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Abstract. In this paper, we introduce a new three-step iteration scheme and establish convergence results
for approximation of fixed points of nonexpansive mappings in the framework of Banach space. Further,
we show that the new iteration process is faster than a number of existing iteration processes. To support
the claim, we consider a numerical example and approximated the fixed point numerically by computer
using Matlab.

1. Introduction

Let E be a uniformly convex Banach space, C be a nonempty closed convex subset of E. Throughout this
paper, IN denotes the set of all positive integers and F(T) := {x : Tx = x}. A mapping T: C — C is said to be
nonexpansive if ”Tx - Ty” < ||x - y” for all x, y € C and for all n € IN. For arbitrary chosen x; € C, construct
a sequence {x,}, where x, is defined iteratively for each positive integer n > 1 by:

Xnr1 = Txy, (1)

X1 = (1 — ap)xy + a,Txy,, (2)

Xn+l = (1 - an)xn + anTyn /} (3)

Yn = (1- ,Bn)xn + ﬁnTxn .

The sequences {x,} generated by (1), (2) and (3) are called Picard, Mann [8] and Ishikawa [5] iteration
sequences respectively.

In 1955, Krasnoselskii [7] showed that the Picard iteration scheme (1) for a nonexpansive mapping T
may fail to converge to fixed point of T even if T has a unique fixed point, but the Mann sequence (2) for
ay = 3,¥Yn > 1 converges strongly to the fixed point of T.

Mann and Ishikawa iteration methods have been studied by several authors for approximation fixed
points of nonexpansive mapping, see, e.g., [6, 11, 13-15].
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In 2000, Noor [9] defined the following iterative scheme, by x; € C and

Xn+l = (1 - an)xn + anT]/n
Yn = (1 - ,Bn)xn + ﬁnTZn (4)
Zy = (1 - Yn)xn + V11Txn

for all n > 1, where {a,}, {B.} and {y,} are sequences in (0, 1).
In 2007, Agrawal et al. [2] introduced the following iteration process: For arbitrary chosen x; € C
construct a sequence {x,} by
Xn+l = (1 - an)Txn + anT]/n/ (5)
Yn =1 =B)xy+puTx,, nelN

where {a,} and {B,} are in (0,1). They showed that this process converges at a rate same as that of Picard
iteration and faster than Mann iteration for contractive mappings.

Recently, Abbas et al. [1] introduce the following iteration, where a sequence {x,} is constructed from
arbitrary x; € C by

Xpe1 = (1= )Ty, + an Tz,
Yn = (1 - ,Bn)Txn + ﬁnTZn (6)
Zy = (1 - yn)xn + VnTxn

where {a,}, {,} and {y,} are in (0, 1). They showed that this process converges faster than Agrawal et al. [2]
iteration process.

Motivated by the previous ones, we introduce a new modified iteration process for finding fixed point
of nonexpansive mappings, where the sequence {x,} is generated iteratively by x; € C and

Xn+l = (1 - an)TZn + anT]/n
Yn = (1- ,Bn)zn + ,BnTZn (7)
= (1= yu)xn + yuTxy

where {a,}, {6,} and {y,} are real sequences in (0, 1).

The purpose of this paper is to prove convergence results for nonexpansive mappings using the itera-
tion (7). We also prove that the iteration (7) converges faster than Picard, Mann, Ishikawa, Noor, Agarwal
et al., Abbas et al. iteration process, for contractive mappings in the sense of Berinde [3]. We also present
numerical example to compare the convergence of (7) with Picard, Mann, Ishikawa, Noor, Agarwal et al.
and Abbas et al. iterations.

2. Preliminaries

Let E be a Banach space and Sg = {x € E : ||x|| = 1} unit sphere on E. For all A € (0,1), and x,y € Sg
with x # y, if ”(1 -A)x+ /\y” < 1, then E is called strictly convex. If E is a strictly convex Banach space and
|lx|| = ||y|| ”ax +(1- a)yH forx,y € Eand a € (0,1), thenx = y.

The space E is said to be smooth if

|| + £y]| = x|
o Y]l

t—0 t

(8)

exists for each x and y in Sg. In this case, the norm of E is called Gateaux differentiable. For all y € S, if
the limit (8) is attained uniformly for x € Sg, then the norm is said to be uniformly Gateaux differentiable
or Frechet differentiable.
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We call the space E satisfies the Opial’s condition [10] if for any sequence {x,} in E, x, — x implies that

7

limsup [|x, — x|| < limsup ||xn -y
n—oo n—-oo

forall y € E with y # x.

A mapping T: C — E is demiclosed at y € E if for each sequence {x,} in C and each x € E, x, — x and
Tx, — yimply that x € Cand Tx = v.

The following definitions about the rate of convergence are due to Berinde [3].

Definition 2.1. Let {a,} and {b,} be two sequences of real numbers converging to a and b respectively. If

lim,, 0 H =0, then {a,,} converges faster than {b,}.

Definition 2.2. Suppose that for two fixed-point iteration processes {x,} and {u,}, both converging to the
same fixed point p, the error estimates

Hxn — pH <a, foralln>1,
[n —p| <bu  foralln>1,

are available where {a,} and {b,} are two sequences of positive numbers converging to zero. If {a,,} converges
faster than {b,}, then {x,} converges faster than {u,} to p.

We state the following lemmas to be used later on.

Lemma 2.3 ([4]). Let C be a nonempty closed convex subset of a uniformly convex Banach space E, and T a
nonexpansive mapping on C. Then, I — T is demiclosed at zero.

Lemma 2.4 ([12]). Suppose E is a uniformly convex Banach spaceand 0 < p < t, < g < 1foralln € N. Let {x,} and
{yu) be two sequences of Esuch that limsup, __ x|l < 7, limsup,__ ||yx|| < randlimsup,, . ||taxa + (1 = ta)yu|| =
1 hold for some r > 0. Then lim,_,« Hx,, - yn” =0.

Lemma 2.5 ([2]). Let E be a reflexive Banach space satisfying the Opial condition, C a nonempty and convex subset
of E,and T: C — X an operator such that I — T demiclosed at zero and F(T) # @. Let {x,} be a sequence in C such

that limy, 00 ||x; — Txy|| = 0 and lim,, o ||xn - p“ exists for all p € F(T). Then {x,} converges weakly to a fixed point
of T.

3. Rate of Convergence

In this section, we show that the iteration process (7) converges faster than the iteration of Abbas et al.

(6).

Theorem 3.1. Let C be a nonempty closed convex subset of a norm space E. Let T be a contraction with a contraction
factor k € (0, 1) and fixed point p. Let {11} be defined by the iteration process (6) and {x,} by (7), where {a,}, {8} and
{ynlarein [e,1 — €] for all n € N and for some € in (0,1). Then {x,} converges faster than {u,}. That is, our process
(7) converges faster than (6).

Proof. As proved in Theorem 3 of Abbas and Nazir [1],

||un+1 - p“ <K'1-(@1-kapy]l" ||u1 -p

7

for alln € N. Let
ay = K'[L = (1 = k)apy]"|jur - p|| -



B. S. Thakur et al. / Filomat 30:10 (2016), 2711-2720 2714

Now
len = pll = @ = yxn + 7T =

<=y |pw = pl| + oy |en = |
=1 -Q=kyw) | -p

7

so that

s = pll = 10 = B)za + BaTzn = p
< (1= ) [z = p + KB [l — Pl
<(1=B)(1 = A=Ky |Jxn = p|| + ka1 = A = K)y) ||xn = |
= (1= (1= RBn)A — (1= k) |[xa = p| -

Thus

|[xne1 = p|| = [|(1 = @) Tzu + au Ty, — |
<(1-ayk ||zn - p” + kay, Hyn - p”
< (1 - awk(l = (1 =Ky [ = p||
+ka(1 = (1 =KL = (1 = K)y) [ — |
= k(1 — (1 = Byl = aw + au(1 = 1 = KB |[xa - ]|
= K[(1 = (1 = K)ya)(1 = @ + ctn = (1= K)anB)] || - ||
= k(1= (1= )1 = (1= Daup)] |[x. - p|
[1- (1= k)yn— 0= Kauu + (1 = kanfuyal [ —p|
[
(

1= A =Kyn— A= Kaufuyn + (1 = anBuyal |[xn = p|
1= (1= kyya) [Jxa = p].

A

k
k
k
Let b, = k(1 = (1 - k)y)"|Jx1 - p||- Then

L R
an k1= (1= K)apy] [un - p
_ ==kl [m-yl
(1= A= Rapyl" |[u, - p

—0 as n— oo,

Consequently {x,} converges faster than {u,}. O

Now, we present an example which shows that our iteration process (7) converges at a rate faster than
Abbas and Nazir’s iteration process (6), Agarwal et al. iteration process (5), Mann iteration (2), Ishikawa
iteration (3), Noor iteration (4) and Picard iteration process (1).

Example 3.2. Let E = Rand C = [1,50]. Let T: C — C be a mapping, which is defined by the formula

T(x) = Vx2 —9x + 54 for all x € C. Choose o, = B, = yn = f’;, with the initial value x; = 30.
The corresponding our iteration process, Abbas and Nazir iteration process (6), Agarwal et al.iteration
process (5), Mann iteration process (2) and Picard iteration process (1) are respectively given below.
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Step Picard Mann Ishikawa Noor Agarwal Abbas New iter.
1 | 30.0000000000 | 30.0000000000 | 30.0000000000 | 30.0000000000 | 30.0000000000 | 30.0000000000 | 30.0000000000
2 | 26.1533936612 | 27.1150452459 | 25.0119824036 | 23.4891033190 | 24.0503308189 | 22.6107900775 | 21.3066758526
3 | 224191761010 | 24.2907437151 | 20.2547559071 | 17.4668190633 | 18.4372719353 | 15.8281562671 | 13.5889959660
4 | 18.8373796516 | 21.5420343135 | 15.8509087868 | 12.3265857284 | 13.3938203603 | 10.2582064029 8.1129739580
5 | 154696624163 | 18.8892775011 | 12.0133051549 | 8.7275766163 | 9.3725555853 | 7.0018379217 | 6.2256746270
6 | 12.4130372403 | 16.3606498049 9.0688620373 6.9585711603 6.9939357160 6.1191542086 6.0151302207
7 | 9.8166266286 | 13.9954171304 | 7.2820400289 | 6.3102146269 | 6.1862067854 | 6.0112132578 | 6.0009604944
8 | 7.8750567432 | 11.8475686983 | 6.4668031480 | 6.0979255677 | 6.0283693653 | 6.0010243038 | 6.0000607496
9 6.7187058292 9.9869851099 6.1600652383 6.0306808428 6.0041338820 6.0000933041 6.0000038414

10 | 6.2187342407 | 8.4900396666 | 6.0537250393 | 6.0095903071 | 6.0005981884 | 6.0000084969 | 6.0000002429
11 6.0583865336 7.4083030742 6.0179028366 6.0029956076 6.0000864719 6.0000007738 6.0000000154
12 | 6.0148623083 | 6.7246651786 | 6.0059514305 | 6.0009354914 | 6.0000124982 | 6.0000000705 | 6.0000000010
13 6.0037328233 6.3468134658 6.0019768478 6.0002921220 6.0000018064 6.0000000064 6.0000000001
14 | 6.0009342942 | 6.1586728531 | 6.0006564620 | 6.0000912177 | 6.0000002611 | 6.0000000006 | 6.0000000000
15 | 6.0002336418 | 6.0708846663 | 6.0002179755 | 6.0000284834 | 6.0000000377 | 6.0000000001 | 6.0000000000
16 | 6.0000584147 | 6.0313055772 | 6.0000723757 | 6.0000088941 | 6.0000000055 | 6.0000000000 | 6.0000000000
17 | 6.0000146039 | 6.0137535390 | 6.0000240311 | 6.0000027772 | 6.0000000008 | 6.0000000000 | 6.0000000000
18 6.0000036510 6.0060282506 6.0000079791 6.0000008672 6.0000000001 6.0000000000 6.0000000000
19 | 6.0000009128 | 6.0026394884 | 6.0000026493 | 6.0000002708 | 6.0000000000 | 6.0000000000 | 6.0000000000
20 6.0000002282 6.0011551843 6.0000008797 6.0000000846 6.0000000000 6.0000000000 6.0000000000
21 | 6.0000000570 | 6.0005054713 | 6.0000002921 | 6.0000000264 | 6.0000000000 | 6.0000000000 | 6.0000000000
22 6.0000000143 6.0002211587 6.0000000970 6.0000000082 6.0000000000 6.0000000000 6.0000000000
23 | 6.0000000036 | 6.0000967598 | 6.0000000322 | 6.0000000026 | 6.0000000000 | 6.0000000000 | 6.0000000000
24 | 6.0000000009 | 6.0000423330 | 6.0000000107 | 6.0000000008 | 6.0000000000 | 6.0000000000 | 6.0000000000
25 6.0000000002 6.0000185208 6.0000000035 6.0000000003 6.0000000000 6.0000000000 6.0000000000
26 | 6.0000000001 | 6.0000081029 | 6.0000000012 | 6.0000000001 | 6.0000000000 | 6.0000000000 | 6.0000000000
27 6.0000000000 6.0000035450 6.0000000004 6.0000000000 6.0000000000 6.0000000000 6.0000000000
28 | 6.0000000000 | 6.0000015509 | 6.0000000001 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000
29 6.0000000000 6.0000006785 6.0000000000 6.0000000000 6.0000000000 6.0000000000 6.0000000000
30 | 6.0000000000 | 6.0000002969 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000
31 | 6.0000000000 | 6.0000001299 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000
32 6.0000000000 6.0000000568 6.0000000000 6.0000000000 6.0000000000 6.0000000000 6.0000000000
33 | 6.0000000000 | 6.0000000249 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000
34 6.0000000000 6.0000000109 6.0000000000 6.0000000000 6.0000000000 6.0000000000 6.0000000000
35 | 6.0000000000 | 6.0000000048 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000
36 6.0000000000 6.0000000021 6.0000000000 6.0000000000 6.0000000000 6.0000000000 6.0000000000
37 | 6.0000000000 | 6.0000000009 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000
38 6.0000000000 6.0000000004 6.0000000000 6.0000000000 6.0000000000 6.0000000000 6.0000000000
39 | 6.0000000000 | 6.0000000002 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000
40 | 6.0000000000 | 6.0000000001 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000 | 6.0000000000
41 6.0000000000 6.0000000000 6.0000000000 6.0000000000 6.0000000000 6.0000000000 6.0000000000

All sequences converges to x* = 6. Comparison shows that our iteration process (7) requires least
number of iterations among all the iterations mentioned above.

We now examine the fastness of the iterations in terms of computation time. All codes were written in
Matlab and elapsed time were measured using tic and toc functions. Since this functions depends upon
some random value, we tested programm in two different computers which we call system-1 and system-2,
where system-1 is a notebook Intel(R) Core(TM)2 Duo CPU P8700 2.53GHz with 3.00GB RAM and system-2
is a PC Intel(R) Core(TM)2 Duo CPU E8400 3.00GHz with 4.00GB RAM. We tested program 5 times in each
system and taken the average elapsed time for each iteration method. The number of iterations and the
computational time to obtain the fixed point using different iteration methods up to 15 decimal places of
second, are given in the following table.
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Iteration Number of Average elapsed time (sec.)
Method iterations System-1 System-2
1 2 3 4

Picard 27 0.001530001332577 | 0.001120460080389
Mann 41 0.003159117654725 | 0.002367597986286
Ishikawa 29 0.001554638207663 | 0.001367451268890
Noor 27 0.001551315488323 | 0.001412962226072
Agarwal et al. 19 0.001308025840315 | 0.001117790973962
Abbas et al. 16 0.001454469725004 | 0.001337201902983
New iter. 14 0.001234034186288 | 0.001059824367656

We can see from above mentioned table and the following graph that the new iteration converges faster

not only in terms of number of iterations but in elapsed time also.

Convergence behaviour of Picard, Mann, Ishikawa, Noor, Agarwal et al., Abbas et al. and New iteration

for the function given in the Example 3.2

value of xn

301
Picard
Mann
Ishikawa

25 Noor
Agarwal et al.
Abbas et al.
New iteration

20+

15+

10+

5 1 1 1 1 1 J
0 2 4 6 8 10 12 14

4. Convergence Theorems

Iteration number

In this section, we establish some convergence theorems using iteration process (7).

Lemma 4.1. Let C be a nonempty closed convex subset of a normed linear space E. Let T be a nonexpansive self
mapping on C, {x,} be a sequence defined by (7) and F(T) # &. Then lim,,_,c ||xn - p” exists for all p € F(T).
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Proof. Letp € F(T) for all n € IN. From (7), we have

[z = pll = [l =y +yuTxw = p
< (=) [oeu = Pl + || T2 = |
< (1 =y |Peu = pl| + v [Jxn = 1
= |lxa - |, 9)

and

s = pll = 10 = B)za + BaTzn = 1
<1 ol 4 7201
< (1 - ‘Bl’l) ”xn - P“ + ,Bn ||xn - p”
= [ =, (10)
thus from (9) and (10)

|[xne1 = p|| = [|(1 = @) Tzu + au Ty, — |
<(1-ay) HTzn - pH + ay ”Tyn - p”
< (1= ) [fon = pl| + au o — ]
= [len =l

Hence lim;,_,o ||xn - p” exists for allp € F(T). O

Lemma 4.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Let T be a nonexpansive
self mapping on C, {x,,} be a sequence given by (7) and F(T) # . Then lim,—,« || X, — Tx, ||= 0.

Proof. By Lemma 4.1, it follows that lim,_,c Hxn - pH exists.

Assume that lim,,_, ”xn - p” =c.
From (9) and (10) we have

lim sup “yn - p“ <cgc (11)
and
lim sup “zn - p” <c (12)
n—oo

Since T is nonexpansive mapping, we have
[T =pll < b =pll. 79 =pll < lln =pll, and [Tz = p| < ffen =]
Taking lim sup on both sides, we obtain

limsup “Txn —p” <gc
n—oo

lim sup “Tyn - p” <gc
n—oo
and

lim sup “Tz,, - p“ <ec. (13)
n—oo
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Since
¢ = lim |[xsa —pl| = lim (1 = @)(Tzn = p) + au(Tyn = )|,
by using Lemma 2.4, we have

lim [|Tz, — Tya|| = 0.

Now

v =l = 0 = T2+ T =] < 72—l v r20 ~ T

yields that

c< limianTzn - p” ,

n—o0

so that (13) and (14) gives
o o

On the other hand, we have
720 = pl| < [Tz = Tyal| + [Ty = p| < [[T20 = Ty + [l = p]
and this yields that

4

c< liy{rl)glnyn - p” .

From (11) and (15) we get
lim [|y = pf| = <.

Using Lemma 2.4, from (12) and (13), we get
lim |1z, = Tz, = 0.
Since
[y = pl| < |20 = pI| + Ba IIT20 = 2l
we write,
¢ < limsup ||z, — p|,
oo
then,
|z = ol =,
s0
¢ = lim ||z, - p
= lim |(1 ~ @), + @ Tx, —p|
= lim [|(1 - au)(vy = p) + au(Tx, = p)|,
and by Lemma 2.4, we have

lim ||x,, — Tx,|| = 0.
n—oo

This completes the proof. [

2718

(14)

(15)
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By using Lemma 2.3, Lemma 2.5, Lemma 4.1 and Lemma 4.2, we will establish the following theorem.

Theorem 4.3. Let E be a real uniformly convex Banach space which satisfies the Opial’s condition, C a nonempty
closed convex subset of X and T: C — C a nonexpansive mapping with F(T) # . Let {x,} be the sequence defined
by iteration process (7). Then {x,} converges weakly to a fixed point of T.

Proof. Let p € F(T). Then lim,_ “xn - p“ exists. We prove that {x,} has a unique weak subsequential
limit in F(T). For, let u and v be weak limits of the subsequences {x,,} and {x,;} of {x.}, respectively. By

lim;, 0 ||x,7 — Txy, | = 0 and I — T is demiclosed with respect to zero by Lemma 2.3, therefore we obtain
Tu = u. Again in the same manner, we can prove that v € F(T). Next, we prove the uniqueness. From
Lemma 4.1 the limits lim,,_,« ||x, — || exists. For this suppose that u # v, then by the Opial’s condition

Iim ||x,, — u|| = lim ||xn,. - uH < lim ||xni - v” = lim ||x, — ||
n—o0 nj—00 n—00

n;j— 00
= lim “x";‘ - v” < lim ||xn/. - u” = lim ||x,, — ul]|
nj—oo nj—00 n—o0
This is a contradiction, so u = v. Hence, {x,} converges weakly to a fixed point of F(T) and this completes
the proof. [

Theorem 4.4. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Let T be a
nonexpansive self mapping on C, {x,} defined by (7) and F(T) #+ . Then {x,} converges to a point of F(T) if and only
if Hm inf,,,0 d(x,, F(T)) = 0 where d(x, F(T)) = inf{||x — p|| : p € F(T)}

Proof. Necessity is obvious.

Suppose that lim inf,, . d(x,, F(T)) = 0. As proved in Lemma 4.2, lim,,_,« [[x,, — w]| exists for all w € F(T),
therefore lim,, . d(x,, F(T)) exists. But by hypothesis, we have lim inf,,_,, d(x,,, F(T)) = 0, therefore we have
limy, e d(x,, F(T)) = 0. We will show that {x,} is a Cauchy sequence in C. Since lim,_, d(x,,, F(T)) = 0, for
given ¢ > 0, there exists 19 in IN such that for all n > n,

d(x,, E(T)) < %

< 5. Now, for

Particularly, inf{”xno - p” :p € F(T)} < 5. Hence, there exist p* € F(T) such that Hxno -p
m,n = Ny,

X — Xnll < ||xn+m - P*H + ”xn —P*” <2 ||x710 - P*H <E.

Hence {x,} is a Cauchy sequence in C. Since C is closed in the Banach space E, so that there exists a
point p in C such that lim,—,. x, = p. Now lim,,_,., d(x,,, F(T)) = 0 gives that d(p, F(T)) = 0. Since F is closed,
peFT). O

A mapping T: C — C, where C is a subset of a normed space E, is said to satisfy Condition (A) [13] if
there exists a nondecreasing functionf: [0, c0) — [0, c0) with f(0) = 0, f(r) > 0, for all r € (0,1), such that
llx = Tl > f(d(x, F(T)), for all x € C, where d(x, F(T)) = inf{||x - p|| : p € F(T)}.

It is to be noted that Condition (A) is weaker than compactness of the domain C.

Applying Theorem 4.4, we obtain a strong convergence of the process (7) under Condition (A) as follows:

Theorem 4.5. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Let T be a
nonexpansive self mapping on C, {x,} defined by (7) and F(T) # Q. Let T satisfy Condition (A), then {x,} converges
strongly to a fixed point of T.

Proof. We proved in Lemma 4.2 that

lim [|x, — Tx,|| = 0. (16)
n—oo
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From Condition (A) and (16), we get

lim f(d(x,, F(T)) < lim ||x,, — Tx,|| =0,

ie., lim, e f(d(x,, F(T)) = 0. Since f : [0,00) — [0, 0) is a nondecreasing function satisfying f(0) = 0,
f(r) > 0 for all r € (0, o), therefore we have

lim d(x,,, F(T)) = 0.

By Theorem 4.4 the sequence {x,} converges strongly to a point of F(T). [
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