
Filomat 30:11 (2016), 2985–3005
DOI 10.2298/FIL1611985D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper a new form of the Hosszú-Gluskin theorem is presented in terms of polyadic powers
and using the language of diagrams. It is shown that the Hosszú-Gluskin chain formula is not unique and
can be generalized (“deformed”) using a parameter q which takes special integer values. A version of the
“q-deformed” analog of the Hosszú-Gluskin theorem in the form of an invariance is formulated, and some
examples are considered. The “q-deformed” homomorphism theorem is also given.
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1. Introduction

Since the early days of “polyadic history” [1–3], the interconnection between polyadic systems and
binary ones has been one of the main areas of interest [4, 5]. Early constructions were confined to building
some special polyadic (mostly ternary [6, 7]) operations on elements of binary groups [8–10]. A very special
form of n-ary multiplication in terms of binary multiplication and a special mapping as a chain formula was
found in [11] and [12, 13]. The theorem that any n-ary multiplication can be presented in this form is called
the Hosszú-Gluskin theorem (for review see [14, 15]). A concise and clear proof of the Hosszú-Gluskin
chain formula was presented in [16].

In this paper we give a new form of the Hosszú-Gluskin theorem in terms of polyadic powers. Then we
show that the Hosszú-Gluskin chain formula is not unique and can be generalized (“deformed”) using a
parameter q which takes special integer values. We present the “q-deformed” analog of the Hosszú-Gluskin
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theorem in the form of an invariance and consider some examples. The “q-deformed” homomorphism
theorem is also given.

2. Preliminaries

We will use the concise notations from our previous review paper [17], while here we repeat some
necessary definitions using the language of diagrams. For a non-empty set G, we denote its elements by
lower-case Latin letters 1i ∈ G and the n-tuple (or polyad) 11, . . . , 1n will be written by

(
11, . . . , 1n

)
or using

one bold letter with index 1(n), and an n-tuple with equal elements by 1n. In case the number of elements
in the n-tuple is clear from the context or is not important, we denote it in one bold letter 1without indices.
We omit 1 ∈ G, if it is obvious from the context.

The Cartesian product

n
︷       ︸︸       ︷

G × . . . × G = G×n consists of all n-tuples
(
11, . . . , 1n

)
, such that 1i ∈ G, i =

1, . . . , n. The i-projection of the Cartesian product Gn on its i-th “axis” is the map Pr(n)
i

: G×n → G such that
(
11, . . . 1i, . . . , 1n

)
7−→ 1i. The i-diagonal Diagn : G → G×n sends one element to the equal element n-tuple

1 7−→
(
1n). The one-point set {•} is treated as a unit for the Cartesian product, since there are bijections

between G and G× {•}×n, where G can be on any place. In diagrams, if the place is unimportant, we denote
such bijections by ǫ. On the Cartesian product G×n one can define a polyadic (n-ary or n-adic, if it is necessary
to specify n, its arity or rank) operation µn : G×n → G. For operations we use small Greek letters and place
arguments in square brackets µn

[
1
]
. The operations with n = 1, 2, 3 are called unary, binary and ternary. The

case n = 0 is special and corresponds to fixing a distinguished element of G, a “constant” c ∈ G, and it is

called a 0-ary operation µ(c)
0

, which maps the one-point set {•} to G, such that µ(c)
0

: {•} → G, and (formally) has

the value µ
(c)
0

[{•}] = c ∈ G. The composition of n-ary and m-ary operations µn ◦ µm gives a (n +m − 1)-ary

operation by the iteration µn+m−1
[
1, h

]
= µn

[
1, µm [h]

]
. If we compose µn with the 0-ary operation µ

(c)
0

, then

we obtain the arity “collapsing” µ
(c)
n−1

[
1
]
= µn

[
1, c

]
, because 1 is a polyad of length (n − 1). A universal

algebra is a set which is closed under several polyadic operations [18]. If a concrete universal algebra has
one fundamental n-ary operation, called a polyadic multiplication (or n-ary multiplication) µn, we name it a
“polyadic system”1).

Definition 2.1. A polyadic system G =
〈
set|one fundamental operation

〉
is a set G which is closed under polyadic

multiplication.

More specifically, a n-ary system Gn =
〈
G | µn

〉
is a set G closed under one n-ary operation µn (without

any other additional structure).

For a given n-ary system
〈
G | µn

〉
one can construct another polyadic system

〈

G | µ′n′
〉

over the same set

G, but with another multiplication µ′n′ of different arity n′. In general, there are three ways of changing the
arity:

1. Iterating. Composition of the operation µn with itself increases the arity from n to n′ = niter > n. We
denote the number of iterating multiplications by ℓµ and call the resulting composition an iterated

product2) µ
ℓµ
n (using the bold Greek letters) as (or µ•n if ℓµ is obvious or not important)

µ′n′ = µ
ℓµ
n

de f
=

ℓµ
︷                                                ︸︸                                                ︷

µn ◦
(

µn ◦ . . .
(

µn × id×(n−1)
)

. . . × id×(n−1)
)

, (2.1)

1)A set with one closed binary operation without any other relations was called a groupoid by Hausmann and Ore [19] (see, also
[20]). Nowadays the term “groupoid” is widely used in the category theory and homotopy theory for a different construction, the
so-called Brandt groupoid [21]. Bourbaki [22] introduced the term “magma”. To avoid misreading we will use the neutral notation
“polyadic system”.

2)Sometimes µ
ℓµ
n is named a long product [3].
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where the final arity is

n′ = niter = ℓµ (n − 1) + 1. (2.2)

There are many variants of placing µn’s among id’s in the r.h.s. of (2.1), if no associativity is assumed.
An example of the iterated product can be given for a ternary operation µ3 (n = 3), where we can
construct a 7-ary operation (n′ = 7) by ℓµ = 3 compositions

µ′7
[
11, . . . , 17

]
= µ3

3

[
11, . . . , 17

]
= µ3

[
µ3

[
µ3

[
11, 12, 13

]
, 14, 15

]
, 16, 17

]
, (2.3)

and the corresponding commutative diagram is

G×7 µ3×id×4

✲ G×5 µ3×id×2

✲ G×3

❍❍❍❍❍❍❍❍❍❍❍

µ′
7
=µ3

3

❥
G

µ3

❄

(2.4)

In the general case, the horizontal part of the (iterating) diagram (2.4) consists of ℓµ terms.

2. Reducing (Collapsing). To decrease arity from n to n′ = nred < n one can use nc distinguished elements

(“constants”) as additional 0-ary operations µ
(ci)
0

, i = 1, . . .nc, such that3) the reduced product is defined
by

µ′n′ = µ
(c1...cnc )
n′

de f
= µn ◦





nc

︷               ︸︸               ︷

µ
(c1)
0
× . . . × µ

(cnc )
0
× id×(n−nc)





, (2.5)

where

n′ = nred = n − nc, (2.6)

and the 0-ary operations µ
(ci)
0

can be on any places in (2.5). For instance, if we compose µn with the

0-ary operation µ
(c)
0

, we obtain

µ
(c)
n−1

[

1
]

= µn
[

1, c
]

, (2.7)

and this reduced product is described by the commutative diagram

G×(n−1) × {•}
id×(n−1)

×µ(c)
0✲ G×n

G×(n−1)

ǫ
✻

µ
(c)

n−1 ✲ G

µn

❄
(2.8)

which can be treated as a definition of a new (n − 1)-ary operation µ
(c)
n−1
= µn ◦ µ

(c)
0

.

3. Mixing. Changing (increasing or decreasing) arity by combining the iterating and reducing (collaps-
ing) methods.

3)In [23] µ
(c1 ...cnc )
n is called a retract, which is already a busy and widely used term in category theory for another construction.
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Example 2.2. If the initial multiplication is binary µ2 = (·), and there is one 0-ary operation µ
(c)
0

, we can construct
the following mixing operation

µ
(c)
n

[

11, . . . , 1n
]

= 11 · 12 · . . . · 1n · c, (2.9)

which in our notation can be called a c-iterated multiplication4).

Let us recall some special elements of polyadic systems. A positive power of an element (according to
Post [4]) coincides with the number of multiplications ℓµ in the iteration (2.1).

Definition 2.3. A (positive) polyadic power of an element is

1〈ℓµ〉 = µ
ℓµ
n

[

1
ℓµ(n−1)+1

]

. (2.10)

Example 2.4. Let us consider a polyadic version of the binary q-addition which appears in study of nonextensive
statistics (see, e.g., [25, 26])

µn
[
1
]
=

n∑

i=1

1i + ~

n∏

i=1

1i, (2.11)

where 1i ∈ C and ~ = 1 − q0, q0 is a real constant (we put here q0 , 1 or ~ , 0). It is obvious that 1〈0〉 = 1, and

1
〈1〉 = µn

[

1
n−1, 1〈0〉

]

= n1 + ~1n. (2.12)

So we have the following recurrence formula

1
〈k〉 = µn

[

1
n−1, 1〈k−1〉

]

= (n − 1) 1 +
(

1 + ~1n−1
)

1
〈k−1〉. (2.13)

Solving this for an arbitrary polyadic power we get

1
〈k〉 = 1

(

1 +
n − 1

~
1

1−n
) (

1 + ~1n−1
)k
−

n − 1

~
1

2−n. (2.14)

Definition 2.5. A polyadic (n-ary) identity (or neutral element) of a polyadic system is a distinguished element ε

(and the corresponding 0-ary operation µ
(ε)
0

) such that for any element 1 ∈ G we have [27]

µn

[

1, εn−1
]

= 1, (2.15)

where 1 can be on any place in the l.h.s. of (2.15).

In polyadic systems, for an element 1 there can exist many neutral polyads n ∈ G×(n−1) satisfying

µn
[
1, n

]
= 1, (2.16)

where 1may be on any place. The neutral polyads are not determined uniquely. It follows from (2.15) and
(2.16) that εn−1 is a neutral polyad.

Definition 2.6. An element of a polyadic system 1 is called ℓµ-idempotent, if there exist such ℓµ that

1〈ℓµ〉 = 1. (2.17)

4)According to [24] the operation (2.9) can be called c-derived.
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It is obvious that an identity is ℓµ -idempotent with arbitrary ℓµ. We define (total) associativity as invariance
of the composition of two n-ary multiplications

µ
2
n

[
1, h, u

]
= invariant (2.18)

under placement of the internal multiplication in the r.h.s. with a fixed order of elements in the whole
polyad of (2n − 1) elements t

(2n−1) =
(
1, h, u

)
. Informally, “internal brackets/multiplication can be moved on

any place”, which gives

µn ◦

(
i=1
µn × id×(n−1)

)

= µn ◦

(

id×
i=2
µn × id×(n−2)

)

= . . . = µn ◦

(

id×(n−1) ×
i=n
µn

)

, (2.19)

where the internal µn can be on any place i = 1, . . . , n. There are many other particular kinds of associativity
which were introduced in [4, 28] and studied in [29, 30] (see, also [31]). Here we will confine ourselves to
the most general, total associativity (2.18).

Definition 2.7. A polyadic semigroup (n-ary semigroup) is a n-ary system whose operation is associative, or

G
semi1rp
n =

〈
G | µn | associativity (2.18)

〉
.

In general, it is very important to find the associativity preserving conditions, when an associative initial
operationµn leads to an associative final operationµ′n′ while changing the arity (by iterating (2.1) or reducing
(2.5)).

Example 2.8. An associativity preserving reduction can be given by the construction of a binary associative operation
using a (n − 2)-tuple c as

µ(c)
2

[
1, h

]
= µn

[
1, c, h

]
. (2.20)

The associativity preserving mixing constructions with different arities and places were considered in
[23, 30, 32].

In polyadic systems, there are several analogs of binary commutativity. The most straightforward one
comes from commutation of the multiplication with permutations.

Definition 2.9. A polyadic system is σ-commutative, if µn = µn◦σ, where σ is a fixed element of Sn, the permutation
group on n elements. If this holds for all σ ∈ Sn, then a polyadic system is commutative.

A special type of the σ-commutativity

µn
[
1, t, h

]
= µn

[
h, t, 1

]
(2.21)

is called semicommutativity. So for a n-ary semicommutative system we have

µn

[

1, hn−1
]

= µn

[

hn−1, 1
]

. (2.22)

If a n-ary semigroup G
semi1rp
n is iterated from a commutative binary semigroup with identity, then G

semi1rp
n

is semicommutative. Another possibility is to generalize the binary mediality in semigroups
(
111 · 112

)
·
(
121 · 122

)
=

(
111 · 121

)
·
(
112 · 122

)
, (2.23)

which follows from the binary commutativity. For n-ary systems, it is seen that the mediality should contain
(n + 1) multiplications, that it is a relation between n × n elements, and therefore that it can be presented in
a matrix from.

Definition 2.10. A polyadic system is medial (or entropic), if [33, 34]

µn





µn
[
111, . . . , 11n

]

...
µn

[
1n1, . . . , 1nn

]





= µn





µn
[
111, . . . , 1n1

]

...
µn

[
11n, . . . , 1nn

]





. (2.24)
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In the case of polyadic semigroups we use the notation (2.1) and can present the mediality as follows

µ
n
n [G] = µn

n

[

G
T
]

, (2.25)

where G =
∥
∥
∥1i j

∥
∥
∥ is the n × n matrix of elements and GT is its transpose.

The semicommutative polyadic semigroups are medial, as in the binary case, but, in general (except
n = 3) not vice versa [35].

Definition 2.11. A polyadic system is cancellative, if

µn
[

1, t
]

= µn [h, t] =⇒ 1 = h, (2.26)

where 1, h can be on any place. This means that the mapping µn is one-to-one in each variable.

If 1, h are on the same i-th place on both sides of (2.26), the polyadic system is called i-cancellative. The
left and right cancellativity are 1-cancellativity and n-cancellativity respectively. A right and left cancellative
n-ary semigroup is cancellative (with respect to the same subset).

Definition 2.12. A polyadic system is called (uniquely) i-solvable, if for all polyads t, u and element h, one can
(uniquely) resolve the equation (with respect to h) for the fundamental operation

µn [u, h, t] = 1 (2.27)

where h can be on any i-th place.

Definition 2.13. A polyadic system which is uniquely i-solvable for all places i = 1, . . . , n in (2.27) is called a n-ary
(or polyadic) quasigroup.

It follows, that, if (2.27) uniquely i-solvable for all places, then

µ
ℓµ
n [u, h, t] = 1 (2.28)

can be (uniquely) resolved with respect to h being on any place.

Definition 2.14. An associative polyadic quasigroup is called a n-ary (or polyadic) group.

In a polyadic group the only solution of (2.27) is called a querelement5) of 1 and is denoted by 1̄ [3], such
that

µn
[

h, 1̄
]

= 1, (2.29)

where 1̄ can be on any place. Obviously, any idempotent 1 coincides with its querelement 1̄ = 1.

Example 2.15. For the q-addition (2.11) from Example 2.4, using (2.29) with h = 1n−1 we obtain

1̄ = −
(n − 2) 1

1 + ~1n−1
. (2.30)

5)We use the original notation after [3] and do not use “skew element”, because it can be confused with the wide usage of “skew”
in other, different senses.
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It follows from (2.29) and (2.16), that the polyad

n(1̄) =
(

1
n−2, 1̄

)

(2.31)

is neutral for any element 1, where 1̄ can be on any place. If this i-th place is important, then we write n(1),i.

More generally, because any neutral polyad plays a role of identity (see (2.16)), for any element 1we define
its polyadic inverse (the sequence of length (n − 2) denoted by the same letter 1−1 in bold) as (see [4] and by
modified analogy with [15, 36])

n(1) =
(

1
−1, 1

)

=
(

1, 1−1
)

, (2.32)

which can be written in terms of the multiplication as

µn

[

1, 1−1, h
]

= µn

[

h, 1−1, 1
]

= h (2.33)

for all h in G. It is obvious that the polyads

n(1k) =
((

1
−1

)k
, 1k

)

=

(

1
k,
(

1
−1

)k
)

(2.34)

are neutral as well for any k ≥ 1. It follows from (2.31) that the polyadic inverse of 1 is
(

1n−3, 1̄
)

, and one of

1̄ is
(

1n−2
)

, and in this case 1 is called querable. In a polyadic group all elements are querable [37, 38].

The number of relations in (2.29) can be reduced from n (the number of possible places) to only 2 (when
1 is on the first and last places [3, 39]), such that in a polyadic group the Dörnte relations

µn

[

1, n(1),i

]

= µn

[

n(1), j, 1
]

= 1 (2.35)

hold valid for any allowable i, j, and (2.35) are analogs of 1 · h · h−1 = h · h−1 · 1 = 1 in binary groups. The
relation (2.29) can be treated as a definition of the (unary) queroperation µ̄1 : G→ G by

µ̄1
[

1
]

= 1̄, (2.36)

such that the diagram

G×n µn✲ G

✑✑
✑✑

✑

Prn

✸

G×n

id×(n−1)
×µ̄1

✻
(2.37)

commutes. Then, using the queroperation (2.36) one can give a diagrammatic definition of a polyadic group
(cf. [40]).

Definition 2.16. A polyadic group is a universal algebra

G
1rp
n =

〈

G | µn, µ̄1 | associativity, Dörnte relations
〉

, (2.38)

where µn is n-ary associative operation and µ̄1 is the queroperation (2.36), such that the following diagram

G×(n) id×(n−1)
×µ̄1 ✲ G×n ✛ µ̄1×id×(n−1)

G×n

G × G

id×Diag(n−1)

✻

Pr1 ✲ G

µn

❄
✛ Pr2

G × G

Diag(n−1)×id
✻

(2.39)

commutes, where µ̄1 can be only on the first and second places from the right (resp. left) on the left (resp. right) part
of the diagram.
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A straightforward generalization of the queroperation concept and corresponding definitions can be
made by substituting in the above formulas (2.29)–(2.36) the n-ary multiplication µn by the iterating multi-

plication µ
ℓµ
n (2.1) (cf. [41] for ℓµ = 2 and [42]).

Let us define the querpower k of 1 recursively by [43, 44]

1̄
〈〈k〉〉 =

(
1̄〈〈k−1〉〉

)
, (2.40)

where 1̄〈〈0〉〉 = 1, 1̄〈〈1〉〉 = 1̄, 1̄〈〈2〉〉 = 1̄,... or as the k composition µ̄◦k
1
=

k
︷              ︸︸              ︷

µ̄1 ◦ µ̄1 ◦ . . . ◦ µ̄1 of the unary
queroperation (2.36). We can define the negative polyadic power of an element 1 by the recursive relationship

µn

[

1〈ℓµ−1〉, 1n−2, 1〈−ℓµ〉
]

= 1, (2.41)

or (after the use of the positive polyadic power (2.10)) as a solution of the equation

µ
ℓµ
n

[

1
ℓµ(n−1), 1〈−ℓµ〉

]

= 1. (2.42)

The querpower (2.40) and the polyadic power (2.42) are connected [45]. We reformulate this connection
using the so called Heine numbers [46] or q-deformed numbers [47]

[[k]]q =
qk − 1

q − 1
, (2.43)

which have the “nondeformed” limit q→ 1 as [[k]]q → k and [[0]]q = 0. If [[k]]q = 0, then q is a k-th root of
unity. From (2.40) and (2.42) we obtain

1̄
〈〈k〉〉 = 1〈−[[k]]2−n〉, (2.44)

which can be treated as the following “deformation” statement:

Assertion 2.17. The querpower coincides with the negative polyadic deformed power with the “deformation” param-
eter q which is equal to the “deviation” (2 − n) from the binary group.

Example 2.18. Let us consider a binary group G2 =
〈
G | µ2

〉
, we denote µ2 = (·), and construct (using (2.1) and

(2.5)) the reduced 4-ary product by µ′
4

[
1
]
= 11 ·12 ·13 ·14 · c, where 1i ∈ G and c is in the center of the group G2. In the

4-ary group G′4 =
〈

G, µ′
4

〉

we derive the following positive and negative polyadic powers (obviously 1〈0〉 = 1̄〈〈0〉〉 = 1)

1
〈1〉 = 14 · c, 1〈2〉 = 17 · c2, . . . , 1〈k〉 = 13k+1 · ck, (2.45)

1
〈−1〉 = 1−2 · c−1, 1〈−2〉 = 1−5 · c−2, . . . , 1〈−k〉 = 1−3k+1 · c−k, (2.46)

and the querpowers

1̄
〈〈1〉〉 = 1−2 · c−1, 1̄〈〈2〉〉 = 1−4 · c, . . . , 1̄〈〈k〉〉 = 1(−2)k

· c[[k]]−2 . (2.47)

Let Gn =
〈
G | µn

〉
and G′n′ =

〈

G′ | µ′n′
〉

be two polyadic systems of any kind. If their multiplications are

of the same arity n = n′, then one can define the following one-place mappings from Gn to G′n (for many-place
mappings, which change arity n , n′ and corresonding heteromorphisms, see [17]).

Suppose we have n + 1 mappings Φi : G → G′, i = 1, . . . , n + 1. An ordered system of mappings {Φi} is
called a homotopy from Gn to G′n, if (see, e.g., [34])

Φn+1
(
µn

[
11, . . . , 1n

])
= µ′n

[
Φ1

(
11

)
, . . . ,Φn

(
1n

)]
, 1i ∈ G. (2.48)
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A homomorphism from Gn to G′n is given, if there exists a (one-place) mapping Φ : G→ G′ satisfying

Φ
(
µn

[
11, . . . , 1n

])
= µ′n

[
Φ

(
11

)
, . . . ,Φ

(
1n

)]
, 1i ∈ G, (2.49)

which means that the corresponding (equiary6)) diagram is commutative

G
ϕ ✲ G′

G×n

µn

✻

(ϕ)
×n

✲ (G′)×n

µ′n

✻
(2.50)

It is obvious that, if a polyadic system contains distinguished elements (identities, querelements, etc.), they

are also mapped by ϕ correspondingly (for details and a review, see, e.g., [42, 48]). The most important
application of one-place mappings is in establishing a general structure for n-ary multiplication.

3. The Hosszú-Gluskin Theorem

Let us consider possible concrete forms of polyadic multiplication in terms of lesser arity operations.
Obviously, the simplest way of constructing a n-ary product µ′n from the binary one µ2 = (∗) is ℓµ = n
iteration (2.1) [8, 49]

µ′n
[
1
]
= 11 ∗ 12 ∗ . . . ∗ 1n, 1i ∈ G. (3.1)

In [3] it was noted that not all n-ary groups have a product of this special form. The binary group
G∗2 =

〈

G | µ2 = ∗, e
〉

was called a covering group of the n-ary group G′n =
〈

G | µ′n
〉

in [4] (see, also, [50]), where
a theorem establishing a more general (than (3.1)) structure of µ′n

[
1
]

in terms of subgroup structure of the
covering group was given. A manifest form of the n-ary group product µ′n

[
1
]

in terms of the binary one
and a special mapping was found in [11, 13] and is called the Hosszú-Gluskin theorem, despite the same
formulas having appeared much earlier in [4, 51] (for the relationship between the formulations, see [52]).
A simple construction of µ′n

[

1
]

which is present in the Hosszú-Gluskin theorem was given in [16]. Here
we follow this scheme in the opposite direction, by just deriving the final formula step by step (without
writing it immediately) with clear examples. Then we introduce a “deformation” to it in such a way that a
generalized “q-deformed” Hosszú-Gluskin theorem can be formulated.

First, let us rewrite (3.1) in its equivalent form

µ′n
[

1
]

= 11 ∗ 12 ∗ . . . ∗ 1n ∗ e, 1i, e ∈ G, (3.2)

where e is a distinguished element of the binary group 〈G | ∗, e〉, that is the identity. Now we apply to (3.2)
an “extended” version of the homotopy relation (2.48) with Φi = ψi, i = 1, . . .n, and the l.h.s. mapping
Φn+1 = id, but add an action ψn+1 on the identity e of the binary group 〈G | ∗, e〉. Then we get (see (2.7) and
(2.9))

µn
[
1
]
= µ

(e)
n

[
1
]
= ψ1

(
11

)
∗ ψ2

(
12

)
∗ . . . ∗ ψn

(
1n

)
∗ ψn+1 (e) =




∗

n∏

i=1

ψi
(
1i
)




∗ ψn+1 (e) . (3.3)

In this way we have obtained the most general form of polyadic multiplication in terms of (n + 1)
“extended” homotopy maps ψi, i = 1, . . .n + 1, such that the diagram

G×(n) × {•}
id×n ×µ(e)

0✲ G×(n+1) ψ1×...×ψn+1✲ G×(n+1)

G×(n)

ǫ
✻

µ(e)
n ✲ G

µ×n
2

❄
(3.4)

6)The map is equiary, if it does not change the arity of operations i.e. n = n′, for nonequiary maps see [17] and refs. therein.
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commutes. A natural question arises, whether all associative polyadic systems have this form of multipli-
cation or do we have others? In general, we can correspondingly classify polyadic systems as:

1) Homotopic polyadic systems which can be presented in the form (3.3). (3.5)

2) Nonhomotopic polyadic systems with multiplication of other than (3.3) shapes. (3.6)

If the second class is nonempty, it would be interesting to find examples of nonhomotopic polyadic systems.
The Hosszú-Gluskin theorem considers the homotopic polyadic systems and gives one of the possible
choices for the “extended” homotopy maps ψi in (3.3). We will show that this choice can be extended
(“deformed”) to the infinite “q-series”.

The main idea in constructing the “automatically” associative n-ary operation µn in (3.3) is to express
the binary multiplication (∗) and the “extended” homotopy maps ψi in terms of µn itself [16]. A simplest
binary multiplication which can be built from µn is (see (2.20))

1 ∗t h = µn
[
1, t, h

]
, (3.7)

where t is any fixed polyad of length (n − 2). If we apply here the equations for the identity e in a binary
group

1 ∗t e = 1, e ∗t h = h, (3.8)

then we obtain

µn
[
1, t, e

]
= 1, µn [e, t, h] = h. (3.9)

We observe from (3.9) that (t, e) and (e, t) are neutral sequences of length (n − 1), and therefore using
(2.32) we can take t as a polyadic inverse of e (the identity of the binary group) considered as an element (but
not an identity) of the polyadic system

〈
G | µn

〉
, that is t = e−1. Then, the binary multiplication constructed

from µn and which has the standard identity properties (3.8) can be chosen as

1 ∗ h = 1 ∗e h = µn

[

1, e−1, h
]

. (3.10)

Using this construction any element of the polyadic system
〈
G | µn

〉
can be distinguished and may serve as

the identity of the binary group, and is then denoted by e (for clarity and convenience).
We recognize in (3.10) a version of the Maltsev term (see, e.g., [18]), which can be called a polyadic Maltsev

term and is defined as

p
(
1, e, h

) de f
= µn

[

1, e−1, h
]

(3.11)

having the standard term properties [18]

p
(

1, e, e
)

= 1, p (e, e, h) = h, (3.12)

which now follow from (3.9), i.e. the polyads
(

e, e−1
)

and
(

e
−1, e

)

are neutral, as they should be (2.32). Denote

by 1−1 the inverse element of 1 in the binary group (1 ∗ 1−1 = 1−1 ∗ 1 = e) and 1−1 its polyadic inverse in a

n-ary group (2.32), then it follows from (3.10) that µn

[

1, e−1, 1−1
]

= e. Thus, we get

1
−1 = µn

[

e, 1−1, e
]

, (3.13)

which can be considered as a connection between the inverse 1−1 in the binary group and the polyadic

inverse in the polyadic system related to the same element 1. For n-ary group we can write 1−1 =
(

1n−3, 1̄
)

and the binary group inverse 1−1 becomes

1
−1 = µn

[

e, 1n−3, 1̄, e
]

. (3.14)
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If
〈
G | µn

〉
is a n-ary group, then the element e is querable (2.33), for the polyadic inverse e−1 one can choose

(

en−3, ē
)

with ē being on any place, and the polyadic Maltsev term becomes [53] p
(
1, e, h

)
= µn

[

1, en−3, ē, h
]

(together with the multiplication (3.10)). For instance, if n = 3, we have

1 ∗ h = µ3
[

1, ē, h
]

, 1−1 = µ3
[

e, 1̄, e
]

, (3.15)

and the neutral polyads are (e, ē) and (ē, e).
Now let us turn to build the main construction, that of the “extended” homotopy maps ψi (3.3) in terms

of µn, which will lead to the Hosszú-Gluskin theorem. We start with a simple example of a ternary system
(3.15), derive the Hosszú-Gluskin “chain formula”, and then it will be clear how to proceed for generic n.
Instead of (3.3) we write

µ3
[
1, h, u

]
= ψ1

(
1
)
∗ ψ2 (h) ∗ ψ3 (u) ∗ ψ4 (e) (3.16)

and try to construct ψi in terms of the ternary product µ3 and the binary identity e. We already know the
structure of the binary multiplication (3.15): it contains ē, and therefore we can insert between 1, h and u

in the l.h.s. of (3.16) a neutral ternary polyad (ē, e) or its powers
(

ēk, ek
)

. Thus, taking for all insertions the

minimal number of neutral polyads, we get

µ3
[
1, h, u

]
= µ2

3





1,

∗

↓
ē , e, h, u





= µ4
3





1,

∗

↓
ē , e, h, ē,

∗

↓
ē , e, e, u





= µ7
3





1,

∗

↓
ē , e, h, ē,

∗

↓
ē , e, e, u, ē, ē,

∗

↓
ē , e, e, e





. (3.17)

We show by arrows the binary products in special places: there should be 1, 3, 5, . . . (2k − 1) elements in
between them to form inner ternary products. Then we rewrite (3.17) as

µ3
[

1, h, u
]

= µ3
3





1,

∗

↓
ē , µ3 [e, h, ē] ,

∗

↓
ē ,µ2

3 [e, e, u, ē, ē] ,

∗

↓
ē , µ3 [e, e, e]





. (3.18)

Comparing this with (3.16), we can exactly identify the “extended” homotopy maps ψi as

ψ1
(
1
)
= 1, (3.19)

ψ2
(

1
)

= ϕ
(

1
)

, (3.20)

ψ3
(
1
)
= ϕ

(
ϕ

(
1
))
= ϕ2 (

1
)
, (3.21)

ψ4 (e) = µ3 [e, e, e] , (3.22)

where

ϕ
(
1
)
= µ3

[
e, 1, ē

]
, (3.23)

which can be described by the commutative diagram

{•} × G × {•}
µ

(e)
0
×id×µ

(e)
0✲ G×3 id×2 ×µ̄1✲ G×3

G

ǫ
✻

ϕ ✲ G

µ3

❄
(3.24)
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The mapping ψ4 is the first polyadic power (2.10) of the binary identity e in the ternary system

ψ4 (e) = e〈1〉. (3.25)

Thus, combining (3.18)–(3.25) we obtain the Hosszú-Gluskin “chain formula” for n = 3

µ3
[

1, h, u
]

= 1 ∗ ϕ (h) ∗ ϕ2 (u) ∗ b, (3.26)

b = e〈1〉, (3.27)

which depends on one mapping ϕ (taken in the chain of powers) only, and the first polyadic power e〈1〉 of
the binary identity e. The corresponding Hosszú-Gluskin diagram

G×3 × {•}3
id×ϕ×ϕ2×

(

µ(e)
0

)×3

✲ G×6 id×3 ×µ3✲ G×4

G × G × G

ǫ
✻

µ3 ✲ G

µ×3
2

❄
(3.28)

commutes.
The mapping ϕ is an automorphism of the binary group 〈G | ∗, e〉, because it follows from (3.15) and

(3.23) that

ϕ
(
1
)
∗ ϕ (h) = µ3

[
µ3

[
e, 1, ē

]
, ē, µ3 [e, h, ē]

]
= µ3

3

[

e, 1, ē,
neutral

(ē, e) , h, ē

]

= µ2
3

[
e, 1, ē, h, ē

]
= µ3

[
e, 1 ∗ h, ē

]
= ϕ

(
1 ∗ h

)
, (3.29)

ϕ (e) = µ3 [e, e, ē] = µ3

[

e,
neutral

(e, ē)

]

= e. (3.30)

It is important to note that not only the binary identity e, but also its first polyadic power e〈1〉 is a fixed point
of the automorphism ϕ, because

ϕ
(

e〈1〉
)

= µ3

[

e, e〈1〉, ē
]

= µ2
3

[

e, e, e,
neutral

(e, ē)

]

= µ3 [e, e, e] = e〈1〉. (3.31)

Moreover, taking into account that in the binary group (see (3.15))

(

e〈1〉
)−1
= µ3

[

e, e〈1〉, e
]

= µ2
3 [e, ē, ē, ē, e] = ē, (3.32)

we get

ϕ2 (
1
)
= µ2

3

[
e, e, 1, ē, ē

]
= µ2

3

[

e, e,
neutral

(e, ē) 1, ē, ē

]

= e〈1〉 ∗ 1 ∗
(

e〈1〉
)−1

. (3.33)

The higher polyadic powers e〈k〉 = µk
3

[

e2k+1
]

of the binary identity e are obviously also fixed points

ϕ
(

e〈k〉
)

= e〈k〉. (3.34)

The elements e〈k〉 form a subgroup H of the binary group 〈G | ∗, e〉, because

e〈k〉 ∗ e〈l〉 = e〈k+l〉, (3.35)

e〈k〉 ∗ e = e ∗ e〈k〉 = e〈k〉. (3.36)
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We can express the even powers of the automorphism ϕ through the polyadic powers e〈k〉 in the following
way

ϕ2k (
1
)
= e〈k〉 ∗ 1 ∗

(

e〈k〉
)−1

. (3.37)

This gives a manifest connection between the Hosszú-Gluskin “chain formula” and the sequence of cosets
(see, [4]) for the particular case n = 3.

Example 3.1. Let us consider the ternary copula associative multiplication [54, 55]

µ3
[

1, h, u
]

=
1(1 − h)u

1(1 − h)u + (1 − 1)h(1− u)
, (3.38)

where 1i ∈ G = [0, 1] and 0/0 = 0 is assumed7). It is associative and cannot be iterated from any binary group.

Obviously, µ3

[

13
]

= 1, and therefore this polyadic system is ℓµ-idempotent (2.17) 1〈ℓµ〉 = 1. The querelement is

1̄ = µ̄1
[
1
]
= 1. Because each element is querable, then

〈
G | µ3, µ̄1

〉
is a ternary group. Take a fixed element e ∈ [0, 1].

We define the binary multiplication as 1 ∗ h = µ3
[
1, e, h

]
and the automorphism

ϕ
(
1
)
= µ3

[
e, 1, e

]
= e2 1 − 1

e2 − 21e + 1
(3.39)

which has the property ϕ2k = id and ϕ2k+1 = ϕ, where k ∈ N. Obviously, in (3.39) 1 can be on any place in the
product µ3

[
e, 1, e

]
= µ3

[
e, e, 1

]
= µ3

[
e, e, 1

]
. Now we can check the Hosszú-Gluskin “chain formula” (3.26) for the

ternary copula

µ3
[

1, h, u
]

=
(((

1 ∗ ϕ (h)
)

∗ u
)

∗ e
)

= µ•3

[

1, e, e2 1 − h

e2 − 2he + 1
, e, (u, e, e)

]

= µ•3

[

1,

(

e, e2 1 − h

e2 − 2he + 1
, e

)

, u

]

= µ3

[

1, ϕ2 (h) , u
]

= µ3
[
1, h, u

]
. (3.40)

The language of polyadic inverses allows us to generalize the Hosszú-Gluskin “chain formula” from
n = 3 (3.26) to arbitrary n in a clear way. The derivation coincides with (3.18) using the multiplication (3.10)

(with substitution ē→ e−1), neutral polyads
(

e−1, e
)

or their powers
((

e−1
)k
, ek

)

, but contains n terms

µn
[
11, . . . , 1n

]
= µ•n





11,

∗

↓

e
−1 , e, 12, . . . , 1n





= µ•n





11,

∗

↓

e
−1 , e, 12, e

−1,

∗

↓

e
−1 , e, e, 13, . . . , 1n





= . . .

= µ•n





11,

∗

↓

e
−1 , e, 12, e

−1,

∗

↓

e
−1 , e, e, 13, . . . ,

∗

↓

e
−1 ,

n−1
︷ ︸︸ ︷

e, . . . , e, 1n,

n−1
︷       ︸︸       ︷

e
−1, . . . , e−1,

∗

↓

e
−1 ,

n
︷ ︸︸ ︷

e, . . . , e





. (3.41)

We observe from (3.41) that the mapping ϕ in the n-ary case is

ϕ
(
1
)
= µn

[

e, 1, e−1
]

, (3.42)

7)In this example all denominators are supposed nonzero.
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and the last product of the binary identities µn [e, . . . , e] is also the first n-ary power e〈1〉 (2.10). It follows
from (3.42) and (3.10), that

ϕn−1 (

1
)

= e〈1〉 ∗ 1 ∗
(

e〈1〉
)−1

. (3.43)

In this way, we obtain the Hosszú-Gluskin “chain formula” for arbitrary n

µn
[

11, . . . , 1n
]

= 11 ∗ ϕ
(

12
)

∗ ϕ2 (

13
)

∗ . . . ∗ ϕn−2 (

1n−1
)

∗ ϕn−1 (

1n
)

∗ e〈1〉 =




∗

n∏

i=1

ϕi−1 (

1i
)




∗ e〈1〉. (3.44)

Thus, we have found the “extended” homotopy maps ψi from (3.3) as

ψi
(
1
)
= ϕi−1 (

1
)
, i = 1, . . . , n, (3.45)

ψn+1
(
1
)
= 1〈1〉, (3.46)

where we put by definition ϕ0 (
1
)
= 1. Using (3.31) and (3.44) we can formulate the Hosszú-Gluskin

theorem in the language of polyadic powers.

Theorem 3.2. On a polyadic group Gn =
〈

G | µn, µ̄1
〉

one can define a binary group G∗2 =
〈

G | µ2 = ∗, e
〉

and its
automorphism ϕ such that the Hosszú-Gluskin “chain formula” (3.44) is valid, where the polyadic powers of the
identity e are fixed points of ϕ (3.34), form a subgroup H of G∗2, and the (n − 1) power of ϕ is a conjugation (3.43)
with respect to H.

The following reverse Hosszú-Gluskin theorem holds.

Theorem 3.3. If in a binary group G∗2 =
〈
G | µ2 = ∗, e

〉
one can define an automorphism ϕ such that

ϕn−1 (
1
)
= b ∗ 1 ∗ b−1, (3.47)

ϕ (b) = b, (3.48)

where b ∈ G is a distinguished element, then the “chain formula”

µn
[

11, . . . , 1n
]

=




∗

n∏

i=1

ϕi−1 (

1i
)




∗ b (3.49)

determines a n-ary group, in which the distinguished element is the first polyadic power of the binary identity

b = e〈1〉. (3.50)

4. “Deformation” of Hosszú-Gluskin Chain Formula

Let us raise the question: can the choice (3.45)-(3.46) of the “extended” homotopy maps (3.3) be gener-
alized? Before answering this question positively we consider some preliminary statements.

First, we note that we keep the general idea of inserting neutral sequences into a polyadic product (see
(3.17) and (3.41)), because this is the only way to obtain “automatic” associativity. Second, the number of
the inserted neutral polyads can be chosen arbitrarily, not only minimally, as in (3.17) and (3.41) (as they are
neutral). Nevertheless, we can show that this arbitrariness is somewhat restricted.

Indeed, let us consider a polyadic group
〈
G | µn, µ̄1

〉
in the particular case n = 3, where for any e0 ∈ G

and natural k the sequence
(

ēk
0
, ek

0

)

is neutral, then we can write

µ3
[
1, h, u

]
= µ•3

[

1, ēk
0, e

k
0, h, ē

lk
0 , e

lk
0 , u, ē

mk
0 , e

mk
0

]

. (4.1)



S. Duplij / Filomat 30:11 (2016), 2985–3005 2999

If we make the change of variables ek
0
= e, then we obtain

µ3
[
1, h, u

]
= µ•3

[

1, ē, e, h, ēl, el, u, ēm, em
]

. (4.2)

Because this should reproduce the formula (3.16), we immediately conclude that ψ1
(
1
)
= id, and the

multiplication is the same as in (3.15), and e is again the identity of the binary group G∗ = 〈G, ∗, e〉.
Moreover, if we put ψ2

(
1
)
= ϕ

(
1
)
, as in the standard case, then we have a first “half” of the mapping ϕ,

that is ϕ
(
1
)
= µ3

[
e, h, something

]
. Now we are in a position to find this “something” and other “extended”

homotopy maps ψi from (3.16), but without the requirement of a minimal number of inserted neutral
polyads, as it was in (3.17). By analogy, we rewrite (4.2) as

µ3
[
1, h, u

]
= µ•3

[

1, ē, (e, h, ēq) , ē, eq+1, u, ēm, em
]

, (4.3)

where we put l = q + 1. So we have found the “something”, and the map ϕ is

ϕq
(
1
)
= µ

ℓϕ(q)
3

[
e, 1, ēq] , (4.4)

where the number of multiplications

ℓϕ
(
q
)
=

q + 1

2
(4.5)

is an integer ℓϕ
(
q
)
= 1, 2, 3 . . ., while q = 1, 3, 5, 7 . . .. The diagram defined ϕq (e.g., for q = 3 and ℓϕ

(
q
)
= 2)

{•} × G × {•}3
µ

(e)
0
×id×

(

µ
(e)
0

)3

✲ G×5
id×2 ×(µ̄1)

3

✲ G×5

G

ǫ
✻

ϕq ✲ G

µ3×µ3

❄
(4.6)

commutes (cf. (3.24)). Then, we can find power m in (4.3)

µ3
[
1, h, u

]
= µ•3

[

1, ē, (e, h, ēq) , ē, (e, u, ēq)q+1 , ē, eq(q+1)+1
]

, (4.7)

and therefore m = q
(
q + 1

)
+ 1. Thus, we have obtained the “q-deformed” maps ψi (cf. (3.19)–(3.22))

ψ1
(
1
)
= ϕ

[[0]]q

q

(
1
)
= ϕ0

q

(
1
)
= 1, (4.8)

ψ2
(
1
)
= ϕq

(
1
)
= ϕ

[[1]]q

q

(
1
)
, (4.9)

ψ3
(
1
)
= ϕ

q+1
q

(
1
)
= ϕ

[[2]]q

q

(
1
)
, (4.10)

ψ4
(
1
)
= µ•3

[

1
q(q+1)+1

]

= µ•3

[

1
[[3]]q

]

, (4.11)

whereϕ is defined by (4.4) and [[k]]q is the q-deformed number (2.43),and we putϕ0
q = id. The corresponding

“q-deformed” chain formula (for n = 3) can be written as (cf. (3.26)–(3.27) for “nondeformed” case)

µ3
[
1, h, u

]
= 1 ∗ ϕ

[[1]]q

q (h) ∗ ϕ
[[2]]q

q (u) ∗ bq, (4.12)

bq = e〈ℓe(q)〉, (4.13)

where the degree of the binary identity polyadic power

ℓe
(
q
)
= q

[[2]]q

2
= ℓϕ

(
q
) (

2ℓϕ
(
q
)
+ 1

)

(4.14)
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is an integer. The corresponding “deformed” chain diagram (e.g., for q = 3)

G×3 × {•}13
id×ϕq×ϕ

4
q×

(

µ(e)
0

)×13

✲ G×16 id×3 ×µ6
3✲ G×4

G × G × G

ǫ
✻

µ3 ✲ G

µ×3
2

❄
(4.15)

commutes (cf. the Hosszú-Gluskin diagram (3.28)). In the “deformed” case the polyadic power e〈ℓe(q)〉 is
not a fixed point of ϕq and satisfies

ϕq

(

e〈ℓe(q)〉
)

= ϕq

(

µ
•
3

[

eq2+q+1
])

= µ•3

[

eq2+2
]

= e〈ℓe(q)〉 ∗ ϕq (e) (4.16)

or

ϕq

(

bq

)

= bq ∗ ϕq (e) . (4.17)

Instead of (3.33) we have

ϕ
q+1
q

(
1
)
∗ e〈ℓe(q)〉 = µ•3

[

eq+1, 1
]

= µ•3

[

eq+2
]

∗ 1 = e〈ℓe(q)〉 ∗ ϕ
q+1
q (e) ∗ 1 (4.18)

or

ϕ
q+1
q

(
1
)
∗ bq = bq ∗ ϕ

q+1
q (e) ∗ 1. (4.19)

The “nondeformed” limit q → 1 of (4.12) gives the Hosszú-Gluskin chain formula (3.26) for n = 3.
Now let us turn to arbitrary n and write the n-ary multiplication using neutral polyads analogously to

(4.3). By the same arguments, as in (4.2), we insert only one neutral polyad
(

e−1, e
)

between the first and

second elements in the multiplication, but in other places we insert powers
((

e−1
)k
, ek

)

(allowed by the chain

properties), and obtain

µn
[
11, . . . , 1n

]
= µ•n

[

11, e
−1, e, 12, . . . , 1n

]

= µ•n

[

11, e
−1,

(

e, 12,
(

e
−1

)q)

, e−1, eq+1, 13, . . . , 1n

]

= . . .

= µ•n





11, e
−1,

(

e, 12,
(

e
−1

)q)

, e−1,





eq+1, 13,

q(q+1)
︷       ︸︸       ︷

e
−1, . . . , e−1





e
−1, eq(q+1)+1, 13, . . .

. . . ,





qn−2+...+q+1

︷ ︸︸ ︷

e, . . . , e , 1n−1,

q(qn−2+...+q+1)
︷       ︸︸       ︷

e
−1, . . . , e−1





, e−1,





qn−1+...+q+1

︷ ︸︸ ︷

e, . . . , e , 1n,

q(qn−1+...+q+1)
︷       ︸︸       ︷

e
−1, . . . , e−1





, e−1,

qn+...+q+1

︷ ︸︸ ︷

e, . . . , e





. (4.20)

So we observe that the binary product is now the same as in the “nondeformed” case (3.10), while the map
ϕ is

ϕq
(

1
)

= µ
ℓϕ(q)
n

[

e, 1,
(

e
−1

)q]

, (4.21)

where the number of multiplications

ℓϕ
(
q
)
=

q (n − 2) + 1

n − 1
(4.22)



S. Duplij / Filomat 30:11 (2016), 2985–3005 3001

is an integer and ℓϕ
(
q
)
→ q, as n → ∞, in the nondeformed case ℓϕ (1) = 1, as in (3.42). Note that the

“deformed” map ϕq is the a-quasi-endomorphism [56] of the binary group G∗2, because from (4.21) we get

ϕq
(
1
)
∗ ϕq (h) = µ•n

[

e, 1,
(

e
−1

)q
, e−1, e, h,

(

e
−1

)q]

= µ•n

[

e, 1, e−1,
(

e, e,
(

e
−1

)q)

, e−1, h,
(

e
−1

)q]

= ϕq
(
1 ∗ a ∗ h

)
, (4.23)

where

a = µ
ℓϕ(q)
n

[

e, e,
(

e
−1

)q]

= ϕq (e) . (4.24)

In general, a quasi-endomorphism can be defined by

ϕq
(
1
)
∗ ϕq (h) = ϕq

(

1 ∗ ϕq (e) ∗ h
)

. (4.25)

The corresponding diagram

G × G
µ2 ✲ G ✛ ϕq

G

G × G

ϕq×ϕq

✻

ǫ✲ G × {•} × G
id×µ(e)

0
×id✲ G × G × G

µ2×µ2

✻
(4.26)

commutes. If q = 1, then ϕq (e) = e, and the distinguished element a turns to the binary identity a = e, such
that the a-quasi-endomorphism ϕq becomes an automorphism of G∗2.

Remark 4.1. The choice (4.21) of the a-quasi-endomorphism ϕq is different from [56], the latter (in our notation)

is ϕk
(

1
)

= µn

[

ak−1, 1, an−k
]

, k = 1, . . . , n − 1, it has only one multiplication and leads to the “nondeformed” chain

formula (3.44) (for semigroup case).

It follows from (4.20), that the “extended” homotopy maps ψi (3.3) are (cf. (4.8)–(4.11))

ψ1
(
1
)
= ϕ

[[0]]q

q

(
1
)
= ϕ0

q

(
1
)
= 1, (4.27)

ψ2
(
1
)
= ϕq

(
1
)
= ϕ

[[1]]q

q

(
1
)
, (4.28)

ψ3
(
1
)
= ϕ

q+1
q

(
1
)
= ϕ

[[2]]q

q

(
1
)
, (4.29)

...

ψn−1
(
1
)
= ϕ

qn−3+...+q+1
q

(
1
)
= ϕ

[[n−2]]q

q

(
1
)
, (4.30)

ψn
(
1
)
= ϕ

qn−2+...+q+1
q

(
1
)
= ϕ

[[n−1]]q

q

(
1
)
, (4.31)

ψn+1
(
1
)
= µ•n

[

1
qn−1+...+q+1

]

= µ•n

[

1
[[n]]q

]

. (4.32)

In terms of the polyadic power (2.10), the last map is

ψn+1
(
1
)
= 1〈ℓe〉, (4.33)

where (cf. (4.22))

ℓe
(
q
)
= q

[[n − 1]]q

n − 1
(4.34)

is an integer. Thus the “q-deformed” n-ary chain formula is (cf. (3.44))

µn
[
11, . . . , 1n

]
= 11 ∗ ϕ

[[1]]q

q

(
12

)
∗ ϕ

[[2]]q

q

(
13

)
∗ . . . ∗ ϕ

[[n−2]]q

q

(
1n−1

)
∗ ϕ

[[n−1]]q

q

(
1n

)
∗ e〈ℓe(q)〉. (4.35)
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In the “nondeformed” limit q → 1 (4.35) reproduces the Hosszú-Gluskin chain formula (3.44). Let us
obtain the “deformed” analogs of the distinguished element relations (3.47)–(3.48) for arbitrary n (the case
n = 3 is in (4.16)–(4.18)). Instead of the fixed point relation (3.48) we now have from (4.21), (4.34) and (4.32)
the quasi-fixed point

ϕq

(

bq

)

= bq ∗ ϕq (e) , (4.36)

where the “deformed” distinguished element bq is (cf. (3.50))

bq = µ
•
n

[

e[[n]]q

]

= e〈ℓe(q)〉. (4.37)

The conjugation relation (3.47) in the “deformed” case becomes the quasi-conjugation

ϕ
[[n−1]]q

q

(
1
)
∗ bq = bq ∗ ϕ

[[n−1]]q

q (e) ∗ 1. (4.38)

This allows us to rewrite the “deformed” chain formula (4.35) as

µn
[
11, . . . , 1n

]
= 11 ∗ ϕ

[[1]]q

q

(
12

)
∗ ϕ

[[2]]q

q

(
13

)
∗ . . . ∗ ϕ

[[n−2]]q

q

(
1n−1

)
∗ bq ∗ ϕ

[[n−1]]q

q (e) ∗ 1n. (4.39)

Using the above proof sketch, we formulate the following “q-deformed” analog of the Hosszú-Gluskin
theorem:

Theorem 4.2. On a polyadic group Gn =
〈

G | µn, µ̄1
〉

one can define a binary group G∗2 =
〈

G | µ2 = ∗, e
〉

and (the
infinite “q-series” of) its automorphism ϕq such that the “deformed” chain formula (4.35) is valid

µn
[
11, . . . , 1n

]
=




∗

n∏

i=1

ϕ[[i−1]]q
(
1i
)




∗ bq, (4.40)

where (the infinite “q-series” of) the “deformed” distinguished element bq (being a polyadic power of the binary identity
(4.37)) is the quasi-fixed point of ϕq (4.36) and satisfies the quasi-conjugation (4.38) in the form

ϕ
[[n−1]]q

q

(
1
)
= bq ∗ ϕ

[[n−1]]q

q (e) ∗ 1 ∗ b−1
q . (4.41)

In the “nondeformed” case q = 1 we obtain the Hosszú-Gluskin chain formula (3.44) and the corre-
sponding Theorem 3.2.

Example 4.3. Let us have a binary group 〈G | (·) , 1〉 and a distinguished element e ∈ G, e , 1, then we can define a
binary group G∗2 = 〈G | (∗) , e〉 by the product

1 ∗ h = 1 · e−1 · h. (4.42)

The quasi-endomorphism

ϕq
(
1
)
= e · 1 · e−q (4.43)

satisfies (4.25) with ϕq (e) = e2−q, and we take

bq = e[[n]]q . (4.44)

Then we can obtain the “q-deformed” chain formula (4.40) (for q = 1 see, e.g., [52]).

We observe that the chain formula is the “q-series” of equivalence relations (4.40), which can be for-
mulated as an invariance. Indeed, let us denote the r.h.s. of (4.40) by Mq

(

11, . . . , 1n
)

, and the l.h.s. as
M0

(
11, . . . , 1n

)
, then the chain formula can be written as some invariance (cf. associativity as an invariance

(2.18)).
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Theorem 4.4. On a polyadic group Gn =
〈
G | µn, µ̄1

〉
we can define a binary group G∗ =

〈
G | µ2 = ∗, e

〉
such that

the following invariance is valid

Mq
(
11, . . . , 1n

)
= invariant, q = 0, 1, . . . , (4.45)

where

Mq
(
11, . . . , 1n

)
=





µn
[
11, . . . , 1n

]
, q = 0,




∗

n∏

i=1

ϕ[[i−1]]q
(
1i
)




∗ bq, q > 0,

(4.46)

and the distinguished element bq ∈ G and the quasi-endomorphism ϕq of G∗2 are defined in (4.37) and (4.21)
respectively.

Example 4.5. Let us consider the ternary q-product used in the nonextensive statistics [26]

µ3
[
1, t, u

]
=

(

1
~ + t~ + u~ − 3

) 1
~ , (4.47)

where ~ = 1 − q0, and 1, t, u ∈ G = R+, 0 < q0 < 1, and also 1~ + t~ + u~ − 3 > 0 (as for other terms inside brackets
with power 1

~
below). In case ~ → 0 the q-product becomes an iterated product in R+ as µ3

[

1, t, u
]

→ 1tu. The
quermap µ̄1 is given by

1̄ =
(

3 − 1~
) 1
~ . (4.48)

The polyadic system Gn =
〈
G | µ3, µ̄1

〉
is a ternary group, because each element is querable. Take a distinguished

element e ∈ G and use (3.15), (4.47) and (4.48) to define the product

1 ∗ t =
(

1
~ − e~ + t~

) 1
~ (4.49)

of the binary group G∗2 =
〈
G | µ2 = (∗) , e

〉
.

1) The Hosszú-Gluskin chain formula (q = 1). The automorphism (3.23) of G∗ is now the identity mapϕ = id.
The first polyadic power of the distinguished element e is

b = e〈1〉 = µ3

[

e3
]

=
(

3e~ − 3
) 1
~ . (4.50)

The chain formula (3.26) can be checked as follows

µ3
[

1, t, u
]

=
(((

1 ∗ t
)

∗ u
)

∗ b
)

=
(((

1
~ − e~ + t~

)

− e~ + u~
)

− e~ + b~
) 1
~

=
(

1
~ − e~ + t~ − e~ + u~ − e~ + 3e~ − 3

) 1
~ =

(

1
~ + t~ + u~ − 3

) 1
~ . (4.51)

2) The “q-deformed” chain formula (for conciseness we consider only the case q = 3). Now the quasi-endomorphism
ϕq (4.4) is not the identity, but is

ϕq=3
(
1
)
=

(

1
~ − 2e~ + 3

) 1
~ . (4.52)

In case q = 3 we need its 4th (= q + 1) power (4.12)

ϕ4
q=3

(
1
)
=

(

1
~ − 8e~ + 12

) 1
~ . (4.53)
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The deformed polyadic power e〈ℓe〉 from (4.12) is (see, also, (4.11))

bq=3 = e〈5〉 = µ5
3

[

e13
]

=
(

13e~ − 18
) 1
~ . (4.54)

Now we check the “q-deformed” chain formula (4.12) as

µ3
[
1, t, u

]
= 1 ∗ ϕq=3 (t) ∗ ϕ4

q=3 (u) ∗ bq=3 =
(((

1 ∗ ϕq=3 (t)
)

∗ ϕ4
q=3 (u)

)

∗ bq=3

)

(4.55)

=
(

1
~ − e~ +

(

t~ − 2e~ + 3
)

− e~ +
(

u~ − 8e~ + 12
)

− e~ +
(

13e~ − 18
)) 1
~ (4.56)

=
(

1
~ + t~ + u~ − 3

) 1
~ . (4.57)

In a similar way, one can check the “q-deformed” chain formula for any allowed q (determined by (4.22) and (4.34)
to obtain an infinite q-series of the chain representation of the same n-ary multiplication.

5. Generalized “Deformed” Version of the Homomorphism Theorem

Let us consider a homomorphism of the binary groups entering into the “deformed” chain formula
(4.40) as Φ∗ : G∗2 → G∗′2 , where G∗′2 = 〈G

′ | ∗′, e′〉. We observe that, because Φ∗ commutes with the binary
multiplication, we need its commutation also with the automorphisms ϕq in each term of (4.40) (which fixes
equality of the “deformation” parameters q = q′) and its homomorphic action on bq. Indeed, if

Φ∗
(

ϕq
(
1
))

= ϕ′q
(
Φ∗

(
1
))
, (5.1)

Φ∗
(

bq

)

= b′q, (5.2)

then we get from (4.40)

Φ∗
(
µn

[
11, . . . , 1n

])
= Φ∗

(
11

)
∗′ Φ∗

(

ϕ
[[1]]q

q

(
12

)
)

∗′ . . . ∗′ Φ∗
(

ϕ
[[n−1]]q

q

(
1n

)
)

∗′ Φ∗
(

bq

)

= Φ∗
(
11

)
∗′ ϕ

′[[1]]q

q

(
Φ∗

(
12

))
∗′ . . . ∗′ ϕ

[[n−1]]q

q

(
Φ∗

(
1n

))
∗′ b′q

= µ′n
[
Φ∗

(
11

)
, . . . ,Φ∗

(
1n

)]
, (5.3)

where 1′ ∗′ h′ = µ′n
[

1′, e′−1, h′
]

, ϕ′q
(

1′
)

= µ
′ ℓϕ(q)
n

[

e′, 1′,
(

e′−1
)q]

, b′q = µ
′•
n

[

e′ [[n]]q

]

. Comparison of (5.3) and

(2.49) leads to

Theorem 5.1. A homomorphism Φ∗ of the binary group G∗2 gives rise to a homomorphism Φ of the corresponding
n-ary group Gn, if Φ∗ satisfies the “deformed” compatibility conditions (5.1)–(5.2).

The “nondeformed” version (q = 1) of this theorem and the case of Φ∗ being an isomorphism was
considered in [23].
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[50] H. Tvermoes, Über eine Verallgemeinerung des Gruppenbegriffs, Math. Scand. 1 (1953), 18–30.
[51] A. Turing, The extensions of a group, Compos. Math. 5 (1938), 357–367.
[52] A. M. Gal’mak and G. N. Vorobiev, On Post-Gluskin-Hosszu theorem, Probl. Fiz. Mat. Tekh. 2011 (2013), 55–60.
[53] N. A. Shchuchkin, An interconnection between n-groups and groups, Chebyshevskiı̆ Sb. 4 (2003), 125–141.
[54] R. Mesiar and P. Sarkoci, Open problems posed at the Tenth international conference on fuzzy set theory and applications (FSTA 2010,
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