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Abstract. In this paper we deal with a connection between the upper Kuratowski limit of a sequence of
graphs of multifunctions and the upper Kuratowski limit of a sequence of their values. Namely, we will
study under which conditions for a graph cluster point (x, y) ∈ X×Y of a sequence {Gr Fn : n ∈ ω} of graphs
of lower quasi-continuous multifunctions, y is a vertical cluster point of the sequence {Fn(x) : n ∈ ω} of
values of given multifunctions. The existence of a selection being quasi-continuous on a dense open set (a
dense Gδ-set) for the topological (pointwise) upper Kuratowski limit is established.

1. Introduction

Among different types of continuities of mappings, perhaps quasi-continuity is the most popular. It
has many nice features and wide applications as well as a deep connection to continuity (comprehensive
results and methods we can found in [7]). Quasi-continuity can be also defined for a multifunction and the
relationship between a multifunction with closed graph and the existence of its quasi-continuous selections
will be used in our article. We hope that a selection view on some results of [2] will be useful for further
investigation of topological and pointwise convergence.

A motivation of this work comes from the paper [2] (see also [1]) which solves a few problems concerning
topological and pointwise convergence of a sequence of functions. More precisely, a connection between
the upper Kuratovski limit of a sequence {Gr fn : n ∈ ω} of graphs of quasi-continuous functions and the
upper Kuratowski limits of a sequence { fn(x) : n ∈ ω} of their values was studied. We will continue
in this direction and we will show some applications of known results and methods from the theory of
multifunctions, selections, closed graph theorems, lower quasi-continuity and we will try to generalize
some results from [2].

2. Basic Definitions and Survey of Some Results

In the sequel, X is a nonempty topological space. By A, A◦ we denote the closure, the interior of A in
X, respectively. A set A is quasi-open, if for any open set G intersecting A, there is a nonempty open set
H ⊂ A∩G, equivalently A ⊆ A◦. Consequently, given an open set E, any set A with E ⊆ A ⊆ E is quasi-open.
If A ⊆ X × Y, then the x-section of A is a set {y ∈ Y : (x, y) ∈ A} and ω denotes the natural numbers.
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Definition 2.1. Let {An : n ∈ ω} be a sequence of nonempty subsets of X. The upper Kuratowski limit of
{An : n ∈ ω}, denoted by Ls An, is defined as the set of all points x such that each neighborhood of x intersects
An frequently. A point x ∈ Ls An is called a cluster point of {An : n ∈ ω}. It is clear that Ls An = ∩n∈ω∪k≥nAk
and Ls An is a closed set.

If X,Y are two topological spaces and ∅ , A ⊂ X, then by F : A → Y we denote a nonempty valued
multifunction from A to 2Y, F−(V) = {x ∈ A : F(x) ∩ V , ∅}, F+(V) = {x ∈ A : F(x) ⊂ V} for V ⊂ Y,
F(B) := ∪b∈BF(b), F|B denotes the partial multifunction where B ⊂ A and Gr F = {(x, y) : y ∈ F(x)} is the graph
of F. If F,G are two multifunctions, then F ⊂ G means F(x) ⊂ G(x) for any x ∈ X. If for a function f : X→ Y,
f (x) ∈ F(x) for any x ∈ A ⊂ X, then we say f is a selection of F on A. If A = X, we say f is a selection of F.

Definition 2.2. If {Fn : n ∈ ω} is a sequence of multifunctions, then Ls Gr Fn is called the topological upper
Kuratowski limit of {Fn : n ∈ ω} and by Ls Fn we denote the pointwise upper Kuratowski limit of {Fn : n ∈ ω},
which is defined as the multifunction from A to Y which maps each x ∈ A to the upper Kuratowski limit of
{Fn(x) : n ∈ ω} =: Ls Fn(x), provided it is nonempty for any x ∈ A.

Lemma 2.3. If {Fn : n ∈ ω} is a sequence of multifunctions, then Gr Ls Fn ⊂ Ls Gr Fn.

Proof. If (x, y) ∈ Gr Ls Fn, then y ∈ Ls Fn(x) hence there is a subsequence {ynk : ynk ∈ Fnk (x), k ∈ ω} which
converges to y. Since (x, ynk ) ∈ Gr Fnk and {(x, ynk ) : n ∈ ω)} converges to (x, y), (x, y) ∈ Ls Gr Fn. So,
Gr Ls Fn ⊂ Ls Gr Fn.

Note, Ls Gr Fn is a subset of X × Y and it is the graph of multifunction given by the nonempty-valued
x-sections of Ls Gr Fn. In the general case, some x-section of Ls Gr Fn can be empty and the inclusion
Gr Ls Fn ⊂ Ls Gr Fn may be strict, as we can see from the next example.

Example 2.4. If Fn : [0, 1] → [0,∞) where Fn(x) = [nx, (n + 1)x] for any n ∈ ω and any x ∈ [0, 1], then
Ls Gr Fn = {0} × [0,∞) and any x-section of Ls Gr Fn is empty for x ∈ (0, 1].

If Fn(x) = {xn
} for x ∈ [0, 1] and n ∈ ω, then Ls Fn(x) = {0} for x ∈ [0, 1) and Ls Fn(x) = {1} for x = 1. So,

Gr Ls Fn = [0, 1) × {0} ∪ {(1, 1)}. On the other hand Ls Gr Fn(x) = [0, 1) × {0} ∪ {1} × [0, 1].

Definition 2.5. ([7]) A multifunction F : X→ Y is lower quasi-continuous at a point x if for any open set G
intersecting F(x) there is a quasi-open set U containing x such that G∩F(u) , ∅ for any u ∈ U. Corresponding
global definition is given by local one at any point. For a function f : X→ Y, we say only quasi-continuity
at x (quasi-continuity).

Definition 2.6. ([5], [6]) Let O be the system of all nonempty open subsets of X. A point y ∈ Y is the
O-cluster point of a multifunction F : X→ Y at a point x, if for any open sets V 3 y and U 3 x there is a set
E ∈ O, E ⊂ U such that F(e)∩V , ∅ for any e ∈ E. The set of all O-cluster points of F at x is denoted by OF(x)
and it defines a multifunction OF from A to Y, provided OF(x) is nonempty for any x from A.

The proof of the next equivalence is left to the reader.

Remark 2.7. The graph of OF is closed (see [5, Lemma 1]) and a multifunction F : X → Y is lower quasi-
continuous at x (lower quasi-continuous) if and only if F(x) ⊂ OF(x) (F ⊂ OF).

The question whether there is a quasi-continuous function f for which Gr f ⊂ Ls Gr Fn (see Theorem 3.8
below) is significant for our investigation. Not only the existence of a quasi-continuous function f satisfying
inclusion Gr f ⊂ Ls Gr Fn, but the existence of a ”nice” selection of Ls Fn is important. As a last comment,
nonemptyness of Ls Fn is a priori supposed in [2]. So, the questions of the domain of Ls Fn and its selections
arise. Such questions will be answered at the end of our paper.
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3. Main Results

Firstly, we will prove Proposition 1 from [2] for a sequence of multifunctions. The next lemma shows
the connection between GrOF and a densely continuous form which is defined for any function f for which
C( f ) (the set of all continuity points of f ) is dense and it is equal to Gr f |C( f ) [3].

Lemma 3.1. Let F : X→ Y be lower quasi-continuous and A be a dense set in X. Then GrOF = Gr F|A ⊆ Gr F.

Proof. Let (x, y) ∈ GrOF and V,U be open, y ∈ V and x ∈ U. That means y is an O-cluster point of F at x. So,
there is a nonempty open set G ⊂ U such that F(1) ∩ V , ∅ for any 1 ∈ G. Let a ∈ A ∩ G and z ∈ F(a) ∩ V.
Then (a, z) ∈ U × V ∩ Gr F|A and so (x, y) ∈ Gr F|A.

The multifunction F is lower quasi-continuous, so Gr F|A ⊂ Gr F ⊂ GrOF, by Remark 2.7. Since OF has a
closed graph (see Remark 2.7), Gr F|A ⊂ GrOF. The inclusion Gr F|A ⊆ Gr F is clear.

Corollary 3.2. (for a quasi-continuous function f and Ls Gr fn see [2]) Let F : X → Y be lower quasi-continuous,
F0 : X→ Y be a multifunction with a closed graph in X × Y and F(x) ⊂ F0(x) for any x ∈ A, A be dense in X. Then
Gr F ⊂ Gr F0. Consequently, if F : X → Y is lower quasi-continuous and F(x) ⊂ Ls Fn(x) for any x from a dense set
A, then Gr F ⊂ Ls Gr Fn.

Proof. Since F is lower quasi-continuous, Gr F ⊂ GrOF (see Remark 2.7) and by Lemma 3.1, GrOF = Gr F|A ⊂
Gr F0|A ⊂ Gr F0 = Gr F0. So Gr F ⊂ Gr F0. Put F0(x) = {y : (x, y) ∈ Ls Gr Fn}. Then F0 has a closed graph and
F(x) ⊂ Ls Fn(x) ⊂ F0(x) for any x ∈ A. By the first part, Gr F ⊂ Gr F0 = Ls Gr Fn.

From Corollary 3.2 we can see that it is not important that Gr F0 is equal to the upper Kuratowski limit
of some sequence. Important is that F0 has a closed graph and we can see a meaning of Corollary 3.2 as
follows: Let F0 : X → Y be a multifunction with a closed graph. If a quasi-continuous function f : X → Y
is a selection of F0 on a dense set, then f is a quasi-continuous selection of F0 on X. Or, if f : X → Y is a
quasi-continuous function being a selection of the pointwise upper Kuratowski limit on a dense set, then
any x-section of the topological upper Kuratowski limit is nonempty.

From selection theorems point of view, the next question is crucial: Suppose that f : X→ Y is a function
such that Gr f |A ⊂ Gr F|A where A is a dense subset of X. Is f a selection of F on a ”reasonable” set?
The properties of F are not significant and as we will see in Theorem 3.5, the choice of f (x) from OF(x) is
important.

Theorem 3.3. Let B1,B2 be two dense sets in X. If f : X → Y is quasi-continuous at any x ∈ B1 and f (x) ∈ OF(x)
for any x ∈ B2, then for any open cover G of f (X), A := {x : f (x) ∈ G and F(x)∩G , ∅ for some G ∈ G} is quasi-open
and dense in X.

Proof. Let H ⊂ X be a nonempty open set. Then there is x ∈ H ∩ B1 and G ∈ G such that f (x) ∈ G. Since
f is quasi-continuous at x, there is a nonempty open set H0 ⊂ H such that f (H0) ⊂ G. Let h0 ∈ H0 ∩ B2.
Since f (h0) ∈ OF(h0), there is a nonempty open set H1 ⊂ H0 such that F(h1) ∩ G , ∅ for any h1 ∈ H1. Since
f (H1) ⊂ G, H1 ⊂ A ∩H. Hence A is quasi-open and dense in X.

Definition 3.4. ([4]) Let Y be a topological space, y ∈ Y and G be a collection of subsets of Y. Then
st(y,G) := ∪{G ∈ G : y ∈ G}. Let {Gn : n ∈ ω} be a sequence of open covers of Y. If for each y ∈ Y, the set
{st(y,Gn) : n ∈ ω} is a base at y, we say that {Gn : n ∈ ω} is a development on Y and that the space Y is
developable.

Theorem 3.5. Let X be a Baire space, Y be a developable space and B1,B2 be two dense sets in X. If f : X → Y is
quasi-continuous at any x ∈ B1 and f (x) ∈ OF(x) for any x ∈ B2, then there is a dense Gδ-set A, such that f (x) ∈ F(x)
for any x ∈ A. Therefore if F is closed-valued, then f (x) ∈ F(x) for any x ∈ A, i.e., f is a selection of F on A.
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Proof. Consider a development {Gn : n ∈ ω} of the space Y. For each n ∈ ω, let An = {x ∈ X : there exists
H ∈ Gn such that f (x) ∈ H and F(x) ∩ H , ∅}. By Theorem 3.3, An is quasi-open and dense, so A◦n is open
and dense. Put A := ∩n∈ωA◦n. As X is Baire, A is a dense Gδ-set. Now consider x ∈ A. For each n ∈ ω we
can find Gx

n ∈ Gn with f (x) ∈ Gx
n and F(x) ∩ Gx

n , ∅. Since {Gn : n ∈ ω} is a development of Y, the collection
{Gx

n : n ∈ ω} is a base at f (x). Hence f (x) ∈ F(x).

The following assertion generalizes the results of [2] in several directions. The space Y is a more general
and it deals with multifunctions. We suppose f is quasi-continuous on a dense set and the inclusion
Gr f ⊂ Ls Gr Fn is restricted on a dense set.

Note that in [2] f is cliquish. We recall a function f from X to a metric space (Y, d) is cliquish at a point
x ∈ X, if for any ε > 0 and any open set U containing x there is a nonempty open set H ⊂ U such that
d( f (x1), (x2)) < ε for any x1, x2 ∈ H and f is cliquish if it is so at any point ([8]). It is clear that if f is continous
(quasi-continuous) on a dense set, then f is cliquish. The converse implication holds, if X is a Baire space
([8, Theorem IV]). Consequently, if X is Baire and Y is metric, then f : X → Y is cliquish if and only if f is
quasi-continuous on a dense set. Since we suppose that Y is more general than metric, the cliquishness of
f is irrelevant.

Corollary 3.6. (for a sequence of quasi-continuous functions see [2]) Let X be a Baire space, Y be a developable space.
If f : X → Y is a function which is quasi-continuous at any point from a dense set B1, {Fn : n ∈ ω} is a sequence of
lower quasi-continuous multifunctions from X to Y and Gr f |B2 ⊂ Ls Gr Fn for a dense set B2, then there is a dense
Gδ-set E, such that f (x) ∈ Ls Fn(x) for any x ∈ E, i.e., f (x) is a cluster point of {Fn(x) : n ∈ ω}.

Proof. For any k ∈ ω, denote F∗k : X → Y defined as F∗k(x) := ∪s≥kFs(x) for any x ∈ X. We will show that the
multifunction F∗k is lower quasi-continuous. Let x ∈ X, U,V be open, x ∈ U and V ∩ F∗k(x) , ∅. Then there is
t ≥ k such that V ∩ Ft(x) , ∅. Since Ft is quasi-continuous, there is a nonempty open set H ⊂ U such that
∅ , V ∩ Ft(h) ⊂ V ∩ [∪s≥kFs(h)] = V ∩ F∗k(h) for any h ∈ H, so F∗k is quasi-continuous at x.

By Lemma 3.1, Ls Gr Fn ⊂ Gr F∗k = GrOF∗k . Since (x, f (x)) ∈ Ls Gr Fn ⊂ GrOF∗k (or f (x) ∈ OF∗k (x)) for any

x ∈ B2, by Theorem 3.5, there is a dense Gδ-set Ak, such that f (x) ∈ F∗k(x), for any x ∈ Ak. Let E = ∩k∈ωAk.
Since X is Baire, E is a dense Gδ-set and for any x ∈ E, f (x) ∈ ∩k∈ωF∗k(x) = ∩k∈ω∪s≥kFs(x) = Ls Fn(x).

Theorem 3.7. Let X be a Baire space and Y be a developable space. If f : X→ Y is quasi-continuous and {Fn : n ∈ ω}
is a sequence of lower quasi-continuous multifunctions from X to Y, then the following conditions are equivalent:

(1) Gr f ⊂ Ls Gr Fn,
(2) there is a dense set E in X such that for any x ∈ E, f (x) ∈ Ls Fn(x), i.e., f (x) is a cluster point of {Fn(x) : n ∈ ω}.

Proof. The implication ”⇐” follows from Corollary 3.2 (where F(x) = { f (x)}) and the opposite implication
follows from Corollary 3.6.

In Theorem 3.5, Corollary 3.6 (also in Theorem 1 of [2]) we suppose a priori the existence of a ”nice”
selection of OF, the multifunction which graph is Ls Gr Fn, respectively. The next theorem deals with the
existence of a quasi-continuous selection of a multifunction which graph is Ls Gr Fn.

Theorem 3.8. Let X be a Baire space, Y be a T1-regular σ-compact space and let the x-section of Ls Gr Fn be nonempty
valued for any x ∈ X. Then there is a function f : X→ Y such that Gr f ⊂ Ls Gr Fn and f is quasi-continuous on an
open dense set in X.

Proof. Since X is a Baire space and Ls Gr Fn is closed, it is the graph of a multifunction F which is c-upper
Baire continuous, i.e., U ∩ F+(V) contains a set of second category with the Baire property, whenever U,V
are open, Y \ V is compact and U ∩ F+(V) , ∅. By [6, Corollary 1 item (1)], there is a function f : X → Y
such that Gr f ⊂ Ls Gr Fn and f is quasi-continuous on an open and dense set in X.
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We got to the end of our work and we could summarize our investigation in the following corollary
which not only generalizes a few results from [2] concerning topological and pointwise convergence but
also guarantees the existence of a function which is quasi-continuous and a selection of a topological limit
(pointwise limit) on a dense open set (dense Gδ-set). Since a T1-regular σ-compact space is paracompact
and a paracompact and developable space is metrizable, we formulate the next corollary for a σ-compact
metric space.

Corollary 3.9. Let X be a Baire space and Y be a σ-compact metric space. If {Fn : n ∈ ω} is a sequence of lower
quasi-continuous multifunctions from X to Y, such that the x-section of Ls Gr Fn is nonempty-valued for any x ∈ X,
then there is a function f : X → Y such that Gr f ⊂ Ls Gr Fn, f is quasi-continuous on an open dense set in X (i.e.,
except for a nowhere dense set) and f is a selection of Ls Fn on a dense Gδ-set in X (hence, Ls Fn is nonempty-valued
on a dense Gδ-set).
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