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On Absolute Weighted Mean Summability
of Infinite Series and Fourier Series

Hüseyin Bor

P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract. In this paper, firstly we proved a known theorem dealing with absolute weighted mean summa-
bility of infinite series under weaker conditions and then we obtained an application of it to the Fourier
series. Some new results are also deduced.

1. Introduction

Let
∑

an be a given infinite series with the partial sums (sn). By uαn and tαn we denote the nth Cesàro
means of order α, with α > −1, of the sequences (sn) and (nan), respectively, that is (see [3])

uαn =
1

Aα
n

n∑
v=0

Aα−1
n−vsv and tαn =

1
Aα

n

n∑
v=0

Aα−1
n−vvav, (1)

where

Aα
n =

(α + 1)(α + 2)....(α + n)
n!

= O(nα), Aα
−n = 0 f or n > 0. (2)

The series
∑

an is said to be summable |C, α|k , k ≥ 1, if (see [5], [7])

∞∑
n=1

nk−1
∣∣∣uαn − uαn−1

∣∣∣k =

∞∑
n=1

1
n

∣∣∣tαn ∣∣∣k < ∞. (3)

If we take α = 1, then |C, α|k summability reduces to |C, 1|k summability. Let (pn) be a sequence of positive
real numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞,
(
P−i = p−i = 0, i ≥ 1

)
. (4)
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The sequence-to-sequence transformation

wn =
1

Pn

n∑
v=0

pvsv (5)

defines the sequence (wn) of the
(
N̄, pn

)
mean of the sequence (sn) generated by the sequence of coefficients

(pn) (see [6]). The series
∑

an is said to be summable
∣∣∣N̄, pn

∣∣∣
k, k ≥ 1, if (see [1])

∞∑
n=1

(
Pn

pn

)k−1

|wn − wn−1|
k < ∞.

In the special case when pn = 1 for all values of n (resp. k = 1), |N̄, pn|k summability is the same as |C, 1|k,
(resp. |N̄, pn|) summability. A sequence (λn) is said to be of bounded variation, denoted by (λn) ∈ BV, if∑
∞

n=1 |∆λn| =
∑
∞

n=1 | λn − λn+1 |< ∞.

2. Known Result

The following theorem is known dealing with |N̄, pn|k summability factors of infinite series.
Theorem 2.1 ([2]) Let (pn) be a sequence of positive numbers such that

Pn = O(npn) as n→∞. (6)

Let (Xn) be a positive monotonic nondecreasing sequence. If the sequences (Xn), (λn), and (pn) satisfy the
conditions

λmXm = O(1) as m→∞, (7)

m∑
n=1

nXn|∆
2λn| = O(1), (8)

m∑
n=1

pn

Pn
|tn|

k = O(Xm) as m→∞, (9)

then the series
∑

anλn is summable |N̄, pn|k, k ≥ 1.

3. The Main Result

The aim of this paper is to prove Theorem 2.1 under weaker conditions. Now we shall prove the
following theorem.
Theorem 3.1 Let (Xn) be a positive monotonic nondecreasing sequence. If the sequences (Xn), (λn), and (pn)
satisfy the conditions (6)-(8) and

m∑
n=1

pn

Pn

|tn|
k

Xn
k−1

= O(Xm) as m→∞, (10)

then the series
∑

anλn is summable |N̄, pn|k, k ≥ 1.
Remark 3. 2 It should be noted that condition (10) is reduced to the condition (9), when k=1. When k > 1,
condition (10) is weaker than condition (9) but the converse is not true. As in [9] we can show that if (9) is
satisfied, then we get that

m∑
n=1

pn

Pn

|tn|
k

Xn
k−1

= O(
1

Xk−1
1

)
m∑

n=1

pn

Pn
|tn|

k = O(Xm).
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If (10) is satisfied, then for k > 1 we obtain that

m∑
n=1

pn

Pn
|tn|

k =

m∑
n=1

Xk−1
n

pn

Pn

|tn|
k

Xn
k−1

= O(Xk−1
m )

m∑
n=1

pn

Pn

|tn|
k

Xn
k−1

= O(Xk
m) , O(Xm).

We need the following lemma for the proof of our theorem.
Lemma 3. 3 ([2]) Under the conditions of Theorem 3. 1, we have that

∞∑
n=1

Xn|∆λn| < ∞, (11)

nXn|∆λn| = O(1) as n→∞. (12)

4. Proof of Theorem 3.1 Let (Tn) be the sequence of (N̄, pn) mean of the series
∑

anλn. Then, by definition,
we have

Tn =
1

Pn

n∑
v=0

pv

v∑
r=0

arλr =
1

Pn

n∑
v=0

(Pn − Pv−1)avλv. (13)

Then, for n ≥ 1, we get

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1λv

v
vav. (14)

Applying Abel’s transformation to the right-hand side of (14), we have

Tn − Tn−1 =
pn

PnPn−1

n−1∑
v=1

∆
(Pv−1λv

v

) v∑
r=1

rar +
pnλn

nPn

n∑
r=1

vav

=
(n + 1)pntnλn

nPn
−

pn

PnPn−1

n−1∑
v=1

pvtvλv
v + 1

v

+
pn

PnPn−1

n−1∑
v=1

Pv∆λvtv
v + 1

v
+

pn

PnPn−1

n−1∑
v=1

Pvλv+1tv
1
v

= Tn,1 + Tn,2 + Tn,3 + Tn,4.

To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

(
Pn

pn

)k−1 ∣∣∣Tn,r

∣∣∣k < ∞, f or r = 1, 2, 3, 4.

Firstly, we have that

m∑
n=1

(
Pn

pn

)k−1

|Tn,1|
k = O(1)

m∑
n=1

|λn|
k−1
|λn|

pn

Pn
|tn|

k = O(1)
m∑

n=1

|λn|
pn

Pn

|tn|
k

Xn
k−1

= O(1)
m−1∑
n=1

∆|λn|

n∑
v=1

pv

Pv

|tv|
k

Xv
k−1

+ O(1)|λm|

m∑
n=1

pn

Pn

|tn|
k

Xn
k−1

= O(1)
m−1∑
n=1

|∆λn|Xn + O(1)|λm|Xm = O(1) as m→∞,
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by virtue of the hypotheses of Theorem 3. 1 and Lemma 3. 3. Also, as in Tn,1, we have that

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,2|
k = O(1)

m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

pv|tv|
k
|λv|

k

 ×
 1

Pn−1

n−1∑
v=1

pv


k−1

= O(1)
m∑

v=1

|λv|
k−1
|λv|pv|tv|

k
m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

|λv|
pv

Pv

|tv|
k

Xv
k−1

= O(1) as m→∞.

Again, by using (6), we get that

m+1∑
n=2

(
Pn

pn

)k−1 ∣∣∣Tn,3

∣∣∣k =

m+1∑
n=2

pn

PnPk
n−1

n−1∑
v=1

Pv|∆λv||tv|


k

= O(1)
m+1∑
n=2

pn

PnPk
n−1

n−1∑
v=1

vpv|∆λv||tv|


k

= O(1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

(v|∆λv|)kpv|tv|
k

 ×
 1

Pn−1

n−1∑
v=1

pv


k−1

= O(1)
m∑

v=1

(v|∆λv|)k−1v|∆λv|pv|tv|
k

m+1∑
n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

v|∆λv|
pv

Pv

|tv|
k

Xv
k−1

= O(1)
m−1∑
v=1

∆ (v|∆λv|)
v∑

r=1

pr

Pr

|tr|
k

Xr
k−1

+ O(1)m|∆λm|

m∑
v=1

pv

Pv

|tv|
k

Xv
k−1

= O(1)
m−1∑
v=1

|∆ (v|∆λv|)|Xv + O(1)m|∆λm|Xm

= O(1)
m−1∑
v=1

vXv|∆
2λv| + O(1)

m−1∑
v=1

Xv|∆λv| + O(1)m|∆λm|Xm

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 3. 1 and and Lemma 3. 3. Finally, by using (6), we have that

m+1∑
n=2

(
Pn

pn

)k−1 ∣∣∣Tn,4

∣∣∣k = O(1)
m+1∑
n=2

pn

PnPk
n−1

n−1∑
v=1

|λv+1|pv|tv|


k

= O(1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

|λv+1|
kpv|tv|

k

 ×
 1

Pn−1

n−1∑
v=1

pv


k−1

= O(1)
m∑

v=1

|λv+1|
k−1
|λv+1|pv|tv|

k
m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

|λv+1|
pv

Pv

|tv|
k

Xv
k−1

= O(1) as m→∞.
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This completes the proof of Theorem 3. 1. It should be noted that if we take pn = 1 for all values of n, then
we get the known result of Mazhar dealing with |C, 1|k summability factors of infinite series under weaker
conditions (see [8]).
5. Let f (t) be a periodic function with period 2π and integrable (L) over (−π, π). Write

f (x) ∼
1
2

a0 +

∞∑
n=1

(an cos nx + bn sin nx) =

∞∑
n=0

Cn(x)

φ(t) = 1
2 { f (x + t) + f (x − t)}, and φα(t) = α

tα
∫ t

0 (t − u)α−1φ(u)du, (α > 0).
It is well know that if φ1(t) ∈ BV(0, π), then tn(x) = O(1), where tn(x) is the (C, 1) mean of the sequence
(nCn(x)) (see [4]). Using this fact, we get the following main result dealing with Fourier series.
Theorem 5. 1 If φ1(t) ∈ BV(0, π), and the sequences (pn), (λn), and (Xn) satisfy the conditions of Theorem
3. 1, then the series series

∑
Cn(x)λn is summable

∣∣∣N̄, pn

∣∣∣
k, k ≥ 1.

If we take pn = 1 for all values of n, then we obtain a new result dealing with |C, 1|k summability factors of
Fourier series.
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[3] E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math. 14 (1890) 114-120.
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