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Abstract. We consider the evolution algebra of a free population generated by an F-quadratic stochastic
operator. We prove that this algebra is commutative, not associative and necessarily power–associative. We
show that this algebra is not conservative, not stationary, not genetic and not train algebra, but it is a Banach
algebra. The set of all derivations of the F-evolution algebra is described. We give necessary conditions
for a state of the population to be a fixed point or a zero point of the F-quadratic stochastic operator which
corresponds to the F-evolution algebra. We also establish upper estimate of the ω-limit set of the trajectory
of the operator. For an F-evolution algebra of Volterra type we describe the full set of idempotent elements
and the full set of absolute nilpotent elements.

1. Introduction

The action of genes is manifested statistically in sufficiently large communities of matching individuals
(belonging to the same species). These communities are called populations. The evolution (or dynamics) of
a population comprises a determined change of state in the next generations as a result of reproduction and
selection. This evolution of a population can be studied by a dynamical system of a quadratic stochastic
operator [18].

The concept of quadratic stochastic operator (QSO) and its application in a biological context were first
established by Bernstein in [1]. Since then, the theory has been further deepened as it frequently occurs
in mathematical models of genetics, where QSOs serve as a tool for the study of dynamical properties
and modeling, see [7–12, 14, 15, 18, 20, 21, 23–26]. QSOs were introduced as “evolutionary operators” to
describe the dynamics of gene frequencies for given laws of heredity in mathematical population genetics.

In the description of the genetic evolution of large populations QSOs arise as follows: Consider a
population with m ∈ N different genetic types, where every individual in this population belongs to
precisely one of the species E := {1, 2, . . . ,m}. Let x0 = (x0

1, . . . , x
0
m) be a probability distribution on E

describing the relative frequencies of the genetic types within the whole population in the initial generation.
Denote by pi j,k the conditional probability that two individuals of types i and j produce an offspring of
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type k given they interbreed and assume that the population is large enough for frequency fluctuations
to be negligible. Presuming a free population, i.e. absence of sexual differentiation and the statistical
independence of genotypes for breeding, the distribution x′ = (x′1, . . . , x

′
m) of the (expected) gene frequencies

in the next generation is given by

x′k =
∑
i, j∈E

pi j,kx0
i x0

j , k ∈ E. (1.1)

The association x0
7→x′ defines a map V : Sm−1

→ Sm−1 called evolutionary operator. The population
evolves by starting from an arbitrary frequency distribution x0, then passing to the state x′ = V(x0) in the
next “generation”, then to the state x′′ = V(V(x0)), and so on. Thus the evolution of gene frequencies in this
population can be considered as a dynamical system

x0, x′ = V(x0), x′′ = V2(x0), x′′′ = V3(x0), . . .

Note that V as defined by (1.1) is a non-linear (quadratic) operator. Higher dimensional dynamical systems,
as the one resulting from the observations above for m ≥ 3, are important, but only relatively few dynamical
phenomena are thoroughly comprehended (see [2, 3]).

One of the main motivations to study dynamical systems and QSOs is the asymptotic behaviour of their
trajectories, depending on the initial value. However, this has only been determined for certain particular
subclasses of QSOs so far. One such subclass that arises naturally in the biological context is given by the
additional restriction

pi j,k = 0, if k < {i, j}, i, j, k ∈ E. (1.2)

These QSOs, called Volterra operators, describe a reproductive behaviour where the offspring is a genetic
copy of one of its parents. The asymptotic behaviour of trajectories of this kind of QSOs was analysed in
[9–11] using the theory of Lyapunov functions and tournaments. However, in the non-Volterra case (i.e.,
where condition (1.2) is violated), many questions remain open and there seems to be no general theory
available. See [12] for a recent review of QSOs.

There exists an algebraic approach in the study of laws of genetics. Several classes of non-associative
algebras have provided a number of significant contributions to theoretical population genetics and have
been defined different times by several authors, and all algebras belonging to these classes are generally
called genetic. Etherington introduced the formal language of abstract algebra to the study of genetics
in a series of seminal papers [4–6]. In recent years many authors have tried to investigate the difficult
problem of classification of these algebras. Recently in the book of Tian [22] a new type of evolution algebra
was introduced. This algebra also describes some evolution laws of genetics. The study of evolution
algebras constitutes a new subject both in algebra and the theory of dynamical systems. In the book [22]
the foundations of evolution algebra theory and applications in non-Mendelian genetics are developed.

In the book [18] evolution algebras associated with a free population are studied. But there are few
results devoted to evolution algebras corresponding to bisexual populations.

In [19] evolution algebras generated by Volterra quadratic stochastic operators in the case of small
dimensions are considered.

Recently, in [17], the authors considered a bisexual population and defined an evolution algebra using
inheritance coefficients of the population. This algebra is a natural generalization of the algebra of a free
population. Moreover, in [16], an evolution algebra of a chicken population is considered. This algebra
corresponds to a bisexual population with a set of females partitioned into finitely many different types
and the males having only one type. The basic properties of this algebra are studied.

In the present paper we consider an evolution algebra generated by an F-quadratic stochastic operator,
i.e., we define an evolution algebra using inheritance coefficients of the population. The paper is organized
as follows. In Section 2 we recall the definition of an F-QSO as well as definitions and known results related
to an evolution algebra of a free population. In Section 3 we define an F-evolution algebra, study its basic
properties and therein we show an F-evolution algebra is different from associative, power–associative,
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Bernstein, genetic, train, conservative, Jordan, Jacobi and alternative algebras. We also prove that an F-
evolution algebra is a Banach algebra and we describe the set of all derivations of an F-evolution algebra. In
Section 4 we find necessary conditions for a state of the population to be a fixed point or a zero point of the
evolution operator. We also establish upper estimate of the limit points set for trajectories of the evolution
operator. Finally, in Section 5, we describe the full set of idempotents and absolute nilpotents for a special
case.

2. Preliminaries and Known Results

F-quadratic stochastic operator. A quadratic stochastic operator (QSO) on a set E = {1, . . . ,m} is a mapping
V of the simplex

Sm−1 =
{
x =

(
x1, . . . , xm

)
∈ Rm : xi ≥ 0, i ∈ E,

m∑
i=1

xi = 1
}

(2.1)

into itself, of the form V(x) = x′ ∈ Sm−1, where

x′k =
∑
i, j∈E

pi j,kxix j, k ∈ E, (2.2)

and the pi j,k satisfy

pi j,k = p ji,k ≥ 0,
∑
k∈E

pi j,k = 1, i, j, k ∈ E. (2.3)

The trajectory (orbit) {x(n)
}n∈N0 of V for an initial value x(0)

∈ Sm−1 is defined by

x(n+1) = V(x(n)) = Vn+1(x(0)), n = 0, 1, 2, . . . (2.4)

A point x ∈ Rm+1 is called a fixed point of V if V(x) = x and is called a zero point of V if V(x) = 0.
We recall the definition of an F-quadratic stochastic operator following [20]. Let us extend the set E by

adding the element “0”, i.e., we shall consider the set E0 = {0, 1, . . . ,m}. Let us fix a set F ⊂ E and call it
the set of “women”, while the set M = E \ F is called the set of “men”. The element 0 plays the role of an
“empty body”.

The coefficients pi j,k of the matrix P are defined as follows:

pi j,k =


1, if k = 0, i, j ∈ F ∪ {0} or i, j ∈M ∪ {0};
0, if k , 0, i, j ∈ F ∪ {0} or i, j ∈M ∪ {0};
≥ 0, if i ∈ F, j ∈M, k ∈ E.

(2.5)

The biological interpretation of the coefficients (2.5) is obvious: the “child” k can be born only if its
parents are taken from different classes F and M. Generally, pi j,0 can be strictly positive for i ∈ F and j ∈M,
which corresponds, for example, to the case in which “woman” i with “man” j cannot have a “child”,
because one of them is ill or both are.

Definition 2.1. For any fixed F ⊂ E, a QSO satisfying conditions (2.2), (2.3) and (2.5) is called an F-quadratic
stochastic operator (F-QSO).

Consider

E0 = {0, 1, . . . ,m}, F = {1, 2, 3, . . . ,m1}, M = {m1 + 1, . . . ,m}.
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It is evident that the corresponding F-QSO is of the form

V :


x′0 = x2

0 + 2x0

∑
i∈E

xi +
∑
i, j∈F

xix j + 2
∑
i∈F

∑
j∈M

pi j,0xix j +
∑
i, j∈M

xix j;

x′k = 2
∑
i∈F

∑
j∈M

pi j,kxix j, k = 1, 2, . . . ,m,
(2.6)

where

pi j,k = p ji,k ≥ 0, k ∈ E0;
∑
k∈E0

pi j,k = 1, i ∈ F, j ∈M. (2.7)

It is shown in [20] that the fixed point is unique and that all trajectories approach this fixed point
exponentially rapid.

Evolution algebra of a free population. Let us recall the definition of an evolution algebra of a free population
following [18]. The quadratic stochastic operator is closely related to an algebra structure onRm containing
the unit simplex (2.1). Let {ek}

m
k=1 be the canonical basis of Rm and we introduce a multiplication as follows

eie j = e jei =

m∑
k=1

pi j,kek. (2.8)

Thus we identify the coefficients of inheritance as the structure of an algebra, i.e. a bilinear mapping of
Rm
×Rm to Rm.
Suppose that x = (x1, . . . , xm) ∈ Rm and y = (y1, . . . , ym) ∈ Rm. Then the general formula for the

multiplication is the extension of (2.8) on Rm generated by QSO (2.2) and it has the form

x ◦ y =

m∑
i, j,k=1

(pi j,kxiy j)ek =
1
4

(V(x + y) − V(x − y)). (2.9)

Using (2.3) it is easy to see that x ◦ y = y ◦ x, i.e. the multiplication (2.9) has the commutative property.
It is also easy to check that

xx = x2 =

m∑
i, j,k=1

(pi j,kxix j)ek = V(x) for any x ∈ Sm−1.

This algebraic interpretation is useful, e.g. a state x is an equilibrium precisely when x is an idempotent
element of the unit simplex Sm−1.

If we write x[n] for the power (· · · (x2)2
· · · ) (n times) with x[0]

≡ x, then the trajectory with initial state x
is Vn(x) = x[n].

The algebraAV generated by the evolution operator (2.2) is called the evolutionary algebra.
A character for an algebra A is a nonzero multiplicative linear form on A, that is, a nonzero algebra

homomorphism from A to R. A pair (A, σ) consisting of an algebra A and a character σ on A is called a
baric algebra.

Also in [18], for the evolution algebra of a free population, it is proven that there is a characterσ(x) =
m∑

k=1
xk.

Denote H0 = {x : σ(x) = 0}, H1 = {x : σ(x) = 1} the hyperplanes in Rm and H∞ = {x : σ(x) = +∞}. We also
denote the sets IF = {x : xi = 0, for all i ∈ F}, IM = {x : xi = 0, for all i ∈M} and IE = IF ∩ IM.

A subset IL (IR) is called left ideal (resp. right ideal) of an algebraA if

(i) IL (IR) is a subalgebra of the algebraA;

(ii) ax ∈ IL, for all x ∈ IL, for all a ∈ A (resp. xa ∈ IR, for all x ∈ IR, for all a ∈ A).
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A subset I is called ideal (two–sided ideal) if I is a left ideal and a right ideal, simultaneously.
The invariant linear form is a linear form f on a baric algebraAwhich satisfies

f (xy) =
σ(y) f (x) + σ(x) f (y)

2
for all x,y ∈ A.

The set J of invariant forms is a subspace of the dual spaceA∗. Since the character σ , 0 itself is clearly
invariant, we have dim J ≥ 1. Denote

J⊥ = {x : f (x) = 0, for all f ∈ J}, annA = {y : yx = 0, for all x ∈ A}.

Definition 2.2 ([18]).

(i) An algebra is called flexible algebra if it satisfies x(yx) = (xy)x for any x,y ∈ A;

(ii) An algebra is called conservative algebra if J = annA;

(iii) An baric algebra is called genetic algebra if

eie j =

m∑
k=0

λi j,kek,

where coefficients satisfy

λ00,0 = 1, λ0i,k = 0, 0 ≤ k < i ≤ m,
λi j,k = 0, 0 ≤ k ≤ max(i, j), i, j = 1, . . . ,m.

(2.10)

(iv) An algebraA is called Bernstein (or stationary) algebra if for any element x ∈ A it satisfies

(x2)2 = (σ(x))2x2. (2.11)

(v) For each element we have a linear operator Mx : A→ A defined by Mx(y) = xy. A baric algebraA is called a
train algebra if for each x ∈ A the characteristic polynomial of Mx onA depends only of the character σ(x).

The conservative algebras are characterized by the following theorem.

Theorem 2.3 ([18]). The baric algebra (A, σ) is conservative if and only if the following identity holds

x2y = σ(x)xy, for all x,y ∈ A. (2.12)

3. F-Evolution Algebra

Suppose that x = (x0, x1, . . . , xm) ∈ Rm+1 and y = (y0, y1, . . . , ym) ∈ Rm+1. Then we consider the multipli-
cation on Rm+1 generated with QSO (2.6) as in (2.9)

x ◦ y =
1
4

(V(x + y) − V(x − y)).

Let {ek}
m
k=0 be the canonical basis on Rm+1. Then (2.8) has the form

eie j = e jei =


∑

k∈E0

pi j,kek, if i ∈ F, j ∈M,

e0, otherwise.
(3.1)

Definition 3.1. A linear space generated by ek, k = 0, 1, . . . ,m, over the real number fieldR, with the multiplication
defined as (3.1) by using the coefficients of inheritance (2.7) is called an F-evolution algebra and denoted byF = FV.
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Remark 3.2.

(i) It is evident that an F-evolution algebra is different from the evolution algebra introduced in [22].

(ii) It is also easy to see that an F-evolution algebra is different from the evolution algebra of the bisexual and
“chicken” populations (see [16] and [17]).

Example 3.3. Consider the F-evolution algebra FV = 〈e0, e1, e2〉, where E0 = {0, 1, 2}, F = {1} and M = {2}. Then,
in this case, (2.9) has the form

x ◦ y =
(
x0y0 + x1y1 + x2y2 + x0y1 + x1y0 + x0y2 + x2y0 + a(x1y2 + x2y1), b(x1y2 + x2y1), c(x1y2 + x2y1)

)
,

where a, b, c ≥ 0, a + b + c = 1.
Then (3.1) has the form

e jei = eie j =

ae0 + be1 + ce2, if i = 1, j = 2,

e0, otherwise.
(3.2)

Basic properties. The following theorem gives basic properties of an F-evolution algebra.

Theorem 3.4.

(i) F-evolution algebra is not associative, in general.

(ii) F-evolution algebra is flexible.

(iii) F-evolution algebra is not power-associative, in general.

Proof. (i) To see that an F-evolution algebra is not associative, we consider the F-evolution algebra of
Example 3.3. We suppose that b > 0 or c > 0. Then a simple analysis shows that

e0 = e1(e2e2) , (e1e2)e2 = (a + ab + c)e0 + b2e1 + bce2.

(ii) It is evident that a commutative algebra is flexible. As mentioned above that an F-evolution algebra
is a commutative algebra, so it is flexible.

(iii) To show that an F-evolution algebra is not power-associative, in general, we shall construct an
example of x such that (xx)(xx) ,

(
(xx)x

)
x. Let the F-evolution algebra defined in Example 3.3. Taking

x = e1 + e2, then we have

x2 = 2(a + 1)e0 + 2be1 + 2ce2, (3.3)

x2x2 = 4
(
(a + 1)2 + b2 + c2 + 2(a + 1)(b + c) + 2abc

)
e0 + 8b2ce1 + 8bc2e2, (3.4)

x2x = 2(a + 1)(b + c + 2)e0 + 2b(b + c)e1 + 2c(b + c)e2,

(x2x)x = 2(a + 1)
(
(b + c + 1)2 + 3

)
e0 + 2b(b + c)2e1 + 2c(b + c)2e2. (3.5)

Then from (3.4) and (3.5) follows (xx)(xx) ,
(
(xx)x

)
x, i.e. the algebra generated by an F-QSO is not

power-associative.

Since F is a baric algebra there is the character of the algebra σ(x) =
∑

k∈E0

xk.

Proposition 3.5.

(i) The sets H0, IF, IM, IE are ideals of the F-evolution algebra;
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(ii) H1 is a closed set respect to the multiplication.

Proof. The proof immediately follows from that F is a baric algebra and from the definition of ideal.

Proposition 3.6.

(i) An F-evolution algebra is not conservative, in general;

(ii) An F-evolution algebra is not Bernstein, in general;

(iii) An F-evolution algebra is not genetic.

(iv) An F-evolution algebra is not train, in general;

(v) An F-evolution algebra is not Jordan, in general;

(vi) An F-evolution algebra is not alternative, in general;

(vii) An F-evolution algebra is not Jacobi, in general;

Proof. (i) Let us consider the F-evolution algebra defined in Example 3.3. Taking x = e1 and y = e2, it is easy
to check that

x2y = e2
1e2 = e0e2 = e0,

and using (3.2) we have

σ(e1)e1e2 = aσ(e1)e0 + bσ(e1)e1 + cσ(e1)e2.

Consequently in this case we obtain that Equation (2.12) is not satisfied.
(ii) Again, in the considered F-evolution algebra in Example 3.3, taking the element z = e1 + e2 from

(3.3) and (3.4) we get that Equation (2.11) is not satisfied, that is, (z2)2 , (σ(z))2z2.
(iii) From the definition of F-evolution algebras we can see that (2.7) and (2.10) cannot be satisfied

simultaneously.
(iv) The definition of train algebra is equivalent to the following: there are real constants θ0, . . . , θm such

that on H1 we have

det(λIn −Mx) = λn
− θ1λ

n−1 + · · · + (−1)nθn, (3.6)

and beyond the H1 we have

det(λIn −Mx) = λn
− θ1σλ

n−1 + · · · + (−1)nθnσ
n, (3.7)

where σ = σ(x) (see [18]).
Let us consider the F-evolution algebra defined in Example 3.3. Then we have

det(λI3 −Mx) = λ(λ − σ)(λ − (bx2 + cx1)).

The last equation does not satisfy either (3.6) or (3.7). Thus the F-evolution algebra is not train algebra.
(v) An algebra is called Jordan if for any elements x,y from the algebra it is hold (xy)x2 = x(yx2). Again

we consider the F-evolution algebra defined in Example 3.3 and suppose that b , c. Taking x = e1 + e2 and
y = e1 − e2 one has that

0 = (xy)x2 , x(yx2) = 2(b2
− c2)(1 − a)e0 − 2(b2

− c2)be1 − 2(b2
− c2)ce2.

(vi) An algebra is called alternative if for any elements x,y from the algebra, (xx)y = x(xy) and (yx)x = y(xx)
hold simultaneously. Again we consider the F-evolution algebra defined in Example 3.3. Taking x = e1 and
y = e2 one has that

e0 = (xx)y , x(xy) = (a + b + ac)e0 + bce1 + c2e2.
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Similarly it is easy to see that the second equation does not hold.
(vii) An algebra is called Jacobi if for any elements x,y, z from the algebra, (xy)z + (yz)x + (zx)y = 0 holds.

Again, we consider the F-evolution algebra defined in Example 3.3. Taking x = e1 + e2, y = e1 − e2 and
z = e1 one has that

(xy)z + (yz)x + (zx)y = 2b(1 − a)e0 − 2b2e1 − 2bce2 , 0.

Thus the F-evolution algebra is not Jacobi algebra.

Banach algebra. Define a norm ‖ · ‖ in the F-evolution algebra F as follows

‖x‖ =
∑
k∈E0

‖xkek‖ :=
∑
k∈E0

|xk|.

For a fixed y ∈ F consider the operator Ly : F → F , left multiplication (resp. right multiplication Ry),
defined as

Ly(x) = yx (resp. Ry(x) = xy).

Theorem 3.7. For any y ∈ F the operator Ly is a bounded linear operator.

Proof. For arbitrary y ∈ F we have

Ly(x) =
∑
k∈E0

∑
i, j∈E0

pi j,kxiy jek,

‖Ly(x)‖ =
∑
k∈E0

∣∣∣∣∣ ∑
i, j∈E0

pi j,kxiy j

∣∣∣∣∣ ≤∑
k∈E0

∑
i, j∈E0

pi j,k|xiy j|

≤

∑
i, j∈E0

|xiy j| ≤
∑
i∈E0

|xi|
∑
j∈E0

|y j| ≤ ‖x‖‖y‖.

So Ly(x) is bounded for any fixed y ∈ F .

Theorem 3.8. An F-evolution algebra F is a Banach space.

Proof. It easy to see that if xn converges then its all coordinates also converge. So limit of xk also will be an
element of F , and so the theorem is proved.

Corollary 3.9. An F-evolution algebra is a non associative Banach algebra.

The derivations of an F-evolution algebra. In the study of genetic algebras the notion of derivations
of algebras is useful. There are many papers dedicated to derivations of genetic algebras. In [13] an
explanation of the genetic meaning of derivations of a genetic algebra is given. Below, we describe the set
of all derivations of an F-evolution algebra.

Definition 3.10. A linear map D : F → F is called a derivation if

D(xy) = D(x)y + xD(y), for any x,y ∈ F .

Let D ∈ Der(F ) be a derivation and suppose

D(ei) =
∑
j∈E0

di je j.
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D(eie j) = D(
∑
k∈E0

pi j,kek) =
∑
k∈E0

pi j,kD(ek) =
∑

k,t∈E0

dktpi j,ket,

D(ei)e j =
(∑

k∈E0

dikek

)
e j =

∑
k,t∈E0

dikpkj,tet, eiD(e j) = ei

(∑
k∈E0

d jkek

)
=

∑
k,t∈E0

d jkpki,tet.

By definition, we have∑
k,t∈E0

dktpi j,ket =
∑

k,t∈E0

dikpkj,tet +
∑

k,t∈E0

d jkpki,tet,

∑
k∈E0

(dktpi j,k − dikpkj,t − d jkpki,t) = 0, i, j, t ∈ E0.

Since for any x ∈ F we have D(x) =
∑

k∈E0

xkD(ek), D is uniquely defined by the matrixD = D(D) = (di j)i, j∈E0 .

Therefore

Der(F ) = {D :
∑
k∈E0

(dktpi j,k − dikpkj,t − d jkpki,t) = 0, i, j, t ∈ E0}.

Example 3.11. Consider the F-evolution algebra defined in Example 3.3. Suppose b > 0, c > 0 and

D(e0) = d00e0 + d01e1 + d02e2,

D(e1) = d10e0 + d11e1 + d12e2,

D(e2) = d20e0 + d21e1 + d22e2.

From equations D(e0) = D(e0e1) = D(e0)e1 + e0D(e1), D(e0) = D(e0e2) = D(e0)e2 + e0D(e2) and D(e1e2) =
D(e1)e2 + e1D(e2), and after some computations, we obtain

d01 + ad02 + d10 + d11 + d12 = 0
bd02 = d01

cd02 = d02

d02 + ad01 + d20 + d21 + d22 = 0
bd01 = d01

cd01 = d02

d10 + ad11 + d12 + d20 + d21 + ad22 = ad00 + bd10 + cd20

bd22 = ad01 + cd21

cd11 = ad02 + bd12

and 
d00 = 0 d01 = 0 d02 = 0

d10 = −
b + c

b
α d11 = α d12 =

c
b
α

d20 = −
b + c

c
β d21 =

b
c
β d22 = β

where α, β ∈ R.
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Consequently

D(e0) = 0

D(e1) = −
b + c

b
αe0 + αe1 +

c
b
αe2

D(e2) = −
b + c

c
βe0 +

b
c
βe1 + βe2

and for any element x = (x0, x1, x2) ∈ R3 we obtain

D(x) = −(b + c)(
αx1

b
+
βx2

c
)e0 + (αx1 +

bx2

c
)e1 + (

cx1

b
+ βx2)e2.

Thus

Der(F ) =
{
D : D(x) = −(b + c)

(αx1

b
+
βx2

c

)
e0 +

(
αx1 +

bx2

c

)
e1 +

(cx1

b
+ βx2

)
e2, x ∈ R3, α, β ∈ R

}
.

4. Dynamics of an F-QSO

Let us consider the quadratic operator V : FV → FV defined by formula (2.6).

Proposition 4.1.

(i) If x is a fixed point then x ∈ H0 ∪H1;

(ii) If x is a zero point then x ∈ H0.

Proof. (i) Let x be a fixed point of V. Then

σ(V(x)) =
∑
k∈E0

x′k =
∑

k,i, j∈E0

pi j,kxix j =
∑
i∈E0

xi

∑
j∈E0

x j = (σ(x))2. (4.1)

Therefore σ(x) = 0 or σ(x) = 1 and x ∈ H0 ∪H1.
(ii) Let x be a zero point. Then from 0 = σ(V(x)) = (σ(x))2 we obtain x ∈ H0.

We denote by ω(x) the set of limit points of the trajectory (2.4).

Theorem 4.2. For any initial x ∈ FV we have

ω(x) ⊂


H0 if |σ(x)| < 1,
H1 if |σ(x)| = 1,
H∞ if |σ(x)| > 1.

Proof. From (4.1) one easily has that

σ(xn+1) = σ(V(xn)) = (σ(xn))2 = (σ(x))2n
.

Therefore

lim
n→∞

σ(xn) =


0 if |σ(x)| < 1,
1 if |σ(x)| = 1,
+∞ if |σ(x)| > 1.
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5. F-Evolution Algebra Volterra Type

Let

E0 = {0, 1, . . . ,m}, F = {1, 2, 3, . . . ,m1}, M = {m1 + 1, . . . ,m}.

In this section we shall consider a special case of an F-evolution algebra giving the following additional
condition on heredity coefficients

pi j,k = 0 if k < {0, i, j}, for all i, j, k ∈ E0. (5.1)

The biological interpretation of condition (5.1) is clear: any pair of parents might have offspring which
repeats one of them or might have not offspring.

An F-evolution algebra that satisfies condition (5.1) is called an F-evolution algebra Volterra type and
denoted by FV(m1,m).

It is easy to see that the corresponding F-QSO Volterra type is of the form

V(m1,m) :


x′0 = x2

0 + 2x0

∑
i∈E

xi +
∑
i, j∈F

xix j + 2
∑
i∈F

∑
j∈M

pi j,0xix j +
∑
i, j∈M

xix j;

x′i = 2xi(1(i∈F)

∑
j∈M

pi j,ix j + 1(i∈M)

∑
j∈F

pi j,ix j), i = 1, 2, . . . ,m,
(5.2)

where

pi j,0 = p ji,0 ≥ 0, pi j,i = p ji,i ≥ 0, pi j,0 + pi j,i + pi j, j = 1, for all i, j ∈ E0.

Let we shall describe the set of idempotent elements of an F-evolution algebra Volterra type. Denote
by Id(FV(m1,m)) the set of all idempotent elements of an F-evolution algebra Volterra type. First we shall
consider small cases to describe the full set of the idempotent elements.

Case 1: Let E0 = {0, 1, 2}, F = {1} and M = {2}. Then an idempotent element of the corresponding
evolution algebra is a solution of the nonlinear system

x0 = x2
0 + x2

1 + x2
2 + 2x0x1 + 2x0x2 + 2p12,0x1x2,

x1 = 2p12,1x1x2,

x2 = 2p12,2x1x2,

where

p12,0, p12,1, p12,2 ∈ [0, 1]; p12,0 + p12,1 + p12,2 = 1.

It is easy to check that if p12,1, p12,2 > 0 then

Id(FV(1, 2)) = {(0, 0, 0); (1, 0, 0); (ξ0, ξ1, ξ2); (η0, η1, η2)}

and if p12,1 = 0 or p12,2 = 0 then

Id(FV(1, 2)) = {(0, 0, 0); (1, 0, 0)},

where

ξ0 = −
1 − p12,0

2p12,1p12,2
, η0 = 1 −

1 − p12,0

2p12,1p12,2
, ξ1 = η1 =

1
2p12,2

, ξ2 = η2 =
1

2p12,2
.
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Case 2: Let E0 = {0, 1, 2, 3}, F = {1, 2} and M = {3}. Then an idempotent element of the corresponding
evolution algebra is a solution of the nonlinear system

x0 = x2
0 + x2

1 + x2
2 + 2x0x1 + 2x0x2 + 2x0x3 + 2x1x2 + 2p13,0x1x3 + 2p23,0x2x3,

x1 = 2p13,1x1x3,

x2 = 2p23,2x2x3,

x3 = 2x3(p13,3x1 + p23,3x2),

where

p13,0, p13,1, p13,3, p23,0, p23,2, p23,3 ∈ [0, 1]; p13,0 + p13,1 + p13,3 = p23,0 + p23,2 + p23,3 = 1.

Subcase x1 = 0: It is evident that if p23,2, p23,3 > 0, then

I1 = {(0, 0, 0, 0); (1, 0, 0, 0); (ξ0, 0, ξ2, ξ3); (η0, 0, η2, η3)}

and if p23,2 = 0 or p23,3 = 0, then

I1 = {(0, 0, 0, 0); (1, 0, 0, 0)},

where

ξ0 = −
p23,2 + p23,3

2p23,2p23,3
, η0 = 1 −

p23,2 + p23,3

2p23,2p23,3
, ξ2 = η2 =

1
2p23,3

, ξ3 = η3 =
1

2p23,2
.

Subcase x2 = 0: It is evident that if p13,1, p13,3 > 0, then

I2 = {(0, 0, 0, 0); (1, 0, 0, 0); (ξ0, ξ1, 0, ξ3); (η0, η1, 0, η3)}

and if p13,1 = 0 or p13,3 = 0, then

I2 = {(0, 0, 0, 0); (1, 0, 0, 0)},

where

ξ0 = −
p13,1 + p13,3

2p13,1p13,3
, η0 = 1 −

p13,1 + p13,3

2p13,1p13,3
, ξ1 = η1 =

1
2p13,3

, ξ3 = η3 =
1

2p13,1
.

Subcase x1 , 0, x2 , 0: It is evident that if p13,1 = p23,2 > 0, then

I3 = {x : x0 = −

3∑
k=1

xk; p13,3x1 + p23,3x2 =
1
2

; x3 = (2p13,1)−1
}

∪ {x : x0 = 1 −
3∑

k=1

xk; p13,3x1 + p23,3x2 =
1
2

; x3 = (2p13,1)−1
}.

and if p13,1 = 0 or p23,2 = 0, then

I3 = {(0, 0, 0, 0); (1, 0, 0, 0)}

Consequently

Id(FV(2, 3)) = I1 ∪ I2 ∪ I3

Case 3: Let us given the F-evolution algebras Volterra type FV(m1,m), we shall describe the set of all

idempotent elements. Denote FV(m1,m), = {x :
m∏

i=0
xi , 0}.
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(a) We shall find the idempotents belonging to I = Id(FV(m1,m)) ∩ FV(m1,m),. Then, in this case, from
(5.2) we obtain the following system of linear equations

1(i∈F)

∑
j∈M

pi j,ix j + 1(i∈M)

∑
j∈F

pi j,ix j =
1
2
, i = 1, 2, . . . ,m,

or equivalently

m∑
j=m1+1

pi j,ix j =
1
2
, i = 1, 2, . . . ,m1,

m1∑
j=1

pi j,ix j =
1
2
, i = m1 + 1,m1 + 2, . . . ,m.

(5.3)

Denote

P =



0 . . . 0 p1m1+1,1 . . . p1m,1
...

...
...

...
...

...
0 . . . 0 pm1m1+1,m1 . . . pm1m,m1

p1m1+1,m1+1 . . . pmm1+1,m1+1 0 . . . 0
...

...
...

...
...

...
p1m,m . . . pmm,m 0 . . . 0


(5.4)

and 1/2 = 1
2 · 1, where 1 = (1, . . . , 1). It is known by Kronecker-Capelli theorem that the system of

linear equations (5.3) has a solution if and only if the rank of the matrix P is equal to the rank of its
augmented matrix (P|1/2). Consequently:

– if rank P = rank(P|1/2) and det(P) , 0 then |I| = 1;

– if rank P = rank(P|1/2) and det(P) = 0 then |I| = ∞;

– if rank P , rank(P|1/2) then I = ∅.

(b) Suppose xm = 0. In this case using (5.2) one has that the evolution operator V(m1,m−1) of the algebra
FV(m1,m − 1) is the restriction of the evolution operator V(m1,m) of the algebra FV(m1,m). Using the
above method we will find Id(FV(m1,m − 1)) ∩ FV(m1,m − 1), and the elements of the form

x = (x0, x1, . . . , xm−1, 0) ∈ FV(m1,m), where
(x0, x1, . . . , xm−1) ∈ Id(FV(m1,m − 1)) ∩ FV(m1,m − 1),

(5.5)

are idempotent elements of the FV(m1,m). Similarly one can consider the case xm = xm−1 = 0 and find
the idempotent elements for xm = 0 and so on. We denote by Ixm the set of all idempotents for xm = 0.
When we consider the case xm−1 = 0, we assume that xm > 0 and repeat the above algorithm.

(c) Suppose xm1 = 0. Similarly as in (a) using (5.2) one has that the evolution operator V(m1−1,m) of the
algebraFV(m1−1,m) is the restriction of the evolution operator V(m1,m) of the algebraFV(m1,m). Using
the above method we will find Id(FV(m1 − 1,m)) ∩ FV(m1,m − 1), and the elements of the form

x = (x0, x1, . . . , xm1−1, 0, xm1+1, . . . , xm) ∈ FV(m1,m), where
(x0, x1, . . . , xm1−1, xm1+1, . . . , xm) ∈ Id(FV(m1 − 1,m)) ∩ FV(m1,m − 1),

(5.6)

are idempotent elements of the FV(m1,m). We denote by Ixm1
the set of all idempotents of the form

(5.6).
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Assume |M| = m −m1 > |F| = m1. Then, in order to describe the set of all idempotent elements, first we
make use of (a). Next step is to apply (b) m − 2m1 times. Finally we apply items (b), (c) and so on and so
forth. Since m is finite consequently we obtain the following sets of idempotent elements I, Ixm , . . . , Ix1 .

Thus

Id(FV(m1,m)) = {0} ∪ (I ∩H0) ∪ (I ∩H1) ∪
m
∪
i=1

(Ixi ∩H0) ∪
m
∪
i=1

(Ixi ∩H1).

We have proved the following theorem.

Theorem 5.1. The full set of the idempotents elements of an F-evolution algebra Volterra type has the form

Id(FV(m1,m)) = {0} ∪
(
(I ∪

m
∪
i=1

Ixi ) ∩ (H0 ∪H1)
)
.

An element x is called an absolute nilpotent if x2 = 0, i.e. x is zero point of the corresponding evolution
operator. For an F-evolution algebra Volterra type FV(m1,m) the equation x2 = 0 is equivalent to the
following system

0 = x2
0 + 2x0

∑
i∈E

xi +
∑
i, j∈F

xix j + 2
∑
i∈F

∑
j∈M

pi j,0xix j +
∑
i, j∈M

xix j;

0 = 2xi(1(i∈F)

∑
j∈M

pi j,ix j + 1(i∈M)

∑
j∈F

pi j,ix j), i = 1, 2, . . . ,m.
(5.7)

Denote byN(FV(m1,m)) the set of all absolute nilpotent elements of the algebra FV(m1,m) .

(i) We shall find the absolute nilpotent elements belonging to N0 = N(FV(m1,m)) ∩ FV(m1,m),. In this
case, from (5.7) we obtain the following system of linear equations

1(i∈F)

∑
j∈M

pi j,ix j + 1(i∈M)

∑
j∈F

pi j,ix j = 0, i = 1, 2, . . . ,m,

or equivalently

Px = 0, (5.8)

where P is as in (5.4) and x = (x1, . . . , xm).

It is very known that the system of linear equations (5.8) has a unique solution if det P , 0 and has
infinitely many solutions if det P = 0. If det P , 0 then the system (5.8) has solution (x1, . . . , xm) =

(0, . . . , 0). By Proposition 4.1, a zero point belongs to H0 and therefore x0 = −
m∑

i=1
xi = 0 so x = 0, and it

contradicts the assumption x ∈ N0. If det P = 0, then we obtain infinitely many solutions (x∗1, . . . , x
∗
m) of

(5.8) and substituting this solution in x0 = −
m∑

i=1
xi = 0 we get x∗0, and consequently we obtain infinitely

many elements ofN0.

(ii) Suppose xm = 0. Similarly as in (b) the evolution operator V(m1,m−1) of the algebra FV(m1,m − 1) is the
restriction of the evolution operator V(m1,m) of the algebra FV(m1,m). Using the above method (i), we
will findN(FV(m1,m − 1)) ∩ FV(m1,m − 1), and the elements of the form

x = (x0, x1, . . . , xm−1, 0) ∈ FV(m1,m), where
(x0, x1, . . . , xm−1) ∈ N(FV(m1,m − 1)) ∩ FV(m1,m − 1),

(5.9)

are absolute nilpotent elements of FV(m1,m). Similarly one can consider the case xm = xm−1 = 0 and
find the absolute nilpotent elements for xm = 0 and so on. We denote by Nxm the set of all absolute
nilpotent elements for xm = 0. When we consider the case xm−1 = 0, we assume that xm > 0 and repeat
the above algorithm.
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(iii) Suppose xm1 = 0. Similarly as in (c) the evolution operator V(m1−1,m) of the algebra FV(m1 − 1,m) is the
restriction of the evolution operator V(m1,m) of the algebra FV(m1,m). Using the above method of (i),
we will findN(FV(m1 − 1,m)) ∩ FV(m1,m − 1), and the elements of the form

x = (x0, x1, . . . , xm1−1, 0, xm1+1, . . . , xm) ∈ FV(m1,m), where
(x0, x1, . . . , xm1−1, xm1+1, . . . , xm) ∈ N(FV(m1 − 1,m)) ∩ FV(m1,m − 1),

(5.10)

are absolute nilpotent elements of FV(m1,m). We denote by Nxm1
the set of all absolute nilpotent

elements of the form (5.10).

Assume |M| = m − m1 > |F| = m1. Then, in order to describe the set of all absolute nilpotent elements,
first we make use of (i). Next step is to apply (ii) m − 2m1 times. Finally we apply items (ii), (iii) and so
on and so forth. Since m is finite we get the following sets of absolute nilpotent elements N0,Nxm , . . . ,Nx1 .
Therefore

N(FV(m1,m)) = {0} ∪ N0 ∪
m
∪
i=1
Nxi .

The following theorem describes the full set of absolute nilpotent elements.

Theorem 5.2. The full set of absolute nilpotent elements of an F-evolution algebra Volterra type has the form

N(FV(m1,m)) = {0} ∪ N0 ∪
m
∪
i=1
Nxi .
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