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Abstract. In this paper, we introduce the notion of multiderivations on lattices and their fixed sets. By
using the superjoinitivity and supermeetability properties of the multifunctions, we give some new results
on properties of isotone and joinitive multiderivations on lattices. In this way, we show that under some
conditions the fixed set of a multiderivation is an ideal.

1. Introduction

The Lattice algebra has a significant role in some branches, for example information theory ([2]), infor-
mation retrieval ([7]), information access controls ([16]) and cryptanalysis ([10]). Formal models of secure
computer systems use the algebraic concept of a lattice to describe certain components of the system (see
[3], [15] and [9]). In 2008, the notion of derivation introduced in [18]. Analytic and algebraic properties
of lattices have been studied by some researchers (see for example, [8], [11] and [12]). Also, derivations
on rings, near-rings, BCI-algebras and lattices have been reviewed (see for example, [4], [5], [13] and [14]).
There are some equivalent conditions under which a derivation is isotone on a lattices with a greatest
element, modular lattices and distributive lattices ([18]). In fact, it has been characterized modular lattices
and distributive lattices by isotone derivations and proved that the set of all fixed points of a derivation
on a lattice is an ideal of the lattice ([18]). Also, it has been investigated some relations among derivations,
ideals and fixed sets (see for example, [17]).

In this paper, we define superjoinitive and supermeetable correspondence from a lattice L to the power
set P(L). Then we introduce the concept of multiderivation on lattices and investigate some properties of the
notion. In this way, we give some relations about multiderivations, ideals and fixed set of a multiderivation.

A lattice is a non-empty set L endowed with binary operations ∧ and ∨ such that x ∧ x = x, x ∨ x = x,
x∧ y = y∧x, x∨ y = y∨x, x∧ (y∧ z) = (x∧ y)∧ z, x∨ (y∨ z) = (x∨ y)∨ z, x∨ (x∧ y) = x and x∧ (x∨ y) = x for
all x, y, z ∈ L ([6]). A binary relation ≤ is defined by x ≤ y if and only if x ∧ y = x or x ∨ y = y ([6]). A lattice
L is called modular whenever x ∨ (y ∧ z) = (x ∨ y) ∧ z for all x, y, z ∈ L with x ≤ z ([1]). A lattice L is said to
be distributive whenever x∧ (y∨ z) = (x∧ y)∨ (x∧ z) and x∨ (y∧ z) = (x∨ y)∧ (x∨ z) for all x, y, z ∈ L ([6]).
A Boolean algebra is an algebra (B,∧,∨,′ , 0, 1) with two binary operations ∧ and ∨, one unary operation ′
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and two nullary operations 0 and 1 such that (B,∧,∨) is a distributive lattice, a ∧ 1 = a and 0 ∨ a = a for all
a ∈ B and there is a′ ∈ B such that a ∧ a′ = 0 and a ∨ a′ = 1 for all a ∈ B ([6]). Let L be a lattice. Finally, an
ideal is a non-void subset I of a lattice L such that x ≤ y and y ∈ I implies x ∈ I and x, y ∈ I implies x ∨ y ∈ I
([6]). We say that I is down-closed whenever satisfies the first property of the ideal.

Lemma 1.1. [6] Let (L,∧,∨) be a lattice and ≤ the binary relation. Then (L,≤) is a poset, x ∧ y is the greater lower
bound (g.l.b) of {x, y} and x ∨ y is the lower upper bound (l.u.b) of {x, y} for all x, y ∈ L.

It has been proved that x ∧ y ≤ x, x ∧ y ≤ y, x ≤ x ∨ y, y ≤ x ∨ y, y ≤ z implies x ∧ y ≤ x ∧ z, x ∨ y ≤ x ∨ z for
any x, y, z ∈ L and x ∨ a ≤ y ∨ b and x ∧ a ≤ y ∧ b for all x, y, a, b ∈ L with x ≤ y and a ≤ b ([6]).

2. The Preliminary

Let L be a lattice, 2L the set of nonempty subsets of L and M,N ∈ 2L. We define the operation ∧ and ∨ on
2L by M∧N = {x ∈ L : there exist m ∈M and n ∈ N such that x = m∧n} and M∨N = {x ∈ L : there exist m ∈
M and n ∈ N such that x = m ∨ n}. We abbreviate M ∧ {x} and M ∨ {x} by M ∧ x or M ∨ x, respectively. We
say M � N whenever for each m ∈ M there exists n ∈ N such that m ≤ n. It is easy to see that � does not
satisfy antisymmetry property, that is, the condition M � N and N � M does not imply M = N. Thus, � is
not a partial order on 2L. We say that the order � is a quasi-partial order on 2L and (2L,�) is a quasi-partial
ordered set. One can see that M∧N �M, M∧N � N, M �M∨N, N �M∨N, M � N implies P∧M � P∧N
and P ∨M � P ∨ N for all P,M,N ∈ 2L. If M � N and P � Q (P,M,N ∈ 2L), then it is easy to check that
M ∨ P � N ∨Q and M ∧ P � N ∧Q. Now for record, we give next result which one can prove it easily.

Lemma 2.1. Let (2L,∧,∨,�) be a quasi-partial ordered set and M,N,C ∈ 2L. Then, we have M ⊆ M ∧M and
M ⊆M∨M. If M be a sublattice of L, then M = M∧M and M = M∨M. Also, M∧N = N∧M, M∨N = N∨M,
(M ∧ N) ∧ C = M ∧ (N ∧ C), (M ∨ N) ∨ C = M ∨ (N ∨ C), M ⊆ (M ∧ N) ∨M and M ⊆ (M ∨ N) ∧M. If L is
a distributive lattice, then M ∧ (N ∨ C) = (M ∧ N) ∨ (M ∧ C) and M ∨ (N ∧ C) = (M ∨ N) ∧ (M ∨ C). Finally,
N �M whenever M ∨N ⊆M.

Let L be a lattice and ϕ : L ⇒ 2L a multifunction. We say that ϕ is supermeetable (and superjoinitive)
whenever ϕ(x ∧ y) ⊇ ϕ(x) ∧ ϕ(y) (and ϕ(x ∨ y) ⊇ ϕ(x) ∨ ϕ(y)) for all x, y ∈ L. We say that ϕ is super-
homomorphism whenever ϕ is supermeetable and superjoinitive. Also, ϕ is called a meet-homomorphism
(simply meetable) whenever ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y) and is called a join-homomorphism (simply joinitive)
whenever ϕ(x∨ y) = ϕ(x)∨ϕ(y) for all x, y ∈ L. Finally, we say that ϕ is multi-homomorphism whenever it
is both meet-homomorphism and join-homomorphism.

Theorem 2.2. Let L be a lattice and ϕ : L⇒ 2L a super-homomorphism. Then ϕ(L) is a lattice with binary operation
∧ and ∨. If L is a distributive lattice, then ϕ(L) so is.

Proof. Since ϕ is supermeetable, ϕ(x) = ϕ(x ∧ x) ⊇ ϕ(x) ∧ ϕ(x) for all x ∈ L and so ϕ(x) = ϕ(x) ∧ ϕ(x) for all
x ∈ L. Similarly, we get ϕ(x) = ϕ(x) ∨ ϕ(x) for all x ∈ L. Hence, ∧ and ∨ satisfy the reflexivity property on
2L. Since ϕ is supermeetable and superjoinitie, ϕ(x) = ϕ((x∧ y)∨ x) ⊇ ϕ(x∧ y)∨ϕ(x) ⊇ (ϕ(x)∧ϕ(y))∨ϕ(x)
and (ϕ(x) ∨ ϕ(y)) ∧ ϕ(x) = ϕ(x) for all x, y ∈ L. On the other hand, ϕ(x) ⊆ (ϕ(x) ∧ ϕ(y)) ∨ ϕ(x). Thus,
(ϕ(x) ∧ ϕ(y)) ∨ ϕ(x) = ϕ(x) for all x, y ∈ L. Thus, (ϕ(L),∧,∨) is a lattice.

3. Multiderivations on Lattices

Let L be a lattice and d : L ⇒ 2L a multifunction. We say that d is a multiderivation whenever
d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)) for all x, y ∈ L. We abbreviate d(x) by dx.

Example 3.1. Consider the lattice L = {0, 1, a, b} via the operations 0∨ a = a, 0∨ b = b, 0∨ 1 = 1, a∨ b = a∨ 1 = 1,
b∨1 = 1, 0∧ a = 0∧ b = 0∧1 = 0, a∧ b = 0, a∧1 = a and b∧1 = b. Define the multifunction d on L by d(0) = {0},
d(1) = {0, 1, a, b}, d(a) = {0, a} and d(b) = {0, b}. Then it is easy to check that d is a multiderivation on L.
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Example 3.2. Consider the lattice L = {0, 1, a, b} via the operations 0 ∨ a = a, 0 ∨ b = b, 0 ∨ 1 = 1, a ∨ b = b,
a ∨ 1 = 1, b ∨ 1 = 1, 0 ∧ a = 0 ∧ b = 0 ∧ 1 = 0, a ∧ b = a, a ∧ 1 = a and b ∧ 1 = b. Define the multifunction d on L
by d(0) = {0}, d(1) = {0, 1}, d(a) = {0, b} and d(b) = {0, a}. One can check that d is not a multiderivation on L.

The following example shows that we can consider infinite lattices.

Example 3.3. Consider the lattice L = [0,∞) via binary operation infimum as ∧ and supremum as ∨. Define
multifunction d : L⇒ 2L by dx = [0, x] for all x ∈ L. It is easy to check that d is a joinitive multiderivation on L.

Hereafter, we review some properties of the multiderivations on lattices.

Proposition 3.1. Let L be a lattice and d : L⇒ 2L a multiderivation. Then, dx � x and dx∧dy � d(x∧ y) � dx∨dy
for all x, y ∈ L. If I is an ideal of L, then d(I) ∈ 2I, where d(I) =

⋃
x∈L dx. If L has a least element 0 and a greatest

element 1, then d0 = {0} and d1 � 1.

Proof. Note that, dx = d(x∧x) = (dx∧x)∨ (x∧dx) � x for all x ∈ L. Thus, dx∧dy � dx∧ y and dx∧dy � x∧dy
for all x, y ∈ L. Hence,

dx ∧ dy ⊆ (dx ∧ dy) ∨ (dx ∧ dy) � (dx ∧ y) ∨ (x ∧ dy) = d(x ∧ y)

for all x, y ∈ L. On the other hand, d(x ∧ y) = (dx ∧ y) ∨ (x ∧ dy) � dx ∨ dy for all x, y ∈ L. Thus,
dx ∧ dy � d(x ∧ y) � dx ∨ dy for all x, y ∈ L. Now, let y ∈ d(I). It follows that y ∈ d(x) for some x ∈ I. But,
y ∈ d(x) � x and so y ≤ x. Since I is an ideal of L, y ∈ I. Hence, d(I) ⊆ I. Finally, it is obvious that d1 � 1.
Let x be an arbitrary element of L. Then, we have d0 = d(x ∧ 0) = (dx ∧ 0) ∨ (x ∧ d0) = 0 ∨ (x ∧ d0) = x ∧ d0.
Hence, d0 � x for all x ∈ L. If x = 0, then we get d0 = {0}.

Proposition 3.2. Let L be a lattice with a greatest element 1 and d a multiderivation on L. If d1 � x, then d1 � dx.
If x � d1, then x ∈ dx.

Proof. Since 1 is the greatest element of L, dx = d(1 ∧ x) = (d1 ∧ x) ∨ (1 ∧ dx) = (d1 ∧ x) ∨ dx. Hence,
dx = dx ∨ (x ∧ d1) = dx ∨ d1 and so d1 � dx. Now, let x � d1. Then, there exists a ∈ d1 such that x ∧ a = x. By
using Proposition 3.1, we get

x = dx ∨ x = dx ∨ (x ∧ a) ∈ dx ∨ (x ∧ d1) = dx.

Definition 3.4. Let L be a lattice and d a multiderivation on L. We say d is an isotone multiderivation on L whenever
x ≤ y implies dx � dy.

Note that every superjoinitive multiderivation d on a lattice L is isotone. Let x, y ∈ L with x ≤ y. Then, we
have dy = d(x ∨ y) ⊇ dx ∨ dy. Thus, dx � dy.

Now, let L be a lattice and A ⊆ L a sublattice of L. Define the multifunction dA on L by dA(x) = x ∧ A for
all x ∈ L. Then, dA is a multiderivation on L. Note that,

dA(x ∧ y) = x ∧ y ∧ A = (x ∧ y ∧ A) ∨ (x ∧ y ∧ A) = (dA(x) ∧ y) ∨ (x ∧ dA(y))

for all x, y ∈ L. We say that a multiderivation ϕ on L is principle whenever there exists a sublattice A of L
such that ϕ(x) = dA(x) for all x ∈ L.

Lemma 3.3. Every principle multiderivation on a lattice L is isotone.

Proof. Let dA be a principle multiderivation on a lattice L and x, y ∈ L with x ≤ y. Then, we have
dA(x) = x ∧ A � y ∧ A = dA(y). Hence, dA is isotone.
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Definition 3.5. Let L be a lattice and ϕ a multifunction on L. The set of all fixed points of the multifunction is
defined by Fixϕ(L) = {x ∈ L : x ∈ ϕx}.

Let d be a multiderivation on a lattice L. By using Proposition 3.1, we get Fixd(L) , ∅whenever L has a least
element zero. By using Proposition 3.2, {x ∈ L : x � d1} ⊆ Fixd(L) whenever L has a greatest element 1.

Lemma 3.4. Let L be a lattice and d a multiderivation on L. If x, y ∈ L, y ≤ x and x ∈ dx, then y ∈ dy.

Proof. Since x ∈ dx, by using Proposition 3.1 we get dy � y which implies that

y = y ∨ dy = (x ∧ y) ∨ dy ∈ (dx ∧ y) ∨ (x ∧ dy) = d(x ∧ y) = dy.

Theorem 3.5. Let L be a lattice and d a superjoinitive multiderivation on L. Then Fixd(L) is an ideal of L.

Proof. By using Lemma 3.4, Fixd(L) is a down-closed set. Thus, it sufficient to show that Fixd(L) is closed
under the operation ∨. Let x, y ∈ Fixd(L). Since d is superjoinitive, x∨ y ∈ dx∨ dy ⊆ d(x∨ y). This completes
the proof.

Let L be a lattice, d a multiderivation on L and x, y ∈ L. Then, dx = dx ∨ (x ∧ d(x ∨ y)). In fact, dx =
d(x ∧ (x ∨ y)) = (dx ∧ (x ∨ y)) ∨ (x ∧ d(x ∨ y)) = dx ∨ (x ∧ d(x ∨ y)). If L has a greatest element 1, then 1 ∈ d1
if and only if x ∈ dx for all x ∈ L. Finally, define the multifunction d2 on L by d2x = d(d(x)) =

⋃
t∈dx dt for all

x ∈ L. It is clear that Fixd(L) ⊆ Fixd (L).

Proposition 3.6. Let L be a lattice and d a joinitive multiderivation on L. Then, dx is a subset of Fixd(L) for all x ∈ L.

Proof. Let x ∈ L be given. Then, we have

dx = d(x ∨ dx) =
⋃
t∈dx

d(x ∨ t) =
⋃
t∈dx

dx ∨ dt = dx ∨
⋃
t∈dx

dt = dx ∨ d2x ⊆

(dx ∧ dx) ∨ (x ∧ d2x) =
⋃
t∈dx

(dx ∧ t) ∨ (x ∧ dt) =
⋃
t∈dx

d(x ∧ t) = d(x ∧ dx) = d2x.

Theorem 3.7. Let L be a lattice and d a multiderivation on L. Then, d is isotone if and only if d(x∧ y) � dx∧ y and
dx ∧ y � d(x ∧ y) for all x, y ∈ L.

Proof. If d is isotone, then d(x ∧ y) ⊆ d(x ∧ y) ∧ d(x ∧ y) � dx ∧ dy � dx ∧ y. On the other hand, we have
dx ∧ y � (dx ∧ y) ∨ (x ∧ dy) = d(x ∧ y). Now, assume that d(x ∧ y) � dx ∧ y and dx ∧ y � d(x ∧ y) for all
x, y ∈ L. Let x, y ∈ L with x ≤ y. But, dx = d(y ∧ x) � dy ∧ x. Thus, for each a ∈ dx there exists b ∈ dy such
that a ≤ b ∧ x. Hence, a ≤ b and so dx � dy.

Lemma 3.8. Let L be a modular lattice and d be a multiderivation on L. Then, d is isotone if and only if d(x ∧ y) �
dx ∧ dy and dx ∧ dy � d(x ∧ y) for all x, y ∈ L.

Proof. First suppose that d is isotone. Since L is modular, we have

dx ∧ dy = (dx ∧ dy) ∧ y ∧ x � (dx ∨ dy) ∧ y ∧ x

= [(dx ∧ y) ∨ dy] ∧ x = [(dx ∧ y) ∨ dy] ∧ x = (dx ∧ y) ∨ (x ∧ dy) = d(x ∧ y).

On the other hand, we have d(x ∧ y) ⊆ d(x ∧ y) ∧ d(x ∧ y) � dx ∧ dy. Now, suppose that d(x ∧ y) � dx ∧ dy
and dx ∧ dy � d(x ∧ y) for all x, y ∈ L. Let x, y ∈ L with x ≤ y. Then, we get dx = d(x ∧ y) � dx ∧ dy which
implies that dx � dy.



Sh. Rezapour, S. Sami / Filomat 30:10 (2016), 2743–2748 2747

Example 3.6. Consider the lattice L = {0, 1, a, b, c} via the operations 0 ∨ a = a, 0 ∨ b = b, 0 ∨ c = c, 0 ∨ 1 = 1,
a ∨ 1 = b ∨ 1 = c ∨ 1 = 1, a ∨ b = a ∨ c = b ∨ c = 1 and a ∧ b = a ∧ c = b ∧ c = 0. Now, consider the
sublattice A = {0, 1, b} of L and define the multiderivation dA on L by dAx = x ∧ A. Then it is easy to see that dA is a
principle multiderivation on L. Hence by Using Lemma 3.3, dA is isotone. Moreover by using Lemma 3.8, we have
dA(x ∧ y) � dAx ∧ dAy and dAx ∧ dAy � dA(x ∧ y).

Theorem 3.9. Let L be a distributive lattice and d a superjoinitive multiderivation on L. Then the followings are
equivalent.
a) d is isotone,
b) d(x ∧ y) � dx ∧ dy and dx ∧ dy � d(x ∧ y) for all x, y ∈ L,
c) d(x ∨ y) � dx ∨ dy and dx ∨ dy � d(x ∨ y) for all x, y ∈ L.

Proof. Since every distributive lattice is modular, it is sufficient we prove that d is isotone if and only if the
condition (c) holds. First suppose that d is isotone. We show that the condition (c) holds. Since d is isotone
and L is distributive, we have dx � d(x ∨ y), dy � d(x ∨ y) and

dx = dx ∨ (x ∧ d(x ∨ y)) = x ∧ (dx ∨ d(x ∨ y)).

Similarly, dy = y ∧ (dy ∨ d(x ∨ y)). Thus, we get

dx ∨ dy = [x ∧ (dx ∨ d(x ∨ y))] ∨ [y ∧ (dy ∨ d(x ∨ y))]

= [(x ∧ (dx ∨ d(x ∨ y))) ∨ y] ∧ [(x ∧ (dx ∨ d(x ∨ y))) ∨ (dy ∨ d(x ∨ y))]

= (x ∨ y) ∧ (dx ∨ d(x ∨ y) ∨ y) ∧ (x ∨ dy ∨ d(x ∨ y)) ∧ (dx ∨ dy ∨ d(x ∨ y) ∨ d(x ∨ y))

⊇ (x ∨ y) ∧ (y ∨ dx ∨ d(x ∨ y)) ∧ (x ∨ dy ∨ d(x ∨ y)) ∧ (dx ∨ dy ∨ d(x ∨ y))

= (y ∨ dx ∨ d(x ∨ y)) ∧ (x ∨ dy ∨ d(x ∨ y)) ∧ (dx ∨ dy ∨ d(x ∨ y))

⊇ (y ∨ dx ∨ d(x ∨ y)) ∧ (dx ∨ dy ∨ d(x ∨ y)) ⊇ dx ∨ dy ∨ d(x ∨ y).

Hence, dx∨ dy∨ d(x∨ y) ⊆ dx∨ dy and so d(x∨ y) � dx∨ dy. Since d is superjoinitive, by using the relations
dx � d(x∨ y) and dy � d(x∨ y), we get dx∨ dy � d(x∨ y)∨ d(x∨ y) ⊆ d(x∨ y) and so dx∨ dy � d(x∨ y) for all
x, y ∈ L. Now, suppose that the condition (c) holds. Let x, y ∈ L with x ≤ y. Then, dx ∨ dy � d(x ∨ y) = dy
and so dx � dy. This completes the proof.

Here, we provide an example to show that there are some infinite distributive lattices and isotone multi-
derivations which satisfy assumptions of our results.

Example 3.7. Consider the distributive lattice L =N ∪ {0} via binary operation infimum as ∧ and supremum as ∨.
Define multiderivation d : L→ 2L by dx = {0, 1, ..., x} for all x ∈ L. One can check that d is isotone and satisfies the
conditions Theorems 3.7 and 3.9.

Proposition 3.10. Let L be a modular lattice and d a multiderivation on L. Then, d is isotone if and only if x ∈ dx
implies d(x ∨ y) ⊆ dx ∨ dy for all x, y ∈ L.

Proof. First suppose that d is isotone and x ∈ dx. Then, we have dy = dy∨ (y∧ d(x∨ y)). Since L is modular,
dy = (dy ∨ y) ∧ d(x ∨ y) = y ∧ d(x ∨ y). Thus,

dx ∨ dy = dx ∨ (y ∧ d(x ∨ y)) = (dx ∨ y) ∧ d(x ∨ y).

Since x ∈ dx, we get d(x∨y) = (x∨y)∧d(x∨y) ⊆ dx∨dy. Since d is superjoinitive, we obtain d(x∨y) ⊆ dx∨dy.
If x ∈ dx implies d(x ∨ y) ⊆ dx ∨ dy for all x, y ∈ L, then one can easily get that d is isotone.

Let L be a modular lattice and d a superjoinitive multiderivation on L. Then, it is easy to conclude that d is
isotone if and only if x ∈ dx implies d(x ∨ y) = dx ∨ dy for all x, y ∈ L.
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Proposition 3.11. Let L be a lattice and d1 and d two joinitive multiderivations on L. If Fixd1 (L) = Fixd (L), then
d1 � d and d � d1.

Proof. Let Fixd1 (L) = Fixd (L) and x ∈ L. Then, d1x ⊆ d(d1x) and dx ⊆ d1(dx). Hence, d1x � d1x ∨ dx ⊆
d(d1x) ∨ dx = d(d1x ∨ x) = dx and so d1x � dx. Thus, d1 � d. Similarly, one can get that d � d1.

Theorem 3.12. Let L be a distributive lattice, A,B ∈ 2L and

D(L) = {dA : L⇒ 2L
| A be a sublattice o f L},

where dAx = x ∧ A for all x ∈ L. Define the multifunctions dA · dB and dA + dB by

(dA · dB)x := (dAx) ∧ (dBx) and (dA + dB)x := (dAx) ∨ (dBx)

for all A,B ∈ 2L and x ∈ L Then 2L is isomorphic to D(L).

Proof. Note that,

(dA · dB)x = (dAx) ∧ (dBx) = (x ∧ A) ∧ (x ∧ B) = x ∧ (A ∧ B) = dA∧Bx

and
(dA + dB)x = (dAx) ∨ (dBx) = (x ∧ A) ∨ (x ∧ B) = [(x ∧ A) ∨ x] ∧ [(x ∧ A) ∨ B]

= x ∧ (x ∨ A) ∧ (x ∨ B) ∧ (A ∨ B) = x ∧ (A ∨ B) = dA∨Bx.

Thus, dA · dB = dA∧B and dA + dB = dA∨B. Define the set function φ : 2L
→ D(L) by φ(A) = dA. One can easily

check that φ is one-one, onto, φ(A ∧ B) = dA∧B = dA · dB and φ(A ∨ B) = dA∨B = dA + dB for all A,B ∈ 2L.
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