Filomat 30:10 (2016), 2809-2823

Published by Faculty of Sciences and Mathematics,
DOI 10.2298/FIL1610809A

University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

'b% s
vt
K

T1pupor®

Generalized Riesz Potential Spaces and their Characterization
via Wavelet-Type Transform

Ilham A. Aliev?, Esra Saglik®

?Department of Mathematics, Akdeniz University, 07058, Antalya, Turkey
YInstitute of science department of mathematics, Akdeniz University, 07058, Antalya, Turkey

Abstract. We introduce a wavelet-type transform generated by the so-called beta-semigroup, which is a
natural generalization of the Gauss-Weierstrass and Poisson semigroups associated to the Laplace-Bessel
convolution. By making use of this wavelet-type transform we obtain new explicit inversion formulas for
the generalized Riesz potentials and a new characterization of the generalized Riesz potential spaces. We
show that the usage of the concept beta-semigroup gives rise to minimize the number of conditions on
wavelet measure, no matter how big the order of the generalized Riesz potentials is.

1. Introduction

Let R} = {x = (x1,...,X4-1,%,) € R" : x, > 0} and S(IR}) be the space of functions, which are
restrictions to R"} of the Schwartz test functions on IR” that are even in the last variable x,,. The closure of
the space S(IR") in the norm

==

I£1,,, = [ ol st 8
R!

is denoted by L,, = L,,(R"}). Here v > 0 is a fixed parameter, 1 < p < oo and dx = dx;...dx,_1dx,. The
notation Cy = Co(IR"}) stands for the closure of the spaces S(IRY}) in the sup-norm.
The Fourier-Bessel transform and its inverse are defined as

(Fyp) () = f WY j @y, (F'e) @) = cm) (Fup) (=3, %) 2)
R!
where x" -y = x1y1 + ... + Xp—1Yn-1, ¢ € L1,(R}),

-1
c,(n) = [(271)”*122"*11"2(1/ + %) 3)
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and j;(t) (t > 0,5 > —%) is the normalized Bessel function: js(f) = w (Js(t) is the first kind Bessel
function).

The Fourier-Bessel transform is an automorphism of the space S(IR) and if the function ¢ € L;,(R}) is
radial, then F, ¢ is also radial (see for details, [16],[30]).

Denote by TV the generalized translation (shift) operator, acting as

Tw+1) [
Trd) -

(Tp) (x) = 10 (x’ —y'; AJX% = 2x, Y, cos O + yf,) sin®~! 0d6. 4)

The convolution (Bessel convolution) generated by the translation TV is defined as
won® = [ pOT e @ = dir.de), ®)
R}
for which ¢ ® ¢ = ¢ ® @. The following Young inequality for convolution (5) is well known:

1 1

1
||(P ® w”r,v S ”(p“p,v ”ll}”q,v ;1< p.q.r < co and ;; + a = ; -1 (6)

The action of the Fourier-Bessel transform to Bessel convolution is as follows:
F,(p®vy)=F,@.F¢. 7)

The generalized Riesz potentials generated by the generalized translation (4) are defined in terms of Fourier-
Bessel transforms as follows

EBf=F (& “Ff); feSRY),0<a<n+2v. 8)
These potentials admit the following integral representation as the Bessel convolution (see [9],[1],[2]):

1
Vny (a )

(1) () = f Iy T fy, ©)
R!

where
21T T ()T (v + 1)
r(zg=2)

V(@) = ,0<a<n+2v. (10)

Many known results for the classical Riesz potentials are also valid for the potentials I f. For instance, the
analog of Hardy-Littlewood-Sobolev theorem in this case is formulated as (see [9]):

n+2v 1 1 a
and - — - =
p q n+2v

sl <Al 0 <p < y

If p = 1 then
q
meas {x eR}: |(13f) (x)| S )\} < [Cq ”i“w] ,

n+2v
n+2v—a

where g = and for measurable E ¢ R%, measE = f x2'dx.
E
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The potentials I f have remarkable one-dimensional integral representations in terms of the Poisson
and Gauss-Weierstrass semigroups, generated by the generalized translation TY. Namely,

(2% 1 000(— v
N0 = [ (P ) a1
0
o 1 wﬁ— v
mﬁm=naj?lmﬁﬁMﬁ (12
0

Here the Poisson semigroup P?’) f and the Gauss-Weierstrass semigroup Giv) f generated by the generalized
translation are defined as follows (see [9], [10], [1]):

(F1)0 = [ psn ey, o> o, (13)
R
T n+2v+1
pu(y;t) = F e ™(y) = 7 ( 2 1) t T (14)
Tt F(v+ E) (}y(2+t2) 2
67w = [ anr i, ¢ o), (15)
J
2 bY 4as: wize |y
W(y;t) = F;! —tlx| e /P e 16
) = ) = Cos e 16)

The one-dimensional integral representations (11), (12) of the generalized Riesz potentials I3 f have proved
to be extremely useful for explicit inversion of these potentials (see for details [9], [1], [3], [4]).
In [4] and [27], it has been introduced the so-called beta-semigroup

(Wﬁm=deMﬂﬂ%me>% 17)

R"

generated by the radial kernel

MWMA=F%WWwaMWj?WWMn

R

and using this beta-semigroup it has been obtained integral representation of the classical Riesz and Bessel
potentials and a new characterization for the Riesz potential spaces. Here F~! is the inverse Fourier
transform, x -y = x1y1 + ... + X4 Yy, |x| = Vx - x and B € (0, ). The another application of the beta-semigroup
(17) to Bessel potentials spaces and Radon transform is given in [4] and [5].

In this work we define a semigroup, generated by the radial kernel

fﬂWwO=H%WNwzmmffwﬂwmgwmﬁw
R!
and by making use of this semigroup, we obtain one-dimensional integral representation for the generalized
Riesz potentials I f. Further, we define a wavelet-type transform generated by this semigroup and by some
"wavelet-measure”, then using this wavelet-type transform we obtain new explicit inversion formulas for
the generalized Riesz potentials (9). Finally, we give a new characterization of generalized Riesz potential
spaces. We show that the usage of the concept beta-semigroup gives rise to minimize the number of
conditions on wavelet measure y, no matter how big the order a of the generalized Riesz potentials is.
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2. Beta-Semigroup Generated by the F,! (exp(—t |xf? )) and Application to Generalized Riesz Potentials

Given > 0, consider F! (exp(—t |x|5)> (y), (t > 0; x,y € R}). It is known that, if ¢ € L, is radial, then
F,¢ also is radial ([16], [30]). Therefore, F;* (exp(—t |x[f )) (y) is radial. Denote

w(f) (| y

)= E (expt D) ) = e [ i 8)

Ry
The Beta-semigroup, generated by the kernel (18) is defined (formally now) as convolution-type operator:

W)@ = (@ 1009w = [of (l

R

)T fR)ydy. (19)

In case of f = 1 and B = 2, (19) coincides with the generalized Poisson semigroup (13) and generalized

Gauss-Weierstrass semigroup (15), respectively. Unlike (14) and (16), the kernel function a)f,ﬁ ) (| Yy

, t) cannot

be computed explicitly, however, some important properties of wffg ) (|y ,t) are well determined by the

following lemma.

Lemma 2.1. (cf. [4],[27]) Let x,y € R}, 0 <t < c0and 0 < < oo. Then,

@ o (A7 |y], A1) = 27 F 0P (|y], 1), (A > 0).
In particular, for A = + we have
o (Ju].1) = £ F 0P (57 ]]1); 20)

b)If0<p<2, thena)gg)((y ,t) >0forally e Rt and t > 0;
(© Ifp = 2k, (k € N), then 0¥ (Jy|, 1) € SRY), vt > 0;
(d) f a)i[g> (|y , t) y2'dy = 1, ¥t > 0; provided that 0 < B < 2 or B = 2k, (k € N);
RH

() Let f €L, 1<p <o If0<p<2orf =2k (k€N), then

o], <o,
Here, c(B) = f

o (Jv]. 1)
J

() Let fel,, 1<p<oo. If0<p<2orp=2k (keN), then

y2dy < co and c(B) = 1 provided 0 < f < 2;

sup| (W) o] < (. ),

where M, f is the generalized Hardy-Littlewood maximal function ([1],[13],[14]).

1 X v
(M, f) (x) = S:i(})?m f}T f)| virdy, (21)
B

Bf ={x:x e R x| < r}and w(n;v) = [ x¥dx;
By

(g) sup |(Wt(ﬁ)f) (x)| <ot ||f”pv, 1<p<oo, where0 < B <2o0rp =2k (keN)
xeR" !
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(h) Let 0 < B < 2o0r f =2k, (k € N). Then for any f € Ly, and any t, T € (0, o)

Wt(ﬁ ) (W(f ) f) =w® f, (the semigroup property);

t+1

(i) Let f€Ly,, 1 <p < 00 (Lo = Co, the closure of the space of S(R'!) in the sup-norm). Then for 0 < g < 2 or
B =2k, (k € IN), we have

tim (W F) () = £,

where the limit is understood in the L, ,-norm as well as pointwise for almost all x € RY}. In case of f € L, = Co,
the convergence is uniform.

Remark 2.2. In accordance with (i) it will be assumed that W(()ﬁ ) f=f

Remark 2.3. In our opinion, the statements of this Lemma except of (b) and (c), are valid also for any p > 2. In order
to proof this, it is sufficient to show the following asymptotic formula for any positive p # 2k, (k € IN).

o (Jy],1) = cp |yl

We believe that, the formula (22) is valid true but we don’t know its proof and we suggest it, as an open problem.

—-n-2v—p

(1+0(1)) as |y| - . (22)

Proof. (a) We have

o |y

, t) =¢,(n) fe‘txlﬁei""y’jv_;(xnyn)xfl"dx (set X = /\%z, dx = /\%dz)
R
) n -y 1 . 1
= Cv(n)/\%A’? fe—}ltlzlﬁelz APy ]vf%(zn/\éyn)zivdz
R

n+2v

= AT P (A7 [y], At).

(b) For the classical Fourier transform F, the positivity of F ‘1(e‘t|"|ﬁ), (0 < p £ 2) canbe found in [17], p.44-45
(the case of n = 1) and in [19] (the case of n > 1); see also, [4], p.11-13. For the cases p = 1 and = 2,

the positivity of w? (ly , t) =F, 1(e‘t|"|ﬁ)(y) follows immediately from (14) and (16). Let now 0 < g < 2. By
Bernstein’s theorem ([8], chapter 18, sec.4; see also [11], p.223) there is a non-negative finite measure g on

[0, 00), so that, g ([0, 0)) = 1 and e?"” = fE_Tdeﬁ(T)/ z € [0,0). Replace z by |1 to get
0

e8]

e = f e dug(v). (23)

0

From (23) we have

00

1) =EN0 = [ EE 0

0

wiﬁ) (| y

(16 2m"*:
T'(v+ %)

(o] N )
f (o)™ e dg() > 0. (24)
0
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(c) Since the transform F, is an automorphizm of the space S(IR}) and e e S(R?}), it follows that
(2k)
o

, t) € 5(IR%}) and therefore, it is infinitely smooth and rapidly decreasing on IR}.

(d) For k € N, 0™ (|y],t) € S(RY), (¢ > 0) and therefore, w{™ (|y|,¢) € L1, (V¢ > 0). Then

F, ( (2k)(‘y‘ )):e—tlxlz.

Setting x = (0, ..., 0), we have

f w(vzk) (

R

, t) y2dy = 1.
Let now 0 < f§ < 2. By making use of (24) and the formula

f e gy = —71 S + )(4T) 2 (see [6]),

R
we have
1 (9]
(2k) 2v _ 22 f — 42y f v
wy )y dy = dnt)” 2 e i 2y | dug(t
f (Jy], 1) y2rdy fosD ) ¢ ya'dy | dug(t)
R! 270 R!

Now, from homogeneity property (20), it follows immediately that

fw(f)( ,t)y?dy=fa)§ﬁ’(

n n
R R

, 1) y2dy = 1.

(e) follows by the Minkowski inequality.
(f) Theorem 2.1 from [1] states that if the function ¢ € L, has a decreasing and positive radial majorant

W(lxf) with [ (|x)x2"dx < oo, then for any f € L, (1 < p < o)
R!

oy (M) (07 (@) = (5 0) 25)

sup (e ® f)@)| < ||

By setting ¢(|x|) = a)(vﬁ) (xI,1), e = t and taking into account (20) and (25) we have for 0 < g <2 and g = 2k

Stl;l(])ﬁ ’(Wiﬁ)f) (x)' <c(Myf)(x); ¢ :Rﬂflwv ( ,1)|yﬁvdy < oo,

It is clear from (24) that, the function a)(‘6 ) (
S(R") and therefore, it has a decreasing, rad1a1 and integrable majorant.
(g) The application of the Holder inequality (i.e. the case of r = co in (6)) yields

= 2k, w(ﬁ)(

,1)6

7

) vy

(

(w2 r) ] < sl | [ o

R
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1
7

a)‘(/ﬁ) (t‘% |y|;1)’p/ y2dy (we sety = tflfx, dy = t%dx)

A,

n
RY

n+2v n+2\ 1
= |71t
pv

Rn

1

v

n+2v

" pdy| =o' I, -

where ¢ does not depend of f.
(h) If f € S(IRY}), then the statement is obvious in terms of Fourier-Bessel transform. For arbitrary f € L,
the result follows by density of S(IR}) in L, (L, = Co), by taking into account the statement (e).

® )( , t) y2dy = 1, (¥t > 0) and Minkowski inequality, we have for f € L,,

(i) Using the equality f w,

< |a)v (
pv
R}

(Leoy = Co) that

O[T £0 - £O,, v dy

e Pl irro = 70, vy (sety =z, dy = i)
N

_ f o T £() - f(.)” 2.

R’ p’v

Since

T p() - f(.)H <2||f],, and

70 - £0|| =0 @8,

lim
-0+

it follows from Lebesgue dominated convergence theorem that

=0,1<p<oo; (Lo =Cp and in this case convergence is uniform.)

Since W;f ) f—= f pointwise (in fact, uniformly) as t — 0 for any f € L,, N Cy and this class is dense in
Ly, (1 £ p < o), then owing to (f) (of the Lemma 2.1) and famous theorem on pointwise (a.e.) convergence

[28], p.60, it follows that th%l Wt(ﬁ) f(x) = f(x) for almost all x € R}. The proof of Lemma 2.1 is complete. [

By making use of the generalized beta-semigroup Wt(ﬁ ) f, it is possible to obtain the following one-
dimensional integral representation of the generalized Riesz potentials I f.

Lemma24. Let 0 <a <n+2vand f € L,,(RY), 1 < p < ™2 Then the generalized Riesz potentials I$ f admit
the following one-dimensional representation:

(1) () = (1%)()[ LW F) 26)

where 0 < B <2o0rp =2k keNN.
The formula (26) has exactly the same form as formula (17) in our paper [27] and resembles the classical
Balakrishnan formulas for fractional powers of operators (see [23], p.121). It is clear that the formulas (11)

and (12) are special cases of (26) (put p =1 and = 2). Note that this formula is given in [15] and proved
in complete analogy with Theorem 2 from [27].
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3. A Wavelet-Type Transform Generated by the -Semigroup W(ﬁ )

Potentials

f and Inversion of Generalized Riesz

In this section it will be assumed that the parameter § is even natural number. By making use of the
p-semigroup (19) we define the following integral transform (cf. [3], p. 339):

(49) 5 = ()50 = [ (W) ot @)
0

Herex € R}, t >0, g € L,, and p is a finite Borel measure on [0, c0) with ([0, o0)) = 0. From now on such a
signed Borel measure u will be called a wavelet measure and the relevant integral transform (Ag) (x, t) will
be called a wavelet-type transform.

The integral operator (27) is bounded in L, ,—spaces. Indeed, by the Lemma 2.1-(e) and the Minkowski
inequality, we have for 1 <p < o0

lcag) . o) f [wiYe], 2l v <c@lulllal,,

where ||p“ = fd|y| (n) <o

[0,00)
The transform (27) enables one to get a new explicit inversion formula for the generalized Riesz potentials
If,(fel,,1<p< "f% ). For this, we need some lemmas.

Lemma 3.1. (see [12], formula 3.238(3).)

ft_g_l(s — )it = —r(ﬁ)
1 1—‘(1 ﬁ)

Lemma 3.2. (¢f. Lemma 1.3 from [20]) Let

—(s—l)f3 (s>1,a>0,5>0).

Ko(7) = (19+1 1) (1), (0> 0,7 > 0),

where

+ 1 (
(Ii’ 1#) (1) = mf(T =)’ du(n), (6 > 0)
0

is the Riemann-Liouville fractional integral of order (O + 1) of the measure p. Suppose that u satisfies the following
conditions:

00

frf’d |y| (n) < oo for some y > 6; (28)

1

(o)

fnfdy(n) =0, V¥j=0,1,...,[0] (the integer part of O). (29)
0
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Then Ky(t) has a decreasing integrable majorant and

(o)

o I'(-0) f n%du(n), if0 1,2, ...
fKH(T)dT =coy = D 40
’ — f n%Inndu(n), if0 =1,2,...

0

In particular case, when 0 < 6 < 1, the conditions (28)-(29) and relation (30) have the simpler form:

e8]

f TORES (31)
1
f du(m) = 0; (32)
0
f Ko(1)d = ¢ = T(-0) f n%du(n). (33)
0 0
Lemma3.3. Let f € L, 1 <p < ™2 qnd the integral transform Ag be defined as in (27). Then for ¢ = I2f,
1 (o) (o) g71
(Ap) (s t) = % f [ f (-0 (WPf) <x>df] du(m), (34)
(E) o \0
A .
where a’ :{ l(l),/ Zzzzg }with/\:%—land a=1t-—nt.

Proof. Since the operators If f and Wt(ﬁ ) have a convolution structure, they are commutative and therefore,

(e8] (e8]

(o)) = [ (W) @it = [ (EWE'F) oty (e use 26)

0 0

ot (WOWP ) (x)dT] du(n)

—
—
=R

~—

S — °——s

o (WEL ) (x)df] du(n)

f (c—nt)l " (WPF) (x)dr] du(n).
0

=R
~

Il
—
| =
~—
O%g 0%8 OSg

=
—

Lemma 3.4. Denote

(9]

(D) (x) = (D 4p) (x) = f 57 (Ag) (x, Hdt, (e > 0). (35)

&
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Then for ¢ = I3f, (f € Ly, 1 < p < 2) we have

O = [ (WEr) WKy (o, 36)

0

where Ko(t) is defined as in Lemma 3.2.

Proof. Using (34) and Fubini’s theorem, we have

X 1 o ey &y &) .y (ﬁ)
(Dep) (0 = CEH [ dutp | (c-npl (W f)(x)dT]dt
ol o]

v o 0
(oY) % % a_1
a a B
- rla f (WP£) () f 0t dun) f tﬁl(%—t) dt|dr
(E)o 0 ¢
(o) T % a_q
a a ﬂ
- [(W2A) | vt due [ (E=t) arac
r(4) n
B/ o 0 1

(we use Lemma 3.1)

0o

- ® )| L1 TT_ g .
—f(wﬁf)< )[TF(H%)Of( n) d#(n)]d

(WEf) () Ks ()dr.

O

Lemma 3.5. Let the family of operators DS = D‘j,ﬁ , (€ > 0) be defined as in (35) and let § > a. Suppose that the
wavelet measure y satisfies the conditions fom du(n) = 0and fooo nd|pl(n) < co. Then the maximal operator

fx) = sup |(De1s ) () 37)

is weak (p, p) type for 1 < p < 2,

Proof. The condition f > « yields 0 < a/f < 1. From Lemma 3.2 it follows that the function K« (7) has a

o)

decreasing integrable majorant and therefore, f ‘K%(T)' dt < co. Then by making use of (36) and Lemma

0
2.1-(f), we have

(D21:/) @] < sup (W) ) f Ks (0] dr < C (M. f) ().
0

Since the Hardy-Littlewood type maximal operator M, f is weak (p,p) type (see e.g. [13, 14]), then the

maximal operator (37) also is weak (p,p) type for 1 < p < ”J;i O
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Now, we can formulate the main theorem of this section.

Theorem 3.6. Let > 0,1 <p < ™2 f¢ L, and the parameter B > a is of the form p = 2k, k € N. Suppose that
u is a finite Borel measure on [0, c0) satisfying the following conditions:

@ [duti =0 and ) [ndlul ) <o (38)
0 1
Then
f (AI%f) (x, )t F Ndt = lim f (ALLF) (e, ) TNt = ca, f(2), (39)
0 3

where the operator A and the coefficient cg,, (with 6 = % ) are defined as in (27) and (33) respectively. The limit in
(39) exists in the L, ,-norm and pointwise for almost all x € RY. If f € Co N Ly, the convergence in (39) is uniform.

Proof. By making use of (35) and (36) we have

(e8]

[anpeorita=ompe = [ (Whi) e (40)

0

Since § > a, then 0 = % < 1 and therefore [0] = 0. Thus, the conditions (28)-(29) of the Lemma 3.2 become in

the form (31)-(32), that are coincides with the conditions (38). These conditions guarantee that the function
K%(T) in Lemma 3.2 has a decreasing integrable majorant and satisfied the equality (33). Hence, we have

forp=2k>aand feL,, 1<p< 2,

a —&- (33) age
[anpeorit- e @ @) 0 - ) K@i
€ 0

(9]

© [ (WA - ] ks (o,

0

and therefore,

| = [ wer-s
0

The application of Lemma 2.1-(i) and Lebesgue convergence theorem gives

DI — o, f Ks (T)' dr. (41)

p.v

DL f —cauf| =0 (42)

p.v

lim |
e—0

For f € Co N L,, we have

lirr(} sup |DYI; f(x) — c%,yf(x)| =0.
e=0 B

The proof of pointwise convergence, as expected, is based on the maximal function technique. Since the

maximal operator f(x) + sup )D‘jlﬁ (x)| is weak (p, p) type for 1 < p < 2 (see Lemma 3.5) and the family
>0
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(D215 f) (x) converges to Ca f(x) pointwise (in fact, uniformly) as ¢ — 0 for any f € Co N L, (this class is
dense in L, ), then owing to Theorem 3.12 from [29], p.60, it follows that

(DS f) (x) = csuf(x)ae., ase— 0*.
The proof is complete. [

Example 3.7. As easily to see that the measures
1,0<nn<1
(a) du(n) = (1 — n)e™"dn and (b) du(n) = h(n)dn, where h(n) = ¢ =1, 1 <1 <2 } are satisfy the conditions
0,2<n<o0
(31)-(32), and with accordance to (33), cs,, # 0 for these measures. It is easy to construct many another examples of
wavelet measure i on [0, o) which are satisfy the conditions (31)-(32) with ¢4, # 0.

4. A Characterization of the Generalized Riesz Potential Spaces

Generalized Riesz potential space is defined as follows:

B (L) =lp:p=IFf fel R}, 1<p<” Z”. 43)

The norm in the space I} (Lp,v) is defined by the relation (cf. [23], p.553) ”(p” Ly = || f Hw, which makes I (LP,V)

a Banach space. We are going to give a new (wavelet) characterization of the space I (Lp,v) . Note that most
of the known characterizations of the classical Riesz potential spaces I*(L,) and its generalizations Lglv(]R”)
(Samko’s spaces) are given in terms of finite differences, the order of which increases with parameter «
(see [23], [24], [21], [22]). A wavelet approach to characterization of classical Riesz’s potentials is given by
B. Rubin [21], p.235-237. As seen from Rubin’s theorem in [21], p.235, the number of vanishing moments
of the wavelet measure p increases with a. In [5, 27] it has been shown that the usage of the concept
"beta-semigroup” (which is a natural generalization of the well-known Gauss-Weierstrass and Poisson
semigroups) enables one to minimize the number of conditions on wavelet measure, no matter how big the
order a of potentials is. As seen from the following theorem, the using of the additional parameter § (order
of the semigroup Wt(ﬁ ) f, t > 0) in the characterization of the generalized Riesz potential spaces gives rise to
minimize the number of vanishing moments, more precisely, only one vanishing moment of measure u is
sufficient.

Theorem 4.1. Let 0 < <n+2v,1<p < B2 gnd B = 2k > a, (k € N). Suppose that  is a finite Borel measure
on [0, oo) satisfying the following conditions:

@ [duti =0; ®) (sl ) <7 @ s %0, (a4)
0 1
where cs , is defined by (33): cs , = T(=%) f n#du(n).
Denote ’
(Dip) (x) = (D2 o) () = f 57 (Ap) (x, byt (e > 0), (45)

where the wavelet-type transform A is defined as in (27). Then,

(n+2v)
9 el (L) @ @ €Ly q= 50— and sup|[Digl],, < e
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Proof. Let ¢ € I“( ) Then ¢ = I}f, for some f € L,,. The suitable analog of the Hardy-Littlewood-

1 p(n+2v)

Sobolev’s theorem [3] claimed that ¢ € L, where 1 rhair iy S le g = ap”

Moreover, since the hmD“(p

exists in the L, ,-sense (see, Theorem 3.6, formula (39)), then

< 00.

gl

Let us prove the “sufficient part”. We will use some ideas from [21], p.222 and [26] (see also [27]). Denote
by ¢+ = ¢.(R%}) the Semyanisty-Lizorkin type space of rapidly decreasing C*—functions which are even
with respect to x,, and such that

wE Py & f () X X232 dx = 0, Yk, ka, ..oy € 27

The class ¢, is dense in L, ,(IR"}) and the operator I} is an automorphism of ¢ ([7]). (The density of classical
Lizorkin spaces ¢ in L,(R"), and much more information about its generalizations can be found in the
paper by S.G. Samko [25]; see also [23], p. 487). The action of a distribution f as a functional on the test
function w € ¢, will be denoted by (f, w). For a locally integrable on R” function f we set

(fw) = f FO)w(x)xZdx,
R

provided that the integral is finite for all w € ¢.. It is not difficult to show that, being a convolution-type
operator, [ has the following property:

(I2f,w) = (f, Iw), Yo € ¢, a > 0, f € Ly, (46)

It is known that if (f,w) = (9, w), Yw € ¢, then f = g + P, where P = P(x), x € RY is a polynomial which
is even with respect to the last variable x, (see [7]). Now, denote D¢p = %@, where D% is defined

Ca "

by (45). Since sup ”D
f € Ly, such that

o <0 by Banach-Alaoglu theorem, there exists a sequence (&) and a function

lim (Dék(p, 0) = (f,w), Yo € .. (47)

From (45), (27) and (19) it follows that the integral operator D{ ¢ can be represented as generalized
convolution with some radial kernel. Therefore, we have

(D9, ) = (¢, DL V), Y € & (48)

Firstly, we are going to show that

(L f ) = (¢, w) Yw € ¢.

For this, we have for all w € ¢,:

@ f,0) = (1) 2 lim (D5, [0) © lim (¢, Do)

(40) 1 r
kTa) (x)Kz- (t)dt|. (49)
e

ek—>0 C% m
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We must show that the last limit is equal to (@, w). Using the Holder’s inequality and then Minkowski one,
we have

f (W) @Ks (e |- (g, )| < — lo]., f (Wio) @Ks (Ddr - o4 yo()
0 C5m 0 Py
(we use the relation Cay = f K%(T)d’[)
0
( ®) 1. 1_
o el Of [k )] [ W ACEEE! (50)

It follows from the Lebesgue convergence theorem, the last expression tends to zero as ¢, — 0. Hence,
(It f,w) = (p,w),Yw € ¢,. This implies that, I{ f = ¢ + P, where P = P(x) is a polynomial (which is even
p(n+2v)

), then P = 0 and therefore,

n+2v —ap

with respect to the variable x,). But, ¢ € L;, and I f € L, (with g =
I%f = . Finally, ¢ € IS ( p,v) and the proof is complete. [
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