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Abstract.
We describe the small inductive dimension ind in the class of Alexandroff spaces by the use of some

standard spaces. Then for ind we suggest decomposition, sum and product theorems in the class. The
sum and product theorems there we prove even for the small transfinite inductive dimension trind. As an
application of that, for each positive integers k,n such that k ≤ n we get a simple description in terms of
even and odd numbers of the family S(k,n) = {S ⊂ Kn : |S| = k + 1 and ind S = k}, where K is the Khalimsky
line.

1. Introduction

Recall ([J]) that a topological space X is called Alexandroff if for each point x ∈ X there is the minimal
open set V(x) containing x. We will keep the notation along the text. It is easy to see that for each point
y ∈ V(x) we have V(y) ⊂ V(x). This implies that if X is a T0-space and x, y ∈ X then V(x) = V(y) iff x = y.
Moreover, if X is a T1-space then V(x) = {x} for each point x ∈ X, i.e. an Alexandroff space X is a T1-space
iff X is discrete. Alexandroff spaces appear by a natural way in studies of topological models of digital
images. They are quotient spaces of the Euclidean spaces Rn defined by special decompositions (see [Kr]).
Some studies of Alexandroff spaces from the general topology point of view can be found in [A] and [D].

We will follow the definition of the small inductive dimension ind suggested in [P]. Let X be a space
and n an integer ≥ 0. Then

(a) ind X = −1 iff X = ∅;
(b) ind X ≤ n iff for each point x ∈ X and each open set V containing x there is an open set W such that

x ∈W ⊂ V and ind BdXW < n;
(c) ind X = ∞ iff ind X ≤ n does not valid for each integer n ≥ 0.
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It is easy to see that if ind X = n for some integer n ≥ 0 then the cardinality of X is greater than n.
Let us also recall ([P]) that for a space X and any subspace Y of X we have ind Y ≤ ind X.

Example 1.1. Let E be the topological space (R, τ), where R is the set of real numbers and τ is the topology on R
defined by the base B = {[x,∞) : x ∈ R}. It is easy to see that E is a connected Alexandroff T0-space such that
ind B = ∞ for each B ∈ B. Moreover, for each integer n ≥ 0 the subspace E(n) = {0, 1, . . . ,n} of E has ind E(n) = n
and any subspace Y of E of cardinality n + 1 is homeomorphic to E(n). Since the spaces E(n),n = 0, 1, . . . , will play
some role in the paper, we will keep the notation along the text.

In [WW1] P. Wiederhold and R. G. Wilson started to study the behavior of the small inductive dimension
ind in the Alexandroff T0-spaces. In particular (cf. [WW1] and [WW2]),

(A) they proved the product theorem (see Remark 2.11) for ind;

(B) they showed that if (X, τ) is an Alexandroff T0-space and≤τ is its specialization partial order (i.e. x ≤τ y
iff x ∈ ClX({y})) then the small inductive dimension of (X, τ) is equal to the partial order dimension of
(X, τ) defined as the supremum of all lengths of chains in (X,≤τ); and

(C) they observed that the quotient spaces of the Euclidean spaces Rn defined by some standard decom-
positions based on the model of Kronheimer ([Kr]) have the dimension ind equal to n.

Let us also note that the coincidence of three kinds of dimension (one of them is ind) on partially ordered
sets (close related to Alexandroff spaces) is established in [EKM].

In this paper we describe the dimension ind in the class of Alexandroff spaces by the use of spaces
E(n),n = 0, 1, . . . (Proposition 2.1). Then for ind we suggest decomposition, sum and product theorems in
the class (Propositions 2.2, 2.3 and 2.5, respectively). Let us note that the product theorem is written as an
equality and thus it is stronger than the theorem from [WW1]. The sum and product theorems there we
prove even for the small transfinite inductive dimension trind (Propositions 4.3 and 4.4).

As an application of these results, for each positive integers k,n such that k ≤ n we get a simple
description in terms of even and odd numbers of the family S(k,n) = {S ⊂ Kn : |S| = k + 1 and ind S = k},
where K is the Khalimsky line (see Remarks 3.2 and 3.7). (Let us note that each element of the family S(k,n)
is homeomorphic to the space E(k).) Observe that for any subspace A of Kn we have

(D) ind A = n iff A contains an element of S(n,n), and
(E) ind A = k < n iff A contains an element of S(k,n) and it contains no element from S(k + 1,n).

Furthermore, we suggest some simple calculations of n-dimensional subsets of cardinality n + 1 in the
closures of the minimal neighborhoods of points in Kn as follows (Remark 3.7). The closure ClKn V(x) in Kn

of the minimal open neighborhood V(x) of a point x = (x1, . . . , xn) with m odd coordinates contains exactly
22n−m

· n! n-dimensional in the sense of ind subsets of cardinality n + 1 (of course, each of theses sets is
homeomorphic to the space E(n)).

We also discuss the behavior of the transfinite extension of ind in Alexandroff spaces (Section 4).

2. Properties of the Small Inductive Dimension in Alexandroff Spaces

The following trivial known facts about Alexandroff spaces will be useful in the paper.

(A) If a space X is Alexandroff and Y ⊂ X, then the subspace Y of X is also Alexandroff and for each point
y ∈ Y the set V(x) ∩ Y is the minimal open neighborhood of y in Y.

(B) If spaces X and Y are Alexandroff, then the topological product X×Y is also Alexandroff and for each
point (x, y) ∈ X × Y the set V(x) × V(y) is the minimal neighborhood of (x, y) in X × Y.

(C) If spaces Xα, α ∈ A, are Alexandroff, then the topological union ⊕α∈AXα is also Alexandroff and for
each α ∈ A and each point x ∈ Xα the set V(x) (defined in the Alexandroff space Xα) is the minimal
open neighborhood of x in the space ⊕α∈AXα.
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Let us also list some simple known facts about the dimension ind behavior in Alexandroff spaces. Let X
be an Alexandroff space and n an integer ≥ 0. Then the following is valid.

(D) ind X ≤ n iff sup{ind BdXV(x) : x ∈ X} ≤ n − 1.
In particular, ind X = 0 iff for every x, y ∈ X we have either V(x) = V(y) or V(x) ∩ V(y) = ∅. Moreover,
if X is a T0-space then ind X = 0 iff X is discrete.

(E) If ind X = n, then there is a point x such that ind BdXV(x) = n − 1 and ind ClXV(x) = n.

Proposition 2.1. Let X be an Alexandroff space. Then ind X ≥ n ≥ 0 iff X contains a subspace which is homeomorphic
to the space E(n).

In particular, if the cardinality of X is equal to n + 1 then ind X = n iff X is homeomorphic to E(n).

Proof: The sufficiency follows from the monotonicity of ind and the fact that ind E(n) = n. For the necessity
apply an induction on n ≥ 0. Let ind X ≥ n = 0. Hence, X contains a point which is homeomorphic to
E(0). Assume that the statement is valid for n < k ≥ 1. Let ind X ≥ k. Note that there is a point x ∈ X
such that ind BdXV(x) ≥ k − 1. By the inductive assumption there are points x0, . . . , xk−1 of BdXV(x) and a
homeomorphism f : Y = {x0, . . . , xk−1} → E(k − 1) such that f (xi) = i for each i ≤ k − 1. It is easy to see that
V(xk−1) ( · · · ( V(x0). Since xk−1 ∈ BdXV(x), there is a point xk ∈ V(x) ∩ V(xk−1). Note that V(xk) ( V(xk−1)
and the mapping 1 : Z = {x0, . . . , xk} → E(k), defined by 1(xi) = i for each i ≤ k, is a homeomorphism. �

Let X be an Alexandroff space and 0 < ind X = n < ∞.
Put F (X) = {Y ⊆ X : there is a homeomorphism fY : E(n)→ Y } and X0 = ∪{V( fY(n)) : Y ∈ F (X)}.

Proposition 2.2. Let X be an Alexandroff space and ind X = n for some integer n > 0. Then

(i) for each Y ∈ F (X) either |V( fY(n))| = 1 or the subspace topology on the set V( fY(n)) is trivial; in particular,
for any Y1,Y2 ∈ F (X) we have either V( fY1 (n)) ∩ V( fY2 (n)) = ∅ or V( fY1 (n)) = V( fY2 (n));

(ii) the set X0 is open in X, ind X0 = 0 and ind (X \ X0) = n − 1; moreover, X0 = ∪{{ fY(n)} : Y ∈ F (X)} and for
each Y ∈ F (X) we have Y ∩ X0 = { fY(n)};

(iii) there are disjoint subsets X0, . . . ,Xn of X such that X = ∪n
j=0X j and for each i ≤ n we have ind Xi = 0 (the set

Xi is discrete in itself, whenever X \ ∪ j<iX j is a T0-space); moreover, Xi ⊇ ∪{{ fY(n − i)} : Y ∈ F (X)} and the
set ∪i

j=0X j is open in X.

Proof: (i): Assume that |V( fY(n))| > 1 and the subspace topology on the set V( fY(n)) is not trivial. So
there is a point z ∈ V( fY(n)) such that V(z) ( V( fY(n)). It is easy to see that the subspace Z = Y ∪ {z} of X is
homeomorphic to the space E(n + 1). We have a contradiction.

(ii): It is easy to see that the set X0 is open in X, ind X0 = 0, X0 = ∪{{ fY(n)} : Y ∈ F (X)}, and ind (X \X0) ≤
n − 1. Consider a Y ∈ F (X). Since ind X0 = 0, we have |Y ∩ X0| = 1 and |Y ∩ (X \ X0)| = n − 1. This implies
that Y ∩ X0 = { fY(n)} and ind (X \ X0) = n − 1.

(iii): Apply (ii). �

Proposition 2.3. Let X be an Alexandroff space and X = X1 ∪ X2, where Xi, i = 1, 2, is closed in X. Then
ind X = max{ind X1, ind X2}.

Proof: Put n = max{ind X1, ind X2}. It is enough to show that if n < ∞ then n ≥ ind X. Assume that
n < ind X. By Proposition 2.1 the space X contains a subspace Y which is homeomorphic to the space
E(n + 1). Note that Y = (Y∩X1)∪ (Y∩X2) and the sets (Y∩X1), (Y∩X2) are closed in Y. Hence at least one
of them is equal to Y. Let (Y ∩ X1) = Y. So ind X1 ≥ n + 1. We have a contradiction. �

Corollary 2.4. Let X be an Alexandroff space and X = ∪k
i=1Xi, where k is a positive integer and for each i ≤ k the set

Xi is closed in X. Then ind X = max{ind Xi : i ≤ k}.

Proposition 2.5. Let X and Y be non-empty Alexandroff spaces. Then we have ind (X × Y) = ind X + ind Y.
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Proof: First, let us show that ind (X × Y) ≤ ind X + ind Y. Put n = ind X + ind Y. Apply induction on n ≥ 0.
Consider a point (x, y) ∈ X × Y and note that

BdX×Y(V(x) × V(y)) = (BdXV(x) × ClYV(y)) ∪ (ClXV(x) × BdYV(y)).

So the case n = 0 is trivial. If n > 0 then by the inductive assumption we have

max{ind (BdXV(x) × ClYV(y)), ind (ClXV(x) × BdYV(y))} ≤ n − 1.

It follows from Proposition 2.3 that ind (BdX×Y(V(x) × V(y))) ≤ n − 1. Hence, ind (X × Y) ≤ n.
Now let us show that ind (X×Y) ≥ ind X+ ind Y.Apply again induction on n ≥ 0. Note that the case n = 0

is trivial. Let n > 0. We consider a point x ∈ X such that ind ClXV(x) = ind X and ind BdXV(x) = ind X − 1,
and a point y ∈ Y such that ind ClYV(y) = ind Y and ind BdYV(y) = ind Y − 1. By the inductive assumption
we have

ind (ClXV(x) × BdYV(y)) = ind (BdXV(x) × ClYV(y)) = n − 1.

This implies that ind (X × Y) ≥ n. �

Remark 2.6. Let us notice that the inequality ind (X×Y) ≤ ind X + ind Y for non-empty Alexandroff T0-spaces X,Y
was announced in [WW1].

Corollary 2.7. Let Xi be an non-empty Alexandroff space for each i ≤ k, where k is some positive integer. Then
ind (
∏k

i=1 Xi) = Σk
i=1ind Xi. In particular, ind (

∏k
i= j E(i j)) = Σk

j=1i j, where i j is an integer ≥ 1 for each j ≤ k.

Corollary 2.8. Let X =
∏m

i=1 E(ni), where ni is a positive integer for each i ≤ m. Then there is a subset Y of X such
that Y is homeomorphic to the space E(

∑m
i=1 ni).

Now, we will consider the finite powers E(1)n,n ≥ 2.
Let n and i be integers such that 1 ≤ i ≤ n. We will use the following notations:

(a) Let πn
i : E(1)n

→ E(1) be the projection of E(1)n onto the i-th coordinate.
(b) Let ιni : E(1)n−1

→ E(1)n be the mapping of E(1)n−1 into E(1)n defined by ιni (x1, . . . , xn−1) = (y1, . . . , yn),
where yi = 0 and the ordered (n − 1)-tuple (x1, . . . , xn−1) coincides with the ordered (n − 1)-tuple
(y1, . . . , ŷi . . . , yn) with removed yi.

Proposition 2.9. We have ind (∪n
i=1(πn

i )−1(0)) = n − 1.
(Note that ∪n

i=1(πn
i )−1(0) = E(1)n

\ {(1, . . . , 1)}.)

Proof: Note that for each i ≤ n the closed subset (πn
i )−1(0) of E(1)n is homeomorphic to E(1)n−1, and hence

ind (πn
i )−1(0) = n − 1. Then one can apply Corollary 2.4. �

Proposition 2.10. Let X be the disjoint union Y ∪ {p} of a closed subset Y with ind Y ≤ n ≥ 0 and a point p. Then
ind X ≤ n + 1.

One can easily show Proposition 2.10 by a standard argument, so we omit the proof.
Let us consider the following subsets of E(1)2:
D(2) = {(0, 1), (1, 0)}, S1 = {(0, 0), (0, 1), (1, 1)}, S2 = {(0, 0), (1, 0), (1, 1)}. S3 = {(1, 1), (0, 1), (1, 0)} and S4 =

{(1, 0), (0, 1), (0, 0)}.
Observe that the subspace D(2) is discrete, the subspaces S1,S2 are homeomorphic to E(2) and ind S3 =

ind S4 = 1. Put S2 = {S1,S2}. Then for every integer n > 2 consider the subspace

D(n) = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}

of E(1)n and define by induction the family

Sn = {ιnm(S) ∪ {(1, . . . , 1)} : S ∈ Sn−1,m ≤ n}

of subsets of E(1)n.
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Remark 2.11. Note that each element S of Sn consists of n + 1 points which can be ordered in a sequence p0, . . . , pn
such that p0 = (0, . . . , 0), pn = (1, . . . , 1) and for each i ≤ n − 1 the point pi+1 obtained from the point pi through
replacing 0 by 1 in one of the coordinates.

Proposition 2.12. For each integer n ≥ 2 we have the following.

(a) The space D(n) is discrete.
(b) |Sn| = n!
(c) Every element S of Sn is homeomorphic to E(n) and so ind S = n.
(d) For every subspace A of E(1)n which contains no element of Sn we have ind A < n.

Proof: (a), (b) and (c) are evident. Let us show (d). Apply induction on n ≥ 2. For n = 2 the statement is
evident. Let n > 2. Put x = (1, . . . , 1) ∈ E(1)n. We notice that x is an isolated point in E(1)n. If x < A, then
ind A ≤ n − 1 by Proposition 2.9. Assume that x ∈ A and A does not contain any S ∈ Sn. For each i ≤ n
put Ai = A ∩ (πn

i )−1(0). Since x ∈ A, if we regard (πn
i )−1(0) as E(1)n−1 by a natural way, Ai does not contain

any member of Sn−1. Hence, by the inductive assumption, we have ind Ai ≤ n − 2. Note that Ai is a closed
subset of A, and hence the union ∪n

i=1Ai = A \ {x} is a closed subset of A. Moreover, by Proposition 2.9, we
have ind (∪n

i=1Ai) ≤ n − 2. Now it follows from Proposition 2.10 that ind A ≤ n − 1. �

Remark 2.13. Since the space E(1)2 contains the discrete subspace D(2) of cardinality 2, there is no embedding of
E(1)2 into E(n) for any integer n ≥ 1.

3. The Small Inductive Dimension in Khalimsky Spaces

In the present section, we shall consider the dimension properties in Khalimsky spaces. Let K be the
Khalimsky line ([K]), i.e. the topological space (Z, τ), whereZ is the set of integers and τ is the topology ofZ
generated by the baseB = {{2k + 1}, {2k−1, 2k, 2k + 1} : k ∈ Z}. Let us recall that K is a connected Alexandroff
T0-space with ind K = 1. Note that for each odd integer n the subset Rn = {n,n + 1} (resp. Ln = {n − 1,n}) of
K can be identified with the space E(1). In addition, we notice some simple facts about K.

[Fact 3.1] For the minimal open neighborhoods of points in the Khalimsky line, we have the following.

(a) For each even integer n the set V(n) (resp. ClKV(n)) is homeomorphic to V(0) = {−1, 0, 1} (resp.
ClKV(0) = {−2,−1, 0, 1, 2}).

(b) For each odd integer n the set V(n) (resp. ClKV(n)) is homeomorphic to V(1) = {1} (resp. ClKV(1) =
{0, 1, 2}).

(c) The set ClKV(0) is the union of its closed subsets {−2,−1, 0} and {0, 1, 2}.

Lemma 3.1. For each subset A of the Khalimsky line K with ind A = 1 there is an odd integer n such that either
Rn ⊂ A or Ln ⊂ A.

Proof: The lemma is a base of induction for the proof of Theorem 3.3. Since ind A = 1 there is a
point x ∈ A such that ind ClAV′(x) = 1, where V′(x) is the minimal open neighborhood of x in A. Since
V′(x) = V(x)∩A, where V(x) is the minimal open neighborhood of x in K, we have ClAV′(x) ⊂ A∩ ClKV(x).
If x is an odd number, then Rx ⊂ A ∩ ClKV(x) or Lx ⊂ A ∩ ClKV(x), because ind A ∩ ClKV(x) = 1. Now, we
suppose that x is an even number. If {x − 1, x + 1} ∩ (A ∩ ClKV(x)) = ∅, then A ∩ ClKV(x) ⊂ {x − 2, x, x + 2}.
This implies that A ∩ ClKV(x) is discrete, and hence ind A ∩ ClKV(x) = 0. This is a contradiction. Hence,
{x−1, x + 1}∩ (A∩ClKV(x)) , ∅, and hence {x−1, x} ⊂ A∩ClKV(x) or {x, x + 1} ⊂ A∩ClKV(x). This completes
the proof. �

Put S(1) = {R2n+1,L2n+1 : n ∈ Z}. Let k be any integer ≥ 2. For each positive integer j ≤ k consider a
subspace Y j of K which is either Rn j or Ln j for some odd integer n j. The product Y1×· · ·×Yk can be identified
with E(1)k and put S(Y1 × · · · × Yk) = Sk. Set S(k) = ∪{S(Y1 × · · · × Yk) : (Y1, . . . ,Yk) ∈ S(1)k

}.
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Remark 3.2. Note that the family S(n),n ≥ 2, consists of subsets P of Kn of cardinality n + 1 which can be defined as
follows. For each P ∈ S(n) there exist a sequence a1, . . . , an of n even integers, a sequence b1, . . . , bn of n odd integers
and a bijection σ : {1, . . . ,n} → {1, . . . ,n}

such that

(a) |ai − bi| = 1 for each i ≤ n,
(b) P = {x1, . . . , xn+1}, where x1 = (a1, . . . , an), xn+1 = (b1, . . . , bn) and for each i ≤ n the point xi+1 is obtained from

the point xi through replacing in the σ(i)-th coordinate the even number aσ(i) by the odd number bσ(i).

Let k be any positive integer with k ≤ n. Put S(k,n) = {P : P ⊂ S, S ∈ S(n) and |P| = k + 1}. We notice that
S(n,n) = S(n). It follows from Proposition 2.12 and Example 1.1 that each P ∈ S(k,n) is homeomorphic to
E(k).

Theorem 3.3. Let A be a subspace of Kn for some positive number n and k be a positive number such that k ≤ n.
Then ind A ≥ k iff A contains an element of the family S(k,n).

Proof: The ”if” part is obvious. Hence we shall show the ”only if” part by the induction on n. For n = 1
the statement follows from Lemma 3.1. Let n ≥ 2 and k ≤ n. Consider a subset A of Kn with ind A ≥ k.
Let us notice that there is a point x = (x1, . . . , xn) ∈ A such that ind ClAV′(x) ≥ k, where V′(x) is the minimal
neighborhood of x in A. Since V′(x) = V(x)∩A, where V(x) is the minimal neighborhood of x in Kn, we have
ClAV′(x) ⊂ A∩ClKn V(x). Recall that V(x) = V(x1)× · · · ×V(xn), where V(xi) is the minimal neighborhood of
xi in K for each i ≤ n. Without loss of generality, we can assume (by the use of Fact 3.1 and Corollary 2.4 if
necessary) that ind (A ∩ ClKn V((1, . . . , 1))) ≥ k. Let us note that

ClKn V((1, . . . , 1)) = (ClKV(1))n = {(1, . . . , 1)} ∪
n⋃

i=1

(pn
i )−1({0, 2}),

where pn
i : (ClKV(1))n

→ ClKV(1) is the projection of (ClKV(1))n onto the i-th coordinate. First, we as-
sume that (1, . . . , 1) < A. Then, by Corollary 2.4, it follows that k ≤ ind (A ∩ ClKn V((1, . . . , 1))) = ind (A ∩
∪

n
i=1((pn

i )−1
{0, 2})) ≤ n− 1. By Corollary 2.4 again, there are i ≤ n and j ∈ {0, 2} such that ind (A∩ (pn

i )−1( j) ≥ k.
Let qn

i : (ClKV(1))n
→ (ClKV(1))n−1 be the projection defined by qn

i (x1, . . . , xi, . . . , xn) = (x1, . . . , x̂i, . . . , xn),
i ≤ n. Then A ∩ (pn

i )−1( j) is homeomorphic to qn
i (A ∩ ((pn

i )−1( j)) ⊂ Kn−1. Since ind qn
i (A ∩ ((pn

i )−1( j)) ≥ k,
by the inductive assumption, there are P′ ∈ S(k,n − 1) and S′ ∈ S(n − 1) such that P′ ⊂ qn

i (A ∩ ((pn
i )−1( j))

and P′ ⊂ S′. Let κn
i : ClKV(1)n−1

→ ClKV(1)n be the mapping of ClKV(1)n−1 into ClKV(1)n defined by
κn

i (y1, . . . , yn−1) = (z1, . . . , zn), where

zk =


yk, if 1 ≤ k ≤ i − 1,

j, if k = i,
yk−1, if i + 1 ≤ k ≤ n − 1.

We put P = κn
i (P′) and S = {(1, . . . , 1)} ∪ κn

i (S′). Then P ⊂ A ∩ (pn
i )−1( j) ⊂ A and P ⊂ S. Furthermore, by the

definition of S(n) and S(k,n), we have S ∈ S(n) and P ∈ S(k,n).
Next, we suppose that (1, . . . , 1) ∈ A. Then, it follows from Proposition 2.10 that ind (A∩(∪n

i=1(pn
i )−1({0, 2}))) ≥

k − 1. Let i, j, pn
i , qn

i and κn
i be defined as in the above. By a similar argument as above, we can have

P′ ∈ S(k−1,n−1) and S′ ∈ S(n−1) such that P′ ⊂ qn
i (A∩((pn

i )−1( j))) and P′ ⊂ S′. We put P = {(1, . . . , 1)}∪κn
i (P′)

and S = {(1, . . . , 1)} ∪ κn
i (S′). Then P ⊂ A and P ⊂ S. Furthermore, by the definition of S(n) and S(k,n), we

have S ∈ S(n) and P ∈ S(k,n). This completes the proof. �

Remark 3.4. Recall (cf. [E]) that a subset A of the Euclidean space Rn is n-dimensional iff A contains a non-empty
open subset of Rn. For an n-dimensional subset B of Kn there is an open set (one can always choose a one-point set,
see Remark 3.2) which is contained in B but for every one-point open subset B (for example, B = {(1, . . . , 1)}) of Kn we
have ind B = 0 , n.
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Since the Euclidean topology is regular the equivalence above can be rewritten as follows: a subset A of the Euclidean
spaceRn is n-dimensional iff A contains the closure of a non-empty open subset ofRn. Let us note that for the one-point
open subset B = {(1, . . . , 1)} of Kn, |ClKn B| = 3n > n + 1. Furthermore, ClKn B contains 2n

· n! different n-dimensional
in the sense of ind subsets of cardinality n+1. More generally, the closure ClKn V(x) of the minimal open neighborhood
V(x) of x = (x1, . . . , xn) ∈ Kn with m odd coordinates contains exactly 2m

·4n−m
·n! = 22n−m

·n! different n-dimensional
in the sense of ind subsets of cardinality n + 1. In fact, for x = (x1, . . . , xn) ∈ Kn let Fn be the family of n-dimensional
subsets of ClKn V(x) of cardinality n + 1. Without loss of generality we can assume that x1 = · · · = xm = 1 and xm+1 =
· · · = xn = 0. Then Fn = ∪{S(Y1 × · · · × Yn) : (Y1, . . . ,Yn) ∈ {{0, 1}, {1, 2}}m × {{−2,−1}, {−1, 0}, {0, 1}, {1, 2}}n−m

},
where S(Y1 × · · · × Yn) is defined above. By Proposition 2.12 (b), we have |Fn| = 2m

· 4n−m
· n!

Remark 3.5. Let C be a class of subsets of the Euclidean space Rn, where n ≥ 1, such that for every set A in Rn we
have ind A = n iff A contains an element of C. Notice that each element E of C has ind E = n. Fix an element E of
C and a point p ∈ E. Let us note that ind (E \ {p}) = n. By the property of the family C there is an element F ∈ C
such that F ⊂ E \ {p} ⊂ E. Put C′ = C \ {E} and note that for every set A in Rn we have ind A = n iff A contains an
element of C′. On the other hand, Theorem 3.3 does not hold if we replace the class S(n) by any its proper subclass.

Denote by K0 (respectively, K1) the subspace of K consisting of even (respectively, odd) integers. It is
clear that K0 and K1 are discrete, and hence ind K0 = ind K1 = 0. Taking into account Remark 3.2 we get the
following.

Corollary 3.6. Let A be a subset of Kn such that either A ∩ (K0)n = ∅ or A ∩ (K1)n = ∅. Then ind A ≤ n − 1.

Remark 3.7. Theorem 3.3 implies that the family S(k,n) precisely consists of all subsets P of Kn with |P| = k + 1 and
ind P = k.

Put Z j = {(x1, . . . , xn) ∈ Kn : |{i ≤ n : xi is an even number}| = j}, 0 ≤ j ≤ n. Note that the sets Z j, 0 ≤ j ≤ n,
are disjoint, Kn = ∪n

i=0Zi. Furthermore, since each Zi contains no elements of S(1,n), it follows from Theorem
3.3 that ind Zi = 0 for each j ≤ n. Hence, we get a decomposition theorem for the Khalimsky spaces Kn into
zero-dimensional (i.e. discrete) subsets.

4. The Small Transfinite Inductive Dimension in Alexandroff Spaces

Let us note that the the small inductive dimension ind can be extended to infinite ordinals. The extension
we will call the small transfinite dimension trind (cf. [E]). Observe that trind is also monotone w.r.t. subsets,
i.e. for any Y ⊆ X we have trind Y ≤ trind X.

It is easy to see that the space E from Example 1.1 has trind E = ∞.
Let X be a topological space and p a point such that p < X. Recall ([M]) that the join p∨X of p and X is the

topological space (Y, τ), where Y = {p} ∪X and τ = {∅,Y} ∪ {{p} ∪A : A is an open subset of X}. Let us notice
that the point p is an open subset of p∨X and the subspace Bdp∨X{p} of p∨X is homeomorphic to the space
X. Moreover, if the space X is Alexandroff then the space p ∨ X is also Alexandroff. Furthermore, the set
{p} (resp. {p} ∪V(x)) is the minimal open subset of p ∨X containing p (resp. x ∈ X, where the set V(x) is the
minimal open subset of X containing x).

Below we will use disjoint copies of the corresponding spaces when it is necessary. For each ordinal
α ≥ 0 choose a point pα and set Y(0) = {p0}. Then define by transfinite induction the space Y(α), α > 0, as
follows.

(a) If α is limit ≥ ω0, then the space Y(α) is the topological union ⊕β<αY(β) of Y(β), β < α;
(b) If α is non-limit, then Y(α) = pα ∨ Y(α − 1).

Let us note that for each positive integer n the space Y(n) is homeomorphic to the space E(n).

Proposition 4.1. For each ordinal α ≥ 0 we have trind Y(α) = α.
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Proof: It is clear that trind Y(α) = α for each 0 ≤ α < ω0. Then apply induction. For limit α ≥ ω0
the equality trind Y(α) = α is evident. Assume that α is not limit and ≥ ω0. So α = (α − 1) + 1 and
Y(α) = pα ∨ Y(α − 1). Note that for each point y ∈ Y(α) we have BdVy ⊆ Y(α − 1). By inductive assumption
and monotonicity of trind we have trind BdVy ≤ trind Y(α − 1) = α − 1. So trind Y(α) ≤ α. However,
BdVp = Y(α − 1) and hence trind BdVy = trind Y(α − 1) = α − 1. This implies that trind Y(α) ≥ α. �

Example 4.2. Let E(1)ωB be the Cartesian product of countably many copies of the space E(1) endowed with the box
topology. Note that E(1)ωB is a connected Alexandroff T0-space with trind E(1)ωB = ∞ containing for each integer
n ≥ 1 a copy of E(1)n as a closed subset. Hence E(1)ωB contains discrete subspaces of any finite cardinality.

Proposition 4.3. Let X be an Alexandroff space and X = X1 ∪ X2, where Xi is closed in X for each i = 1, 2. Then
trind X = max{trind X1, trind X2}.

Proof: Put α = max{indX1, indX2}. Apply induction on α ≥ −1. It is trivial for n = −1. Consider the
case n ≥ 0. Let x ∈ X. First, suppose that x ∈ X \ X2. Then V(x) ⊂ X \ X2 ⊂ X1 and BdXV(x) = BdX1 V(x).
Hence indBdXV(x) < indX1 ≤ α. It is similar when x ∈ X \ X1. Next, we suppose that x ∈ X1 ∩ X2. Then
BdXV(x) = BdX1 (V(x) ∩ X1) ∪ BdX2 (V(x) ∩ X2) and the set V(x) ∩ Xi is the minimal open neighborhood of x
in Xi for each i. Note that indBdXi (V(x) ∩ Xi) < α, i = 1, 2. Hence, by the inductive assumption, we have
indBdXV(x) ≤ max{indBdX1 (V(x) ∩ X1), indBdX2 (V(x) ∩ X2)} < α. �

Recall (cf. [KM]) that every ordinal number α > 0 can be uniquely represented as α = ωξ1
0 ·n1+· · ·+ωξk

0 ·nk,
where ni are positive integers and ξi are ordinals such that ξ1 > · · · > ξk ≥ 0.

Let α, β be ordinal numbers and α = ωξ1
0 · n1 + · · · + ωξk

0 · nk and β = ωξ1
0 ·m1 + · · · + ωξk

0 ·mk, where ni,mi
are non-negative integers and ξi are ordinals such that ξ1 > · · · > ξk ≥ 0.

The ordinal α ⊕ β = ωξ1
0 · (n1 + m1) + · · · + ωξk

0 · (nk + mk) is called the natural sum of α, β or the sum of
ordinals in the sense of Hessenberg.

The following statement is evident.

Proposition 4.4. Let X and Y be non-empty Alexandroff spaces. Then

trind X × Y ≤ trind X ⊕ trind Y.

Remark 4.5. The equality such as in Proposition 2.5 for the small transfinite inductive dimension does not hold. In
fact, let us choose for each non-negative integer i a space Zi which is homeomorphic to the space E(i) such that the
chosen spaces are pairwise disjoint. Consider the topological union Z = ⊕∞i=0Zi of Zi, i = 0, 1, . . . . Note that Z is an
Alexandroff T0-space, and trind Z = ω0. However, trind (Z × E(n)) = ω0 < ω0 + n for each positive integer n.
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