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Abstract. In this paper we consider the notion of AI2 -summability for real double sequences which is an
extension of the notion of AI-summability for real single sequences introduced by Savas, Das and Dutta.
We primarily apply this new notion to prove a Korovkin type approximation theorem. In the last section,
we study the rate of AI2 -summability.

1. Introduction and Background

Throughout the paperNwill denote the set of all positive integers. Approximation theory has important
applications in the theory of polynomial approximation in various areas of functional analysis. For a
sequence {Tn}n∈N of positive linear operators on C(X), the space of real valued continuous functions on a
compact subset X of real numbers, Korovkin [23] first established the necessary and sufficient conditions
for the uniform convergence of {Tn( f )}n∈N to a function f by using the test functions e1 = 1, e2 = x, e3 = x2

[1]. The study of the Korovkin type approximation theory has a long history and is a well-established
area of research. As is mentioned in [13] in particular, the matrix summability methods of Cesáro type
are strong enough to correct the lack of convergence of various sequences of positive linear operators such
as the interpolation operator of Hermit-Fejér [7]. In recent years, using the concept of uniform statistical
convergence various statistical approximation results have been proved ([15, 16]). Erkuş and Duman [18]
studied a Korovkin type approximation theorem via A-statistical convergence in the space Hw(I2) where
I2 = [0,∞) × [0,∞) which was extended for double sequences of positive linear operators of two variables
in A-statistical sense by Demirci and Dirik in [13]. Further it was extended for double sequences of positive
linear operators of two variables in AI2 -statistical sense by Dutta and Das [17]. Our primary interest, in this
paper is to obtain a general Korovkin type approximation theorem for double sequences of positive linear
operators of two variables from C(K ) to C(K ) where K is a compact subset of the real two dimensional
space, in the sense of AI2 -summability method.

The concept of convergence of a sequence of real numbers was extended to statistical convergence by
Fast [20]. Further investigations started in this area after the pioneering works of Šalát [36] and Fridy [21].
The notion of I-convergence of real sequences was introduced by Kostyrko et. al. [26] as a generalization
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of statistical convergence using the notion of ideals (see [4–6] for further references). Later the idea of
I-convergence was also studied in topological spaces in [27]. On the other hand statistical convergence
was generalized to A-statistical convergence by Kolk ([24, 25]). Later a lot of works have been done on
matrix summability and A-statistical convergence (see [2, 3, 8, 9, 11, 12, 19, 22, 24, 25, 28, 32, 33, 37]). In
particular very recently in [38] and [39] the two above mentioned approaches were unified and the very
general notion of AI-statistical convergence and AI-summability was introduced and studied. In this paper
we consider an extension of this notion to double sequences, namely AI2 -summability convergence.

A real double sequence {xmn}m,n∈N is said to be convergent to L in Pringsheim’s sense if for every
ε > 0 there exists N(ε) ∈ N such that |xmn − L| < ε for all m,n > N(ε) and denoted by lim

m,n
xmn = L

([34]). A double sequence is called bounded if there exists a positive number M such that |xmn| ≤ M for
all (m,n) ∈ N ×N. A real double sequence {xmn}m,n∈N is statistically convergent to L if for every ε > 0,

lim
j,k

∣∣∣{m ≤ j,n ≤ k : |xmn − L| ≥ ε}
∣∣∣

jk
= 0 ([29–31]).

Recall that a family I ⊂ 2Y of subsets of a nonempty set Y is said to be an ideal in Y if (i)A,B ∈ I implies
A ∪ B ∈ I; (ii)A ∈ I,B ⊂ A implies B ∈ I, while an admissible ideal I of Y further satisfies {x} ∈ I for each
x ∈ Y. If I is a non-trivial proper ideal in Y (i.e. Y < I,I , {∅}) then the family of sets F(I) = {M ⊂ Y :
there exists A ∈ I : M = Y \A} is a filter in Y. It is called the filter associated with the ideal I. A non-trivial
ideal I ofN ×N is called strongly admissible if {i} ×N andN × {i} belong to I for each i ∈N. It is evident
that a strongly admissible ideal is admissible also. Let I0 = {A ⊂N ×N : there is m(A) ∈N such that i, j ≥
m(A) =⇒ (i, j) < A}. Then I0 is a non-trivial strongly admissible ideal [10]. Let A = (ank) be a non-negative
regular matrix. For an ideal I of N a sequence {xn}n∈N is said to be AI-statistically convergent to L if for
any ε > 0 and δ > 0, n ∈N :

∑
k∈K(ε)

ank ≥ δ

 ∈ I
where K(ε) = {k ∈N : |xk − L| ≥ ε} ([38, 39]).
Let A = (a jkmn) be a four dimensional summability matrix. For a given double sequence {xmn}m,n∈N, the

A-transform of x, denoted by Ax := ((Ax) jk), is given by

(Ax) jk =
∑

(m,n)∈N2

a jkmnxmn

provided the double series converges in Pringsheim sense for every ( j, k) ∈ N2. In 1926, Robison [35]
presented a four dimensional analog of the regularity by considering an additional assumption of bound-
edness. This assumption was made because a convergent double sequence is not necessarily bounded.

Recall that a four dimensional matrix A = (a jkmn) is said to be RH-regular if it maps every bounded
convergent double sequence into a convergent double sequence with the same limit. The Robison-Hamilton
conditions state that a four dimensional matrix A = (a jkmn) is RH-regular if and only if

(i) lim
j,k

a jkmn = 0 for each (m,n) ∈N2,

(ii) lim
j,k

∑
(m,n)∈N2

a jkmn = 1,

(iii) lim
j,k

∑
m∈N

|a jkmn| = 0 for each n ∈N,

(iv) lim
j,k

∑
n∈N

|a jkmn| = 0 for each m ∈N,
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(v)
∑

(m,n)∈N2

|a jkmn| is convergent for each ( j, k) ∈N2,

(vi) there exist finite positive integers M0 and N0 such that
∑

m,n>N0

|a jkmn| < M0

holds for every ( j, k) ∈N2.
Let A = (a jkmn) be a nonnegative RH-regular summability matrix and let K ⊂N2. Then the A-density of

K is given by

δ(2)
A {K} = lim

j,k

∑
(m,n)∈K

a jkmn

provided the limit exists. A real double sequence x = {xmn}m,n∈N is said to be A-statistically convergent
to a number L if for every ε > 0

δ(2)
A {(m,n) ∈N2 : |xmn − L| ≥ ε} = 0.

We denote Iδ(2)
A

=
{
C ⊂N2 : δ(2)

A {C} = 0
}

which is an admissible ideal inN ×N. Throughout this paper
we use the symbol I as a non-trivial strongly admissible ideal onN ×N.

2. A Korovkin Type Approximation Theorem

Recently the concept of AI-summability for real single sequences has been introduced by Savas, Das
and Dutta [38, 39] which are strictly weaker than the notion of statistical summability. In this paper we
consider the following natural extension of these summability for real double sequences.

The following definition is due to E. Savas (who has informed about it in a personal communication).

Definition 2.1. A real double sequence x = {xm,n}m,n∈N is said to be I2-statistically convergent to L if for each ε > 0
and δ > 0,{

( j, k) ∈N2 : 1
jk |{m ≤ j,n ≤ k : |xmn − L| ≥ ε}| ≥ δ

}
∈ I.

We now introduce the main definition of this paper.

Definition 2.2. Let A = (a jkmn) be a nonnegative RH-regular summability matrix. Then a real double sequence
x = {xmn}m,n∈N is said to be AI2 -statistically convergent to a number L if for every ε > 0 and δ > 0,( j, k) ∈N2 :

∑
(m,n)∈K2(ε)

a jkmn ≥ δ

 ∈ I
where K2(ε) = {(m,n) ∈N2 : |xmn − L| ≥ ε}.

Definition 2.3. Let A = (a jkmn) be a nonnegative RH-regular summability matrix. Then a real double sequence
x = {xmn}m,n∈N is said to be AI2 -summable to a number L if for every ε > 0,{

( j, k) ∈N2 : |(Ax) j,k − L| ≥ ε
}
∈ I.

Thus x = {xmn}m,n∈N is AI2 -summable to a number L if and only if (Ax) j,k is I2-convergent to L. In this case, we
write I2-lim

j,k

∑
(m,n)∈N2

a jkmnxmn = L.

It should be noted that, if we take I = Id, the set of all subsets ofN×Nwith natural density zero, then
AI2 -summability reduces to the notion of statistical A-summability.

Now we prove the the following relation between AI2 -summability and AI2 -statistical convergence.

Theorem 2.4. If a double sequence is bounded and AI2 -statistically convergent to L then it is AI2 -summable to L.
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Proof. Let x = {xmn}m,n∈N be bounded and AI2 -statistically convergent to L and for ε > 0, let K( ε2 ) := {(m,n) ∈
N2 : |xmn − L| ≥ ε

2 }. Then

|(Ax) j,k − L| ≤

∣∣∣∣∣∣∣∣
∑

(m,n)∈N2

a jkmn(xmn − L)

∣∣∣∣∣∣∣∣ + |L|

∣∣∣∣∣∣∣∣
∑

(m,n)∈N2

a jkmn − 1

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑

(m,n)<K( ε2 )

a jkmn(xmn − L)

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
∑

(m,n)∈K( ε2 )

a jkmn(xmn − L)

∣∣∣∣∣∣∣∣
+|L|

∣∣∣∣∣∣∣∣
∑

(m,n)∈N2

a jkmn − 1

∣∣∣∣∣∣∣∣
≤

ε
2

∑
(m,n)<K( ε2 )

a jkmn + sup
(m,n)∈N2

|xmn − L|
∑

(m,n)∈K( ε2 )

a jkmn

+|L|

∣∣∣∣∣∣∣∣
∑

(m,n)∈N2

a jkmn − 1

∣∣∣∣∣∣∣∣
Then since x = {xmn}m,n∈N is AI2 -statistically convergent to L and the matrix A is a RH-regular matrix so{
( j, k) ∈N2 : |(Ax) j,k − L| ≥ ε

}
∈ I and this consequently implies that x is AI2 -summable to L.

The next example disproves the converse of the Theorem 2.1.

Example 2.5. LetI be a non-trivial strongly admissible ideal ofN×N. Choose an infinite subset C = {(pi, qi) : i ∈N}
from I where pi , qi, p1 < p2 < ..., and q1 < q2 < ... . Let {umn}m,n∈N be given by

umn =

1 m,n are even
0 otherwise.

Let A = (a jkmn) be given by

a jkmn =


1
4 if ( j, k) , (pi, qi) for any i ∈N, m = j2, j2 + 1,n = k2, k2 + 1
1 if j = pi, k = qi, m = p2

i , n = q2
i

0 otherwise.

Now

y j,k =
∑

(m,n)∈N2

a jkmnumn =


1
4 if ( j, k) , (pi, qi) for any i ∈N
0 if j = pi, k = qi, m = p2

i , n = q2
i are odd

1 if j = pi, k = qi, m = p2
i , n = q2

i are even.

Let ε > 0 be given. Then {( j, k) ∈N2 : |y j,k −
1
4 | ≥ ε} = C ∈ I. Then the sequence {umn}m,n∈N is AI2 -summable to 1

4 .
Again for 0 < ε < 1

4 , K2(ε) = {(m,n) ∈N2 : |umn −
1
4 | ≥ ε} =N ×N. Therefore∑

(m,n)∈K2(ε)

a jkmn =
1
4

for all (i, j) ∈ (N ×N) \ C.

Consequently for 0 < δ < 1
4 , (N×N) \C ⊂

(i, j) ∈N2 :
∑

(m,n)∈K2(ε)

a jkmn ≥ δ

. This shows that {umn}m,n∈N is not

AI2 -statistically convergent.
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We consider the set of all real valued continuous functions on any compact subsetK of the real two di-
mensional space. This space is endowed with the supremum norm || f || = sup

(x,y)∈K
| f (x, y)|, f ∈ C(K ). Through-

out the paper we will use the following test functions f0(x, y) = 1, f1(x, y) = x, f2 = y, f3(x, y) = x2 + y2

and we denote the value of T f at a point (u, v) ∈ K by T( f ; u, v).

Now we establish the Korovkin type approximation theorem by using AI2 -summability method.

Theorem 2.6. Let A = (a jkmn) be a nonnegative RH-regular summability matrix and {Tmn}m,n∈ N be a sequence of
positive linear operators from C(K ) into C(K ). Then for any f ∈ C(K ),

I2-lim
j,k
||

∑
(m,n)∈N2

a jkmnTmn( f ) − f || = 0 (1)

is satisfied if the following hold

I2-lim
j,k
||

∑
(m,n)∈N2

a jkmnTmn( fi) − fi|| = 0, i = 0, 1, 2, 3. (2)

Proof. Assume that (2) holds. Let f ∈ C(K ). Our objective is to show that for given ε > 0 there exist
constants C0, C1, C2, C4 (depending on ε > 0) such that

||

∑
(m,n)∈N2

a jkmnTmn( f ) − f || ≤ ε +

3∑
i=0

Ci||
∑

(m,n)∈N2

a jkmnTmn( fi) − fi||.

If this is done then our hypothesis implies that for any δ > 0,( j, k) ∈N2 : ||
∑

(m,n)∈N2

a jkmnTmn( f ) − f || ≥ δ

 ∈ I.

Let f ∈ C(K ). Since f is continuous on the compact set K , so | f (x, y)| ≤ M where M = || f ||. Also since f
is continuous on K then for every ε > 0 there exists a number δ > 0 such that | f (x, y) − f (u, v)| < ε for all
(x, y) ∈ K satisfying |x − u| < δ and |v − y| < δ. Hence we get | f (x, y) − f (u, v)| < ε + 2M

δ2

{
(x − u)2 + (y − v)2

}
.

Since each Tmn is a positive linear operator then we have for each (u, v) ∈ K ,
∣∣∣∣ ∑
(m,n)∈N2

a jkmnTmn( f ; u, v) −

f (u, v)
∣∣∣∣

≤

∑
(m,n)∈N2

a jkmnTmn(| f (x, y) − f (u, v)|; u, v)

+ | f (u, v)|
∣∣∣∣ ∑
(m,n)∈N2

a jkmnTmn( f0; u, v) − f0(u, v)
∣∣∣∣

≤

∑
(m,n)∈N2

a jkmnTmn

(
ε +

2M
δ2

{
(x − u)2 + (y − v)2

}
; u, v

)
+ M

∣∣∣∣ ∑
(m,n)∈N2

a jkmnTmn( f0; u, v) − f0(u, v)
∣∣∣∣

≤ ε +
(
ε + M +

2M
δ2 (E2 + F2)

)∣∣∣∣ ∑
(m,n)∈N2

a jkmnTmn( f0; u, v) − f0(u, v)
∣∣∣∣

+
2M
δ2

∣∣∣∣ ∑
(m,n)∈N2

a jkmnTmn( f3; u, v) − f3(u, v)
∣∣∣∣

+
4ME
δ2

∣∣∣∣ ∑
(m,n)∈N2

a jkmnTmn( f1; u, v) − f1(u, v)
∣∣∣∣



S. Dutta et al. / Filomat 30:10 (2016), 2663–2672 2668

+
4MF
δ2

∣∣∣∣ ∑
(m,n)∈N2

a jkmnTmn( f2; u, v) − f2(u, v)
∣∣∣∣

where E = max
K

|x| and F = max
K

|y|.

Taking supremum over (u, v) ∈ K

||

∑
(m,n)∈N2

a jkmnTmn( f ) − f || ≤ ε +

3∑
i=0

Ci||
∑

(m,n)∈N2

a jkmnTmn( fi) − fi||

where C0 = ε + M + 2M
δ2 (E2 + F2), C1 = 4ME

δ2 , C2 = 4MF
δ2 , C3 = 2M

δ2 .
Hence

||

∑
(m,n)∈N2

a jkmnTmn( f ) − f || ≤ ε + C


3∑

i=0

||

∑
(m,n)∈N2

a jkmnTmn( fi) − fi||


where C = max{C0,C1,C2,C3}.

For a given γ > 0, choose ε < γ. Now let

U =

( j, k) ∈N2 : ||
∑

(m,n)∈N2

a jkmnTmn( f ) − f || ≥ γ

 ,
and

Ui =

( j, k) ∈N2 : ||
∑

(m,n)∈N2

a jkmnTmn( fi) − fi|| ≥
γ − ε

4C

 , i = 0, 1, 2, 3.

It follows that U ⊂
3⋃

i=0

Ui. By hypothesis each Ui ∈ I, i = 0, 1, 2, 3 and consequently U ∈ I i.e.

( j, k) ∈N2 : ||
∑

(m,n)∈N2

a jkmnTmn( f ) − f || ≥ γ

 ∈ I.
This completes the proof of the theorem.

Remark 2.7. We now show that our theorem is stronger than the statistical A-summable version [14] (and so
the classical version). Let I be a non-trivial strongly admissible ideal of N × N. Choose an infinite subset
C = {(pi, qi) : i ∈ N} (where pi , qi, p1 < p2 < ..., and q1 < q2 < ...) from I \ Id where Id denotes the set of all
subsets ofN ×N with natural density zero. Let {umn}m,n∈N be given by

umn =

1 if m,n are even
0 otherwise.

Let A = (a jkmn) be given by

a jkmn =


1 if j = pi, k = qi,m = 2pi,n = 2qi for some i ∈N
1 if ( j, k) , (pi, qi), for any i,m = 2 j + 1,n = 2k + 1
0 otherwise.
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Now

y j,k =
∑

(m,n)∈N2

a jkmnumn =

1 if j = pi, k = qi for some i ∈N
0 if ( j, k) , (pi, qi), for any i ∈N.

Let ε > 0 be given. Then {( j, k) ∈ N2 : |y j,k − 0| ≥ ε} = C ∈ I. Then the sequence {umn}m,n∈N is AI2 -summable to 0.
Evidently this sequence is not statistically A-summable to 0.

Let K = [0, 1] × [0, 1]. Now we consider the double sequence {Tmn}m,n∈ N of positive linear operators defined by
Tmn( f ; x, y) = (1 + umn)Bmn( f ; x, y) where {Bmn}m,n∈ N are the Berstein Polynomial of the two variables defined on

C(K ) by Bmn( f ; x, y) =

m∑
j=0

n∑
k=0

f
(

j
m
,

k
n

) (
m
j

)
x j(1 − x)m− j

(
n
k

)
yk(1 − y)n−k. Then observe that

Tmn( f0; x, y) = (1 + umn) f0(x, y),

Tmn( f1; x, y) = (1 + umn) f1(x, y),

Tmn( f2; x, y) = (1 + umn) f2(x, y),

Tmn( f3; x, y) = (1 + umn)
[

f3(x, y) +
x − x2

m
+

y − y2

n

]
.

Now as A is a nonnegative RH-regular summability matrix and {umn}m,n∈N is AI2 -summable to 0 then for any ε > 0,( j, k) ∈N2 : ||
∑

(m,n)∈N2

a jkmnTmn( fi) − fi|| ≥ ε

 ∈ I, i = 0, 1, 2, 3.

Therefore by previous theorem( j, k) ∈N2 : ||
∑

(m,n)∈N2

a jkmnTmn( f ) − f || ≥ ε

 ∈ I.

But since {umn}m,n∈N is not usual convergent and statistical A-summable so we can say that the classical version
and statistical A-summable version of the previous theorem do not work for the operator defined above.

3. Rate of AI
2

-summability

In this section we present a way to compute the rate of AI2 -summability methods of positive linear
operators using the modulus of continuity in Theorem 2.2. Let f ∈ C(K ). Then the modulus of continuity
for δ > 0 is given by

w( f ; δ) = sup{| f (x, y) − f (u, v)| : (u, v), (x, y) ∈ K ,
√

(x − u)2 + (y − v)2 ≤ δ}.

Theorem 3.1. Let {Tmn}m,n∈ N be a sequence of positive linear operators from C(K ) into C(K ). Let A = (a jkmn) be a
nonnegative RH-regular summability matrix. Assume that the following conditions hold
(i)I2-lim

j,k
||

∑
(m,n)∈N2

a jkmnTmn( f0) − f0|| = 0,

(ii)I2-lim
j,k

w( f ; δ) = 0 where δ := δ( j,k) =

√
||

∑
(m,n)∈N2

a jkmnTmn(ψ)|| with ψ(x, y) = (x − u)2 + (y − v)2. Then

I2-lim
j,k
||

∑
(m,n)∈N2

a jkmnTmn( f ) − f || = 0

for any f ∈ C(K ).



S. Dutta et al. / Filomat 30:10 (2016), 2663–2672 2670

Proof. Let (u, v) ∈ K and f ∈ C(K ) be fixed. Then for all (m,n) ∈N2 and any δ > 0 we have

∣∣∣∣∣∣∣∣
∑

(m,n)∈N2

a jkmnTmn( f ; u, v) − f (u, v)

∣∣∣∣∣∣∣∣ ≤
∑

(m,n)∈N2

a jkmnTmn(| f (x, y) − f (u, v)|; u, v)

+| f (u, v)|

∣∣∣∣∣∣∣∣
∑

(m,n)∈N2

a jkmnTmn( f0; u, v) − f0(u, v)

∣∣∣∣∣∣∣∣
≤ w( f ; δ)

∑
(m,n)∈N2

a jkmnTmn

1 +

√
(x − u)2 + (y − v)2

δ
; u, v


+|| f ||

∣∣∣∣∣∣∣∣
∑

(m,n)∈N2

a jkmnTmn( f0; u, v) − f0(u, v)

∣∣∣∣∣∣∣∣
≤ w( f ; δ)

∑
(m,n)∈N2

a jkmnTmn( f0; u, v) − w( f ; δ) f0(u, v)

+w( f ; δ) +
w( f ; δ)
δ2

∑
(m,n)∈N2

a jkmnTmn(ψ; u, v)

+|| f ||

∣∣∣∣∣∣∣∣
∑

(m,n)∈N2

a jkmnTmn( f0; u, v) − f0(u, v)

∣∣∣∣∣∣∣∣
≤ w( f ; δ)

∣∣∣∣∣∣∣∣
∑

(m,n)∈N2

a jkmnTmn( f0; u, v) − f0(u, v)

∣∣∣∣∣∣∣∣ + w( f ; δ)

+
w( f ; δ)
δ2

∣∣∣∣∣∣∣∣
∑

(m,n)∈N2

a jkmnTmn(ψ; u, v)

∣∣∣∣∣∣∣∣
+|| f ||

∣∣∣∣∣∣∣∣
∑

(m,n)∈N2

a jkmnTmn( f0; u, v) − f0(u, v)

∣∣∣∣∣∣∣∣ .

Taking supremum over (u, v) ∈ K

||

∑
(m,n)∈N2

a jkmnTmn( f ) − f || ≤ w( f ; δ)||
∑

(m,n)∈N2

a jkmnTmn( f0) − f0||

+w( f ; δ) +
w( f ; δ)
δ2 ||

∑
(m,n)∈N2

a jkmnTmn(ψ)||

+|| f ||||
∑

(m,n)∈N2

a jkmnTmn( f0) − f0||.
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If we take δ := δ( j,k) =

√
||

∑
(m,n)∈N2

a jkmnTmn(ψ)|| then

||

∑
(m,n)∈N2

a jkmnTmn( f ) − f || ≤ w( f ; δ( j,k))||
∑

(m,n)∈N2

a jkmnTmn( f0) − f0|| + 2w( f ; δ( j,k))

+|| f ||||
∑

(m,n)∈N2

a jkmnTmn( f0) − f0||

≤ M
{
w( f ; δ( j,k))||

∑
(m,n)∈N2

a jkmnTmn f0 − f0|| + w( f ; δ( j,k))

+||
∑

(m,n)∈N2

a jkmnTmn( f0) − f0||
}

where M = max{2, || f ||}. Let µ > 0 be given. Now consider the following sets

U =
{
( j, k) ∈N2 : ||

∑
(m,n)∈N2

a jkmnTmn( f ) − f || ≥ µ
}
,

U1 =
{
( j, k) ∈N2 : w( f ; δ( j,k)) ≥

µ

3M

}
,

U2 =
{
( j, k) ∈N2 : ||

∑
(m,n)∈N2

a jkmnTmn( f0) − f0|| ≥
µ

3M

}
,

U3 =
{
( j, k) ∈N2 : w( f ; δ( j,k))||

∑
(m,n)∈N2

a jkmnTmn( f0) − f0|| ≥
µ

3M

}
.

Therefore U ⊂ U1 ∪ U2 ∪ U3. Also define U3
′

=
{
( j, k) ∈ N2 : w( f ; δ( j,k)) ≥

√
µ

3M

}
and U3

′′

=
{
( j, k) ∈ N2 :

||

∑
(m,n)∈N2

a jkmnTmn( f0)− f0|| ≥

√
µ

3M

}
.Hence U ⊂ U1 ∪U2 ∪U3

′

∪U3
′′

. Now U1, U2, U3
′

, U3
′′

belong to I. So

U is also belong to I. Therefore I2-lim
j,k
||

∑
(m,n)∈N2

a jkmnTmn( f ) − f || = 0. This completes the proof.
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