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On Absolute Weighted Mean Summability
of Infinite Series and Fourier Series

Hiiseyin Bor

P. O. Box 121, TR-06502 Bahgelievler, Ankara, Turkey

Abstract. In this paper, firstly we proved a known theorem dealing with absolute weighted mean summa-
bility of infinite series under weaker conditions and then we obtained an application of it to the Fourier
series. Some new results are also deduced.

1. Introduction

Let )’ a, be a given infinite series with the partial sums (s,). By 14 and & we denote the nth Cesaro
means of order @, with a > —1, of the sequences (s,) and (na,), respectively, that is (see [3])

1V o 1V -
u, = AT ;Aﬁ,},sv and t; = o ;Aﬁ,},vav, 1)
where
(o +D(a+2)...(a +n)
A% = — =0n"), A%, =0 for n>0. 2)
The series Y a, is said to be summable |C, a|; , k > 1, if (see [5], [7])

n=1

Dl I ) M1 7

n=1

(©)
If we take o = 1, then |C, a|, summability reduces to |C, 1|, summability. Let (p,) be a sequence of positive
real numbers such that

n
Pn=va—>°<> as n—oo, (Pi=p,;i=0,
v=0

i>1). (4)
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The sequence-to-sequence transformation

1 n
Wy = P_ Z PoSv (5)
=0

defines the sequence (w,) of the (N, p,) mean of the sequence (s,) generated by the sequence of coefficients
(pn) (see [6]). The series } a, is said to be summable |N, Puls k= 1, if (see [1])

00 k-1
P

Z (_n) lwy — wy|F < oo,
Pu

n=1

In the special case when p, = 1 for all values of n (resp. k = 1), [N, py|x summability is the same as |C, 1,
(resp. |N,pnl) summability. A sequence (A,) is said to be of bounded variation, denoted by (A,) € BV, if
Z:lozl |AA,| = Z;T:l | Ap = Ayt < oo

2. Known Result

The following theorem is known dealing with [N, p,|x summability factors of infinite series.
Theorem 2.1 ([2]) Let (p,) be a sequence of positive numbers such that

P, =0(mp,) as n— oo. (6)

Let (X,;) be a positive monotonic nondecreasing sequence. If the sequences (Xy), (1,), and (p,) satisfy the
conditions

AnXn = O(l) as m — oo, (7)
Z nX,lA%0,] = O(1), (8)
n=1
m P .

—Itu" = O(X,) as m — oo, )
n=1 P”

then the series ), 4,7, is summable [N, pyl, k > 1.

3. The Main Result

The aim of this paper is to prove Theorem 2.1 under weaker conditions. Now we shall prove the
following theorem.
Theorem 3.1 Let (X,,) be a positive monotonic nondecreasing sequence. If the sequences (Xj,), (1), and (p,)
satisfy the conditions (6)-(8) and

P [l
Z P—”X”k_l = O(X,) as m— oo, (10)

then the series ), 4,7, is summable [N, p,lx, k > 1.

Remark 3. 2 It should be noted that condition (10) is reduced to the condition (9), when k=1. When k > 1,
condition (10) is weaker than condition (9) but the converse is not true. As in [9] we can show that if (9) is
satisfied, then we get that
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If (10) is satisfied, then for k > 1 we obtain that

Pr . & klp"|t| k1mp_t|k K
Z—ltl ZX - = O ;P - = O(X£,) # O(Xu).

n

We need the following lemma for the proof of our theorem.
Lemma 3. 3 ([2]) Under the conditions of Theorem 3. 1, we have that

Z XA | < oo, (11)
n=1
nXylAA,| = O(1) as n— oo. (12)

4. Proof of Theorem 3.1 Let (T,,) be the sequence of (N, p,) mean of the series ), a,1,. Then, by definition,
we have

1 n v 1 n
= IT va ZarAr = IT Z(Pn — Py-1)ayAy. (13)
=0 r=0 =0
Then, for n > 1, we get
Pn Pv 1/\
Ty =Tot = 55— Z 0, (14)

=1
Applying Abel’s transformation to the right-hand side of (14), we have

n—-1 n

Ay Puln
T, — Ty A( ol ) ra, + v,
-1 v=1 VZ=1: i’an Zl‘
(n + D)putaly v+1
- nP, P Pn ) ZP ofola

n—-1
Pn v+1 Pn 1

+ PyAAt,—— + PyApirty—
Pnpn—l ; v vly " PnPn—l ; v/lo+1 UU

T,,/l + Tn,Z + Tn/3 + Tn/4.

To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show that
) k-1
Y (P—) T, <o, for r=1,234
n=1 Pn

Firstly, we have that

m

P
Z(—) IToalt
n=1 Pn

0(1)2|A A 1 - omzm oo Inb

_ Po |tv|k Pn Itn|k
= 0(1) Z Al Z B+ Ol Z e
n=1 v=1 v n=1 n

m—=1
= 0Q1) Z [AAX, + OD)AW| X = O(1) as m — oo,

n=1
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by virtue of the hypotheses of Theorem 3. 1 and Lemma 3. 3. Also, as in T,;, we have that

m+1 P k-1 m+ n-1 1 n-1 k-1
-n Tn k vtvk/\ k
Z;(p) T2l [Zm Fidolt x| 5— 2 pe

v=1
m+1 p
= O(1>Z|Av|k-lmv|pv|tv|k Y 5p
v=1 n=o+1 = " 1T

M k
= oY b e — o) s mo e

ml i k-1 m+1 p n—1 k
= = . PolAA, It
Z(Pn) | nS‘ ; P”P,:l_l ol At

n=2

m+1 p n-1 k
= 0} =0 [vavmvum]

n=2 = " n-1 \v=1

m+1 p n-1 1 n—1 k=1
_ n k k L
= O(Dé Tp [UZ_;@MAUD polt ]x [ o Z;p]

m+1

_ 1)Z(U|A)\ ) olApoltel Y %”1

n=v+1
2 j Pv t

k
- O(l)ZA(ZJ|A/\ DZIPT It,| . om 'Mm|z Po |t|
v=1 =1

m=1
= 0(1) Y 1A @IAAD] Xy + OW)mIAL, X,y
v=1
m=1 m=1
= 0(1) ) 0XelAA] + O(1) ) Xol Al + O()mIAA X
v=1 v=1

= O(l) as m— oo,

by virtue of the hypotheses of Theorem 3. 1 and and Lemma 3. 3. Finally, by using (6), we have that

m+1 P k-1 " m+1 n—-1 k
;(p_n) |Tn,4‘ - O(l)Z:: P Pk_ [UZ; Mv+1|Pv|tv|]
m+1 -1 . _— k-1
= 1 Ao k vtvk )
o();PPM( Ao Fpel |]x[Pn_lzp]
m+1

v=1
= 1)Z|/\v+1|k 1|/\v+1|Pv|tv| Z %nl

- 1)Z|Av+1& o) as mo e

:
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This completes the proof of Theorem 3. 1. It should be noted that if we take p, = 1 for all values of n, then
we get the known result of Mazhar dealing with |C, 1|, summability factors of infinite series under weaker
conditions (see [8]).

5. Let f(t) be a periodic function with period 27 and integrable (L) over (-7, 7). Write

1 - . .
fx) ~ an + ;(an cos nx + by, sinnx) = ; Cu(x)

P(t) = %{f(x +1) + f(x — 1)}, and ¢, (t) = & J;(t - u)“‘ld)(u)du, (a>0).

It is well know that if ¢1(f) € BV(0, ), then t,(x) = O(1), where £,(x) is the (C,1) mean of the sequence
(nCy(x)) (see [4]). Using this fact, we get the following main result dealing with Fourier series.

Theorem 5. 1 If ¢1(t) € BV(0, ), and the sequences (p,), (A,), and (X,,) satisfy the conditions of Theorem

3. 1, then the series series ) C,,(x)A,, is summable |N, pn|k, k>1.
If we take p, = 1 for all values of n, then we obtain a new result dealing with |C, 1|, summability factors of
Fourier series.
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