k,s,21,2_1) > 1}
k=n1+1s=mi+1

’ ’

n m

my = min{m’ e N|n" € N, n’ >ny, m’ >my, and Z B(k,s,21,2‘1) > 1}.
k=ny+1s=m+1

Hence by induction, there exist a subsequence (1), of (n),., and a subsequence (1), of (m),,_; such

that ny,m; > N and

’ ’

njy1 = mindn’ € Njm' € N, n’ > ny, m" > m; and i ZB(k,s,2j,2‘j)>l

k=nj+1s=m;+1

m

’ ’

miy1 = mindm’ € Nln" € N, m" >my,n >n; and i Z B(k,s,Zf,Z‘f) >1

k=nj+1s=m;+1

m

Therefore, we see

njp1—1mj-1
B(k, 5,20, 2—1') <1. (17)

k=nj+1s=m;+1

Weset F = {(k,s) :k<n; vV s<m}. If (k;s) € F,let xys = 0. If k > nq and s > m;, then there exists j € IN
such that n; < k < nj.1 and m;j < s < mj,1. Thus there is (xi) € A (k, s, 2f,2‘j) and

0 < B(k,s,2/,27) < |g ks, xi)| + 270+ (18)
by (15). Also from (14), we have
sl < min {277,277 |g (K, 5, )|} (19)

Therefore for each r € IN, we find
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r Njy1 Mij+1
Y ¥ WIEEY
j=1 \k=nj+1s=m;+1

Mr+1 Myl

< Y Y flotes ol +20)

k=ny+1s=m+1

< Ef |9 (k, 5, x16)| + iiz—(kﬂ)
k=1 s=1 ==

by using (18). Since f §2‘(k+5) < oo, we find Py () = (g (k, 8, Xxs))sey & Ly- We see by (17) and (19) that

k=1s=1
0 Njy1 Mjy
Y bl = Yo ) kb

ks=1 k=n;+1s=m;+1

njs1—=1mj-1
P
Z Z |xk5|p + |xn/-+1m/-+1

k=nj+1s=m;j+1

njy1—1mj-1
27 Z Z |g(k,s,xks)(q+2‘f]

k=n;+1s=mj+1

IA

nj1—1mj—1
27 Z Z B(k,s,zf,z—f)+2—f]

k=nj+1s=m;+1

IA

DM 1D 1D 1D T

-
Il
—_

2.27

IA

which means that (xi) € £, . But it contradicts that P, : £, — £;. So, we see that there exist « > 0 and

B > 0suchthat Y, B(k,s,a,B) < oo.
k,s=N

Let y = min {ao, B %} and define (cxs) by

0, otherwise -

{B(k,s,a,ﬁ), ks>N
Cks =

It’s obvious that (cx);.y € L1 Also [~y,7] € [~ao,a0] and [tf < B for each t € [~y,y]. Letk,s > N

and t € [-y,y]. Ift € A(k,s,a,p), then |g (k, s, t)|q < B(k,s,a,B) = cxs < ks + |tf. If t ¢ A(k,s,,B), then

[t > a1 |g (k, s, t)|q and so we find |g (k, s, t)|q < altff < ¢ + atfP. Hence the inequality (13) holds.
Conversely, suppose that there is @ > 0, > 0, N € N and (cx)y. 5= € £1 such that

|g (k, s, t)|q < ¢ + a |t whenever [t < B

for all k, s with max {k,s} > N. Let (xi;) € £,. Then thereis N’ > Nsuch that ),  |x[' <& <p”. Hence

max{k,s}>N’
for all k, s € N such that max {k, s} > N’, it's obvious that |xs| < f. Therefore,

q
|!] (k/ S, xks)| Sosta |xks|p
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for all k, s € IN such that max {k,s} > N’. So, we have

Z |g(k,s,xks)|qs Z Cks + Z ksl .

max{k,s}>N’ max{k,s}>N’ max{k,s}>N’

Then we obtain that ), | g(k,s, xk5)|q < oo. This completes the proof. [
k;s=1

Example 3.3. Let g: IN?> X R — R defined by

g(k,s,t)=( L +|t|5)|t|

2q

forallk,s € Nand forallt € R. Let N =1, =2and |t| < 2. Then for all k,s € N,

1 2 q
( +|t|5) Il
20

|9 (k,s, 1)’

1 b,
< quax{ — ,|t|5q}-|t|q
2

5 1

< 24 + |t
2k+s

! 4P

< s + 49|t .

Since Y, 2%1 < 00, we put cx; = zﬁ—fsfor all k,s € IN. Ifwe take o = 49, then we have |g (k, s, t)| < ¢t + a |t whenever
k,s=1
|t| < B. By Theorem 3.2, we find that P, acts from L, to L.

Proposition 3.4. Let X be a normed double sequence space containing all finite double sequences and Y be a normed
double sequence space such that Y C M,,. Suppose that

()Py: XY,

(ii) there exists o > 0 such that ||e™"||x < a for all m,n € IN,

(i) ||y, < Blllly on Y for some B > 0.

If P, is continuous at x, then for any & > 0 there exists 6 > 0 such that

|t — xis| < O implies |g (k,s,t) — g(k,s,xks)| <e
forallk,s € Nandt e R

Proof. Let any ¢ > 0. Since P, is continuous, there exists 6 > 0 such that
Iz — x|lx < 0 implies “Py (z) - Py (x)”Y <& (20)

forall z € X. Letk,s € N and t € R with |t — x| < g Let u = (f — xx5) €™ + x, hence u € X, uys = t and from
(if)
llu — xllx = 1t — x| lle™"lx < 0.

Thus, we find ||Pg (u) - P, (x)”Y < I% by (20). Therefore, we obtain

|9 (k,5,5) = g (6,5, %15)| < ||Py () = Py (), < B[Py ) = P, )|, < &

by (iii). [
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Theorem 3.5. Let the superposition operator Py : L, — L. If P, is continuous at x € L, if and only if g (k,s, .) is
continuous at xys for all k,s € IN.

Proof. Since the conditions in Proposition 3.4 provided, we see that the necessary condition can be showed
easily.

Conversely, suppose that g(k,s,.) is continuous at x;, for all k,s € IN. We need to show that P, is
continuous at x € £,. Since P, : £, — L, there exista« > 0, > 0, N; € N and (cks),‘:’sz1 € L7 such that

lg ks, 0| < ks + (1)
whenever |t| < § for all k, s with max {k, s} > N1. Let any ¢ > 0. Since £, C M,,,

co m—1 00

-1 oo )
p- dim_ [ Y bl + YUY bl + )Y |xks|”l =0

k=0 s=m k=n s=1 k=ns=m

and

-1 o co m—1 0 o0
p- tim [ Tor S e ZZ%} o

k=0s=m k=n s=1 k=ns=m

respectively, there exists N € IN with N > N; such that

|xxs| < B for all k, s with max {k,s} > N, (22)

) BY &1 1 e
P <m = _— -
Z>N |xk5| S mn {(2 7 a2q+3/ 2P (a2q+3) (23)

max{k,s}

and

Z o < = (24)

q+3°
max{k,s}>N 2

We write |g (k,s, xks)‘q < ks + a|xisl” for all k, s with max {k, s} > N by using (21) and (22). Since g(k,s,.) is

1
continuous at xy, for all k,s € {1,2, ..., N — 1}, there is 6 € R satisfying 0 < 6 < min{g, % (a§:+3 )ﬂ} such that

o g\
[t — xis| < 6 implies (g (k,s, t) — g(k,s,xks)| < (m) (25)

forallte Rand k,s €{1,2,...,N —1}.
Letz € £, with ||z — x]|, < 6. Then, we see that

”(st)max[k,s}ZN - (xks)max{k,s}zN ||p <o.

Hence we find

lzks| < ”(st)max{k,s}zN”p
< ”(st)max{k,s}ZN = (Xks)maxthsj>N ||p + “(ka)maX[k'S}ZN ”P
< O+ E < (26)

5 S
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by using (23), for all k, s with max {k, s} > N. Also, we find

1

Ykl

||(st)max[k,s}2N”p

max{k,s}>N
< ”(st)max[k,s}zN - (xks)max[k,s}zN”p + ”(xks)max[k,s}ZNHp
el b
(a2‘7+3) ' @7
We write |g (k, s, zks)(q < ¢k + a|zis| for all k, s with max {k, s} > N by using (21) and (26). Therefore, we have
g (k,5,2) = g (k,s,36)| < 27 maX{|g (k,s,zi)| |9 (k, s, xks)|q}
< 27 (|g (k,s,zi)|" + g (k, 5, xks)|q)
< 2TQ2cs +a Zisl” + a |xisl?) -
Then we find
Y, lgksz)-gksx) < 2 Y a2 Y Rl +2%a Y bl
max{k,s}>N max{k,s}>N max{k,s}>N max{k,s}>N
el
<32

by using (23), (24) and (27). We know that |zs — x| < [lz— x|, < 6 for all k,;s € {1,2,..,N -1} and so
(9 (k,s,zks) — g (k, s, xks)|q <&

from (25). Therefore, we obtain

2(N-1)
0 N-1
Z |9(k,s,215) — g (k5,2 = Z |7 (k,5,215) — g (k. s, 315)|" + Z |9 (k5,25 = 9 (k, 5, %i5)|"
k,s=1 k,s=1 max{k,s}=N
2 el el
< N-1)P ———+ =5 <&,
2(N-1)°* 2

This completes the proof. [J

4. Concluding Remarks

The necessary and sufficient conditions for the continuity of the superposition operator P, have been
formulated, as stated in Theorem 2.3 and Theorem 3.5 . For the future, we will formulate the necessary and
sufficient conditions for the boundedness of the superposition operator P,,.

References

[1] Apostol T.M., Mathematical Analysis, Pearson Education Asia Limited and China Machine Press, 1974.

[2] Basar E, Sever Y., The Space Of Double Sequences, Math. J. Okayama Univ., 51 (2009), 149-157.

[3] Basar F., Summability Theory And Its Applications, Bentham Science Publishers, e-books, Monographs, Istanbul, 2012.

[4] Chew T.S., Lee PY., Orthogonally Additive Functionals On Sequence Spaces, Southeast Asian Bull. Math. 9 (1985), 81-85.

[5] Dedagich F,, Zabreiko P.P., Operator Superpositions In The Spaces Iy, Sib. Math. J., 28 (1987), 86-98.

[6] Kolk E., Raidjoe A., The Continuity Of Superposition Operators On Some Sequence Spaces Defined By Moduli, Czech. Math. J., 57
(2007), 777-792.

[7] Petranuarat S., Kemprasit Y., Superposition Operators On l, And cq Into I; (1 < p,q < o0), Southeast Asian Bull. Math., 21 (1997),
139-147.

[8] Pluciennik R. ,Continuity Of Superposition Operators On wg And Wy, Commentat. Math. Univ. Carol., 31(1990), 529-542.

[9] Sama-ae A., Boundedness And Continuity Of Superposition Operator On E, (p) And F, (p), Songklanakarin J. Sci. Technol., 24 (2002),
452-466.

[10] Streit R. E.,, The Summation Of Convergent Double Series, Texas Tech University, 1972.



