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Abstract. For a graph G a subset D of the vertex set of G is a k-dominating set if every vertex not in D has at
least k neighbors in D. The k-domination number γk(G) is the minimum cardinality among the k-dominating
sets of G. Note that the 1-domination number γ1(G) is the usual domination number γ(G). Fink and Jacobson
showed in 1985 that the inequality γk(G) ≥ γ(G) + k − 2 is valid for every connected graph G. In this paper,
we concentrate on the case k = 2, where γk can be equal to γ, and we characterize all claw-free graphs and
all line graphs G with γ(G) = γ2(G).

1. Terminology and Introduction

We consider finite, undirected, and simple graphs G with vertex set V = V(G) and edge set E = E(G).
The number of vertices |V(G)| of a graph G is called the order of G and is denoted by n(G). The neighborhood
N(v) = NG(v) of a vertex v consists of the vertices adjacent to v and d(v) = dG(v) = |N(v)| is the degree of v.
The closed neighborhood of v is the set N[v] = NG[v] = N(v) ∪ {v}. By δ(G) and ∆(G), we denote the minimum
degree and the maximum degree of the graph G, respectively. For a subset S ⊆ V, we define by G[S] the
subgraph induced by S. If x and y are vertices of a connected graph G, then we denote with dG(x, y) the
distance between x and y in G, i.e. the length of a shortest path between x and y.

With Kn we denote the complete graph on n vertices and with Cn the cycle of length n. We refer to the
complete bipartite graph with partition sets of cardinality p and q as the graph Kp,q. A block is a maximal
connected subgraph without cut-vertices. A graph G is a block-cactus graph if every block of G is either a
complete graph or a cycle. G is a cactus graph if every block of G is a cycle or a K2. If we substitute each
edge in a non-trivial tree by two parallel edges and then subdivide each edge, then we speak of a C4-cactus.
Let G and H be two graphs. For a vertex v ∈ V(G), we say that the graph G′ arises by inflating the vertex
v to the graph H if the vertex v is substituted by a set Sv of n(H) new vertices and a set of edges such that
G′[Sv] � H and every vertex in Sv is connected to every neighbor of v in G by an edge.

The cartesian product of two graphs G1 and G2 is the graph G1 × G2 with vertex set V(G1) × V(G2) and
vertices (u1, u2) and (v1, v2) are adjacent if and only if either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and
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u1v1 ∈ E(G1). Let u be a vertex of G1 and v a vertex of G2. Then the sets of vertices {(u, y) | y ∈ V(G2)} and
{(x, v) | x ∈ V(G1)} are called a row and, respectively, a column of G1 × G2. A set of vertices in V(G1 × G2) is
called a transversal of G1 × G2 if it contains exactly one vertex on every row and every column of G1 × G2.

Let k be a positive integer. A subset D ⊆ V is a k-dominating set of the graph G if |NG(v) ∩ D| ≥ k for
every v ∈ V − D. The k-domination number γk(G) is the minimum cardinality among the k-dominating sets
of G. Note that the 1-domination number γ1(G) is the usual domination number γ(G). A k-dominating set of
minimum cardinality of a graph G is called a γk(G)-set. For a comprehensive treatment of domination in
graphs, see the monographs by Haynes, Hedetniemi, and Slater [16, 17]. More information on k-domination
can be found in [2–6, 8–12, 15].

In [11] and [12], Fink and Jacobson introduced the concept of k-domination. The following theorem
establishes a relation between the k-domination number γk and the domination number γ.

Theorem 1.1. (Fink, Jacobson [11] 1985) If G is a graph with ∆(G) ≥ k ≥ 2, then

γk(G) ≥ γ(G) + k − 2.

The inequality given above is sharp. However, the characterization of the graphs attaining equality
is still an open problem. In [13], the author studied the extremal graphs for general k and gave several
properties for them. Among other results, it was shown that if k is an integer with k ≥ 2 and G a connected
graph with ∆(G) ≥ k and γk(G) = γ(G) + k − 2, then ∆(G[D]) ≤ k − 2 for any minimum k-dominating set D.
In the case when k = 2, this implies that every minimum 2-dominating set is independent. We will state
this fact in the next proposition and for the sake of completeness, we will give the proof, too.

Proposition 1.2. Let G be a connected graph with ∆(G) ≥ 2. If γ2(G) = γ(G) and D is a minimum 2-dominating
set, then D is independent.

Proof. Let D be a minimum 2-dominating set. Then |D| = γ2(G) = γ(G). If D is not independent, then
it contains two adjacent vertices a, b ∈ D. But then, D − {a} is a dominating set of cardinality γ(G) − 1, a
contradiction. �

In [14], the authors characterized the block-cactus graphs with equal domination and 2-domination
numbers. They also presented some properties on graphs G with γ2(G) = γ(G).

In this paper, we center our attention on claw-free graphs. The graph K1,3 is called a claw. A claw-free
graph is a graph which does not contain a claw as an induced subgraph. A vast collection of results on
claw-free graphs can be found in the survey [7]. If G is a graph, then the line graph of G, denoted by L(G),
is obtained by associating one vertex to each edge of G, and two vertices of L(G) are joined by an edge if
and only if the corresponding edges in G are incident with each other. If for a graph G there is a graph G′

whose line graph is isomorphic to G, then G is called a line graph. In 1943, Krausz presented the following
characterization of line graphs.

Theorem 1.3. (Krausz [18] 1943) A graph G is a line graph if and only if it can be partitioned into edge disjoint
complete graphs such that every vertex of G belongs to at most two of them.

In 1968, Beineke [1] obtained a characterization of line graphs in terms of nine forbidden induced
subgraphs. Since the claw is one of those subgraphs, every line graph is claw-free. In the figure below, we
present three of the forbidden induced subgraphs, to which we will refer later.

K1,3 H1 H2

Figure 1: Three forbidden induced subgraphs in line graphs.
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2. Claw-Free Graphs with γ = γ2

In a graph G with γ(G) = γ2(G), every minimum 2-dominating set is independent by Proposition 1.2.
This fact yields us the following lemma.

Lemma 2.1. Let G be a connected nontrivial graph with γ2(G) = γ(G) and let D be a minimum 2-dominating set of
G. Then, for each vertex x ∈ V −D and a, b ∈ D ∩N(x), there is a vertex y ∈ V −D such that x, y, a and b induce a
C4.

Proof. By Proposition 1.2, a and b are not adjacent. Let X ⊆ V − D be the set of vertices that are not
dominated by D − {a, b}. Since D is a 2-dominating set of G, all vertices of X are adjacent to both a and b. If
all vertices of X − {x} are adjacent to x, then the set (D− {a, b})∪ {x} is a dominating set of G of size γ(G)− 1,
a contradiction. Hence, there is a vertex y ∈ X such that x, y, a and b induce a C4. �

Lemma 2.2. Let G be a connected nontrivial claw-free graph. If γ(G) = γ2(G), then every minimum 2-dominating
set D of G fulfills:

(i) Every vertex in V −D has exactly two neighbors in D.

(ii) Every two vertices a, b ∈ D are at distance 2 in G.

Proof. (i) Because G is claw-free and, by Proposition 1.2, D is an independent 2-dominating set, every
vertex in V −D has exactly two neighbors in D and thus (i) follows.

(ii) Suppose that a and b are two vertices in D such that dG(a, b) > 2. Without loss of generality, let b
fulfill dG(a, b) = min{dG(a, x) > 2 | x ∈ D} and let P be a shortest path from a to b in G. Let u be the neighbor
of a in P and v be the second neighbor of u in P. By Proposition 1.2, u does not belong to D. Suppose to the
contrary that v ∈ D. By Lemma 2.1, there is a vertex y ∈ V − D such that u, y, a and v induce a C4. Let w
denote the neighbor of v in P different from u. Since G is claw-free, w is adjacent to u or to y, contradicting
the minimality of P. Hence, we may assume that v ∈ V − D, and both u and v have two neighbors in D.
Let c be the second neighbor of u from D. Since G is claw-free and ac < E, v has to be adjacent to a or to
c. Because of the minimality of the length of P, v cannot be adjacent to a and thus it is adjacent to another
vertex from D. From the choice of the vertex b, we obtain that b is the second neighbor of v in D. Let S
be the set of vertices in V − D which have two neighbors from {a, b, c}, and let H be the graph induced by
the set S ∪ {a, b, c}. Since dG(a, b) > 2, there are no vertices which have a and b as neighbors. Further, from
Lemma 2.1, we obtain that there are vertices u′ and v′ in S such that u′ is adjacent to a and c but not to u,
and v′ is adjacent to c and b but not to v. Besides, u and v′ cannot be adjacent for otherwise the vertices u,
a, v, v′ would induce a claw in G. Hence, as G[{c, v′, u′, u}] cannot be a claw, u′ and v′ are adjacent.

Now we will show that the set D′ = (D − {a, b, c})∪ {u, v′} is a dominating set of G. Let z ∈ V −D′. From
the construction of H and since D is 2-dominating, it is evident that if z ∈ V − V(H), then it has at least one
neighbor in D − {a, b, c}. If z ∈ {a, c, v}, it has u as neighbor in D′ and if z ∈ {b, u′}, it is dominated by v′ in
D′. It remains the case that z ∈ V(H) − {a, b, c, u, u′, v, v′}. Then z has exactly either a and c or c and b as
neighbors in {a, b, c}. Suppose that z is neighbor of a and c. In that case it follows that z is either adjacent to
u or to u′, otherwise we would have a claw. If z is adjacent to u, we are done. If z is adjacent to u′ and not
to u, then z has to be adjacent to v′, otherwise u, z, v′ and c would induce a claw in G. Thus, z is dominated
by v′ in D′. The case that c and b are neighbors of z follows analogously. Hence, D′ is a dominating set of
G with less vertices than D and this is a contradiction to γ(G) = γ2(G) = |D|. Thus, we obtain statement (ii). �

Given a connected claw-free graph G graph with γ2(G) = γ(G) and a minimum 2-dominating set D of
G, then by Lemma 2.2 every two vertices of D have distance two in G. Hence, from Lemma 2.1 follows that
each pair of vertices of D has two non-adjacent common neighbors in V(G) −D. This allows us to state the
following lemma.

Lemma 2.3. Let G be a connected claw-free graph with γ(G) = γ2(G) and let D be a minimum 2-dominating set of
G. Let S be a subset of V(G) −D containing exactly two non-adjacent common neighbors of every pair of vertices of
D and H = G[D ∪ S]. Then, for every v ∈ V(H), the graph H[NH(v)] consists of two disjoint cliques.
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Proof. Note that H is again claw-free and |V(H)| = |D| + 2
(|D|

2

)

= |D|2 = p2. If p = 2, then H = C4 and
we are done. So suppose that p ≥ 3. Assume first that v is a vertex in D. From the construction of H
and since D is independent, v is adjacent to exactly |D| − 1 = p − 1 pairs of non-adjacent vertices from S,
such that each pair has the same two neighbors in D. Let x and y be such a pair. Let z be a neighbor
of v different from x and y. As G is claw-free, z is adjacent to x or to y. Hence, NH[v] ⊆ NH[x] ∪ NH[y].
Suppose that the set NH[x] ∩ NH[y] ∩ NH(v) contains a vertex w. Let b be the second neighbor of x and y
in D and c the second neighbor of w in D. Evidently w < {x, y} and c < {v, b}. Since x, y and c are pairwise
non-adjacent, together with w, they build a claw and we obtain a contradiction. It follows that the sets
NH[x] ∩ NH(v) and NH[y] ∩ NH(v) are disjoint. Because of G being claw-free, each of these sets is a clique.
Since NH(v) = (NH[x] ∪NH[y]) ∩NH(v) = (NH[x] ∩NH(v)) ∪ (NH[y] ∩NH(v)), it follows that H[NH(v)] is the
disjoint union of two cliques.

Assume now that v ∈ S. Let a and b be the two neighbors of v in D. Since there is only a second
vertex which is adjacent to both a and b in H and as it is not a neighbor of v in H, it follows that the set
NH[a] ∩ NH[b] ∩ NH(v) is empty. As G is claw-free, the sets NH[a] ∩ NH(v) and NH[b] ∩ NH(v) build two
disjoint cliques and, for the same reason, every other neighbor of v in H is adjacent either to a or to b. Hence,
NH(v) = (NH[a] ∩NH(v))∪ (NH[b] ∩NH(v)) and H[NH(v)] is the disjoint union of two cliques. �

LetH1 be the family of claw-free graphs G with ∆(G) = n(G) − 2 containing two non-adjacent vertices
of maximum degree and letH2 be the family of graphs G that arise from Kp × Kp, p ≥ 3, by inflating every
vertex but the ones on a transversal (we call it the diagonal) to a clique of arbitrary order (see Figure 2).

Kn1
Kn2

Kn3
Kn4

Kn5
Kn6

a

b

Figure 2: Examples of graphs from the familiesH2 andH1

(here, ni ∈N for 1 ≤ i ≤ 6)

Theorem 2.4. Let G be a connected claw-free graph. Then γ(G) = γ2(G) if and only if G ∈ H1 ∪H2.

Proof. Let G be a connected graph. We prove the statement in two parts.

First, we show that γ(G) = γ2(G) = 2 if and only if G ∈ H1. Clearly,∆(G) ≤ n(G)−2 if and only if γ(G) ≥ 2.
Hence, if G is a connected graph such that γ(G) = γ2(G) = 2, then ∆(G) ≤ n(G) − 2 and every minimum
2-dominating set is independent. Hence, there are two non-adjacent vertices a and b such that every other
vertex is adjacent to both of them, that is, dG(a) = dG(b) = n(G) − 2 = ∆(G). Thus, G ∈ H1. Conversely, if
G is a graph with ∆(G) = n(G) − 2 containing two non-adjacent vertices a and b with dG(a) = dG(b) = ∆(G),
then every vertex x ∈ V(G) − {a, b} is adjacent to both a and b. This implies that 2 ≤ γ(G) ≤ γ2(G) ≤ 2 and so
γ(G) = γ2(G) = 2.

We will show now that γ(G) = γ2(G) = p ≥ 3 holds if and only if G ∈ H2. Let H ∈ H2 be a graph
isomorphic to the cartesian product Kp×Kp of two complete graphs of order p, let T ⊂ V(H) be a transversal
of H and let G be a graph that arises from H by inflating every vertex x ∈ V(H)−T to a clique Cx of arbitrary
order. It is evident that every dominating set of G has to contain vertices on every row or every column
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of G and thus p ≤ γ(G). Since T is a 2-dominating set of G, we obtain p ≤ γ(G) ≤ γ2(G) ≤ p and hence,
γ(G) = γ2(G) = p.

We prove the converse. Let γ(G) = γ2(G) = p ≥ 3, let D = {a1, a2, . . . , ap} be a minimum 2-dominating
set and let S be a subset of V(G) −D containing exactly two non-adjacent common neighbors of every pair
of vertices of D and H = G[D ∪ S], as in Lemma 2.3. Let C1 and C2 be the two complete graphs induced
by NH[a1] in H such that V(C1) ∩ V(C2) = {a1}, given also by Lemma 2.3. Thus C1 and C2 contain exactly
one vertex of each pair of non-adjacent vertices from S which have a1 and a second common neighbor in
D. Then, for every vertex ai ∈ D − {a1}, there are vertices ui ∈ V(C1) and vi ∈ V(C2) such that ui and vi are
common neighbors of a1 and ai. We define u1 := a1 and v1 := a1. By the construction of H, it follows that
V(C1) = {u1, u2, . . . , up} and V(C2) = {v1, v2, . . . , vp}. Further, for every vertex ui ∈ V(C1), let Cui

be the clique
in H such that NH[ui] = V(C1) ∪ V(Cui

) and V(C1) ∩ V(Cui
) = {ui}. Analogously for every v j ∈ V(C2), let Cv j

be the clique in H such that NH[v j] = V(C2)∪V(Cv j
) and V(C2)∩V(Cv j

) = {v j}. Note that C1 = Cv1
and C2 = Cu1

.

Claim 1. For every pair of different indices i, j ∈ {1, 2, . . . , p}, V(Cui
) ∩ V(Cu j

) = ∅ and V(Cvi
) ∩ V(Cv j

) = ∅.

Proof of Claim 1. Since ai ∈ V(Cui
) and a j ∈ V(Cu j

) and ai and a j are non-adjacent, it follows that Cui
, Cu j

and
thus by Lemma 2.3 we obtain V(Cui

) ∩ V(Cu j
) = ∅. V(Cvi

) ∩ V(Cv j
) = ∅ follows analogously. ‖

Claim 2. V(H) =
⋃p

i=1
V(Cui

) =
⋃p

j=1
V(Cv j

) and each union is a disjoint one.

Proof of Claim 2. Let x ∈ V(H). We will show that x ∈ V(Cui
) and x ∈ V(Cv j

) for some i, j ∈ {1, 2, . . . , p}. If
x = ai ∈ D, then ai ∈ V(Cui

) ∩ V(Cvi
) and we are done. Thus suppose that x < D and let {ai, a j} = D ∩NH(x).

Then x ∈ V(Cui
) or x ∈ V(Cu j

) but not both because of Claim 1. Analogously x ∈ V(Cvi
) or x ∈ V(Cv j

)
but not both. Since {ai} = V(Cui

) ∩ V(Cvi
) and {a j} = V(Cu j

) ∩ V(Cv j
), it follows that x ∈ V(Cui

) ∩ V(Cv j
) or

x ∈ V(Cu j
) ∩ V(Cvi

) but not both. Hence V(H) ⊆
⋃p

i=1
V(Cui

) and V(H) ⊆
⋃p

j=1
V(Cv j

) and each union is a

disjoint one. Since the inclusions the other way around are obvious, the claim is proved. ‖

Claims 1 and 2 imply that every vertex x ∈ V(H)− (V(C1) ∪V(C2)) is adjacent to exactly one vertex ux ∈

V(C1) and one vertex vx ∈ V(C2). Moreover, we obtain that NH[x] = V(Cux
)∪V(Cvx

) and V(Cux
)∩V(Cvx

) = {x}.
Now we can define the mapping

φ : V(H) −→ V(C1 × C2) : ui 7→ (ui, v1), for ui ∈ V(C1)

vi 7→ (u1, vi), for vi ∈ V(C2)

x 7→ (ux, vx), otherwise.

Claim 3. The mapping φ is bijective.

Proof of Claim 3. Let x and y be two vertices from V(H) − (V(C1) ∪ V(C2)) such that φ(x) = (ui, v j) = φ(y).
Then x and y are contained in V(Cui

)∪V(Cv j
). By Lemma 2.3, we obtain that {x} = V(Cui

)∩V(Cv j
) = {y} and

thus x = y. Hence, φ is injective. Since

|V(H)− (V(C1) ∪ V(C2))| = |D|2 − 2|D| + 1 = (|D| − 1)2

= |(V(C1) − {u1}) × (V(C2) − {v1})|,

it follows that φ is bijective. ‖

Claim 4. H � C1 × C2 � Kp × Kp.

Proof of Claim 4. Let x and y be two vertices in V(H) and let φ(x) = (ui, v j) and φ(y) = (ul, vm). We will show
that x and y are adjacent if and only if i = l or j = m. Suppose that x is a neighbor of y. From the definition
of the mapping φ we have that x is adjacent to ui and v j and that y is adjacent to ul and vm. From Lemma
2.3 it follows that y is adjacent either to ui or to v j. This implies that i = l or j = m. Conversely, if i = l or
j = m, it follows again by Lemma 2.3 that x and y are in a clique together with either ui = ul or with v j = vm. ‖
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By Proposition 1.2, D is independent. Therefore, every row and every column of H contains at most
one vertex of D. Since |D| = p, every row and every column of H contains exactly one vertex of D. Hence,
D is a transversal of H. Let x be a vertex in V(G) − V(H) and let a and b be the neighbors of x in D.
Then H contains exactly two non-adjacent vertices u and v having both a and b as neighbors. As G is
claw-free, x is adjacent to u or to v. Suppose that x is adjacent to both u and v. By Lemma 2.1, there is
a vertex y ∈ V − D such that x, y, a and b induce a C4. Clearly, y is distinct from u and v. Now the set
S′ = (S− {u, v})∪ {x, y} has the same properties as S and thus the graph H′ induced by (V(H)− {u, v})∪ {x, y}
is isomorphic to Kp×Kp. By symmetry, we can assume that NH(u) = NH′ (x) and NH(v) = NH′ (y). Since p ≥ 3,
there is a vertex z1 ∈ V(H) − {a, b, v} that belongs to the column of H that contains v and there is a vertex
z2 that belongs to the row of H that contains v. Clearly, z1 and z2 are distinct and z1, z2 and x are pairwise
non-adjacent, and so together with v they build a claw in G and we obtain a contradiction. Hence, without
loss of generality, we can assume that x is adjacent to u but not to v. Then the set S′ = (S − {u}) ∪ {x} has
the same properties as S and thus the graph induced by the set (V(H)−{u})∪{x} is again isomorphic to Kp×Kp.

For every vertex u ∈ V(H) − D, let au and bu be the neighbors of u in D, let C∗u be the set of vertices in G
that are adjacent to au, bu and u and let Cu = C∗u ∪ {u}. Clearly,

⋃

u∈V(H)−D Cu ∪ D = V(G). It is now easy to
see that, for every vertex u ∈ V(H) − D, the set Cu induces a clique in G and that NG[x] = NG[u] for every
vertex x ∈ Cu.

Hence, if we melt all vertices of every clique Cu for each vertex u ∈ V(H) − D to a unique vertex û, we
obtain a graph Ĥ isomorphic to Kp ×Kp. Reverting the process, that is, inflating each vertex û to the original
clique Cu, we obtain again G. Therefore, G ∈ H2. �

Theorem 2.5. Let G be a connected line graph. Then γ2(G) = γ(G) if and only if G is either the cartesian product
Kp × Kp of two complete graphs of the same cardinality p or G is isomorphic to the graph J depicted in Figure 3.

Figure 3: Graph J

Proof. Since every line graph is claw-free, the set of line graphs with γ = γ2 is contained inH1 ∪H2. If G is
a cartesian product of two complete graphs Kp for an integer p ≥ 2, then the graphs induced by the vertices
of every row and of every column of G are complete graphs Kp and form a partition of G into edge disjoint
complete subgraphs such that every vertex of G is contained in at most two of them. Hence, by Theorem
1.3, G is a line graph. If G � J, it is not difficult to obtain a partition of the graph J into edge disjoint complete
subgraphs such that every vertex of J is contained in at most two of them and thus J is a line graph.

Conversely, suppose that G ∈ H1 ∪H2 is a line graph.
Case 1. Assume that G ∈ H2, that is, G is a cartesian product Kp × Kp of two complete graphs of order p for
an integer p ≥ 2 such that the vertices not in a certain transversal T of G are inflated into a clique of arbitrary
order. Let a and b be two elements of T and U1 and U2 the two inflated vertices which are neighbors of both
a and b. Suppose that U1 has order at least 2 and let x and y be vertices in U1 and z a vertex in U2. It is now
easy to see that the vertices a, b, x, y and z induce the graph H1 of Figure 1. Hence, G cannot be a line graph,
which contradicts to our hypothesis. Thus, G contains no inflated vertices, that is, it is a cartesian product
of two complete graphs of order p ≥ 2.
Case 2. Assume that G ∈ H1, that is, G is a graph of maximum degree ∆(G) = n(G) − 2 containing two
non-adjacent vertices a and b such that every vertex x ∈ V(G) is adjacent to both a and b. If n(G) = 4, then
obviously it is a C4 and thus isomorphic to K2 × K2. Since the only claw-free graph in H1 of order 5 is
isomorphic to H1, which is not a line graph, we can assume that n(G) ≥ 6. As ∆(G) = n(G) − 2, there are
two non-adjacent vertices x and y different from a and b. Let z ∈ V(G) − {a, b, x, y}. Since G is claw-free and
every vertex in V(G) − {a, b} is adjacent to both a and b, without loss of generality, we can suppose that z is
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neighbor of x. If z is not adjacent to y, the vertices a, b, x, z and y would induce a graph isomorphic to H1

and G would not be a line graph. Hence, z is neighbor of y. Since ∆(G) = n(G) − 2, there is another vertex
z′ which is not adjacent to z, but, as before, adjacent to x and y and of course to a and b. If n(G) = 6, we
are ready and G � J. If n(G) ≥ 7, then there is another vertex w adjacent to x, y, z and z′ (with the same
arguments as before). But then, the vertices a, b, x, z and w induce a graph isomorphic to H2 of Figure 1 and
G is not a line graph. Therefore, G cannot have order greater than 6 and, thus, the only possibility for G is
to be isomorphic to the graph J.

It follows that γ2(G) = γ(G) if and only if G is either the cartesian product Kp×Kp of two complete graphs
of the same cardinality p ≥ 2 or G is isomorphic to the graph J of Figure 3. �

3. Open Problems and Further Research

We close with the following list of open problems that we have yet to settle.

Problem 3.1. Characterize further families of graphs G with γ2(G) = γ(G) (for instance outerplanar graphs,
diamond-free graphs, etc.).

Problem 3.2. Find necessary and/or sufficient conditions for a graph having γk(G) = γ(G) + k − 2.

As mentioned in the introduction, we know that, when a graph G fulfills γk(G) = γ(G) + k − 2, then the
maximum degree of the graph induced by a minimum k-dominating set it at most k− 2. This property was
the key in characterizing the claw free graphs G with γ2(G) = γ(G), as every vertex outside a minimum
2-dominating set has to have exactly two neighbors in it. Similarly for larger k, one could analyze families
of graphs with some forbidden structures. For instance, when k = 3 and G is K1,4-free and K1,3 + e-free (i.e.
a claw provided with an additional edge e), then every vertex outside any minimum 3-dominating set D
has exactly three neighbors in D. Thus, we pose the following problem.

Problem 3.3. Characterize the {K1,4,K1,3 + e}-free graphs G with γ3(G) = γ(G) + 1.
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[1] L.W. Beineke, Derived graphs and digraphs, Beiträge zur Graphentheorie (Hrsg. H. Sachs, H. Voss, H. Walther), Teubner,
Leipzig (1968) 17–23.

[2] Y. Caro, On the k-domination and k-transveral numbers of graphs and hypergraphs, Ars Combin. 29 C (1990) 49–55.
[3] Y. Caro, Y. Roditty, A note on the k-domination number of a graph, Internat. J. Math. Math. Sci. 13 (1990) 205–206.
[4] Y. Caro, R. Yuster, Dominating a family of graphs with small connected subgraphs, Combin. Probab. Comput. 9 (2000) 309–313.
[5] M. Chellali, O. Favaron, A. Hansberg, L. Volkmann, k-domination and k-independence in graphs: a survey, Graphs Combin. 28

(1) (2012) 1–55.
[6] E.J. Cockayne, B. Gamble, B. Shepherd, An upper bound for the k-domination number of a graph, J. Graph Theory 9 (1985)

533–534.
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