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Abstract. Recurrent events are frequently observed in biomedical studies, and often more than one type
of event is of interest. In this paper, we first propose a general class of accelerated means regression models
for multiple type recurrent event data. We then formulate estimating equations for the model parameters,
and finally examine asymptotic properties of the parameter estimators.

1. Introduction

In many studies, the event of interest can be experienced more than once per subject. Such outcomes have
been termed recurrent event, which are commonly encountered in longitudinal follow-up studies. Medical
examples of recurrent events are multiple infection episodes and tumor recurrences. Other examples of
recurrent events include repeated breakdowns of a certain machinery in reliability testing and repeated
purchases of a certain product in marketing research. Therefore, it is important to study the recurrent
events.

As is well-known, many survival models have been proposed to handle recurrent event, and most of
the methods are based on modeling the mean function. For example, Pepe and Cai [14] presented a semi-
parametric procedure of making inference about the mean function without the Poisson-type assumption.
Lawless and Nadeau [6] proposed a class of marginal means models, and Lin et al. [9] studied the
proportional means and rates models for counting precesses. Lin and Ying [10] suggested a marginal
model for repeated outcomes. Sun, Sun and Liu [16], Liang, Lu and Ying [7] considered some joint models
for repeated outcomes and recurrent events via latent variables. Moreover, a class of models which has been
developed in many contexts is a time-transformation model, in which all subjects have similar trajectories
and the effect of covariates is to alter the time scale of the trajectories. For example, Lin et al.[11] developed
an accelerated failure time model to formulate the effects of covariates on the mean function of the counting
process for recurrent events. Ghosh [4] presented an accelerated rates model for counting processes in
which the effect of covariates is to transform the time scale for a baseline rate function. Sun and Su [17]
proposed the accelerated means regression models for recurrent event data. Liu, Mu and Sun [13] presented
a class of additive-accelerated means regression models for recurrent event data. Han et al. [5] developed
an additive-multiplicative mean model for recurrent event with an informative.
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Often, because subjects’ health is assessed in several ways, more than one type of recurrent event may
be of interest. For example, in a study of infection following bone marrow transplantation, it is interesting
to study different types of recurrent infection simultaneously. Note that several papers have been devoted
to the analysis of data involving multiple type recurrent event. Cai and Schaubel [1] presented the marginal
means/rates models for multiple type recurrent event data. Dai et al.[2, 3] discussed the general additive-
multiplicative rates models and a flexible additive multiplicative rates models for multiple type recurrent
event data. In this paper, we formulate a class of semi-parametric means regression model for analysing the
multiple type recurrent event data, which includes the proportional means model, the accelerated failure
time model and the accelerated rate model as special case.

The reminder of the paper is organized as follows. In Section 2, we present a semi-parametric formulation
of the general model and propose an estimating procedure for the model parameters. In Section 3, we study
the asymptotic properties of the proposed estimators. Finally, we conclude this paper in Section 4.

2. Model and Estimation Procedure

Suppose that a total of n subjects are observed over time. There are K different types of events of interest,
each potentially recurrent and subject to right censoring. Let N∗ik be the number of events of type k that
occur over the interval [0, t] for subject i, and Zik be a p × 1 covariates vector. Let Cik express the follow-up
or censoring time. In practice, censoring times for different event types are usually the same for a subject,
i.e., Cik = C, although this might not always be the case. Assume that Cik is independent of N∗ik conditional
on Zik. Define Nik(t) = N∗ik(t ∧ Cik) and Yik(t) = I(Cik ≥ t), where a ∧ b = min(a, b), and I(·) is an indicator
function. The observable data consist of {Nik(·),Yik(·),Zik}(i = 1, 2, · · · ,n, k = 1, 2, · · · ,K).

The proposed accelerated means regression model for multiple type recurrent event data takes the form

E{N∗ik(t)|Zik} = µ0k(teβ
′

10Zik )1(β′20Zik), (1)

where β10 and β20 are p-vector of parameters of interest, and µ0k(t) is an unspecified baseline mean function
for type k of subject i. The link function 1(·) is pre-specified and twice continuously differentiable with
1(·) ≥ 0.

Note that, model (1) is a proportional means model when β10 = 0 and 1(x) = ex. The choice of 1(x) = 1
yields the accelerated failure time model for counting processes. When 1(x) = ex and β20 = −β10, model (1)
reduces to an accelerated rates regression model for multiple type recurrent events.

Let Ñik(t; β1) = Nik(te−β
′

1Zik ) and Yik(t; β1) = I(Cik ≥ te−β
′

1Zik ). Define:

Mik(t; β) = Ñik(t; β1) −
∫ t

0
Yik(s; β1)1(β′2Zik)dµ0k(s),

where β = (β′1, β
′

2)′. Under model (1), Mik(t; β0) are zero-mean stochastic processes where β0 = (β′10, β
′

20)′. For
a given β, thus a reasonable estimator for µ0k(t) is the solution to

n∑
i=1

[Ñik(t; β1) −
∫ t

0
Yik(s; β1)1(β′2Zik)dµ0k(s)] = 0, 0 ≤ t ≤ τ

where τ is a prespecified constant such that P(Cik ≥ τe−β
′

10Zik ) > 0.
Denote this estimator by µ̂0k(t; β), which is written as:

µ̂0k(t; β) =

n∑
i=1

∫ t

0

dÑik(s; β1)∑n
i=1 Yik(s; β1)1(β′2Zik)

. (2)

To estimate β0, using the generalized estimating equation methods [8] and replacing µ0k(t) with µ̂0k(t; β),
we consider two estimating functions for β10 and β20 as follows:

U1(β) =

n∑
i=1

K∑
k=1

∫ τ

0
{Zik − Z̄k(t; β)}dÑik(t; β1), (3)
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and

U2(β) =

n∑
i=1

K∑
k=1

∫ τ

0
{W(t,Zik; β) − W̄k(t, β)}dÑik(t; β1), (4)

where W(t,Zik; β) is a known p-dimensional weight function of t,Zik, β, not in the span of the functions 1
and Zik,

Z̄k(t; β) =

n∑
i=1

Yik(t; β1)1(β′2Zik)Zik

n∑
i=1

Yik(t; β1)1(β′2Zik)
,

and

W̄k(t; β) =

n∑
i=1

Yik(t; β1)1(β′2Zik)W(t,Zik; β)

n∑
i=1

Yik(t; β1)1(β′2Zik)
.

Let Z∗ik(t; β) = (Z′ik,W(t,Zik; β)′)′, Z̄∗k(t; β) = (Z̄k(t; β)′, W̄k(t; β)′)′, and U(β) = (U1(β)′,U2(β)′)′. Then, (3) and
(4) can be rewritten as:

U(β) =

n∑
i=1

K∑
k=1

∫ τ

0
{Z∗ik(t; β) − Z̄∗k(t; β)}dÑik(t; β1).

Since U(β) is a discrete function of β1, we define the estimator β̂ = (β̂′1, β̂
′

2) as a zero-crossing of U(β) or as
a minimiser of ‖ U(β) ‖ [4, 11] where ‖ν‖ = (ν′ν)1/2 for a vector ν. Many methods are proposed to solve this
equation, e.g. direct grid search, the bisection method or the technique of simulated annealing (SA). When
there are only a small number of covariates, direct grid search, and the bisection method are recommended.
For the high-dimensional covariate vectors, the SA method, which is a generic probabilistic meta-algorithm
for the global optimum problem [12], may be more efficient.

When β̂ = (β̂′1, β̂
′

2)′ is available, the baseline mean function µ0k(t) is estimated by the Nelson-Aalen-type
estimator µ̂0k(t) ≡ µ̂0k(t; β̂) which is defined in (2).

3. Asymptotic Properties

In order to establish asymptotic properties of the estimators, suppose that the following regularity
conditions hold:

(C1) (N∗ik,Cik,Zik) are independent and identically distributed for i = 1, 2, · · · ,n.
(C2) P(Yik(τ; β10) = 1) > 0.
(C3) Nik(t), Zik and W(t,Zik; β0) are bounded on [0, τ] for i = 1, 2, · · · ,n, k = 1, 2, · · · ,K.
(C4) 1(·) is twice continuously differentiable with 1(·) ≥ 0, and 1(β′20Zik) is locally bounded away.
(C5) Cikeβ

′

10Zik has a bounded density and µ0k(t) has a bounded second derivative.
(C6) A is nonsingular and is defined as follows:

A =

(
A11 A12
A21 A22

)
,

A11 =

K∑
k=1

∫ τ

0
[s(2)

zk (t) − z̄k(t)⊗2s(0)
k (t)]d{λ0k(t)t},

A12 =

K∑
k=1

∫ τ

0
[s(3)

zk (t) − z̄k(t)⊗2s(1)
k (t)′]d{µ0k(t)},

(1)
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A21 =

K∑
k=1

∫ τ

0
[s(2)

wk(t) − w̄k(t)z̄(t)s(0)
k (t)′]d{λ0k(t)t},

A22 =

K∑
k=1

∫ τ

0
[s(3)

wk(t) − w̄k(t)s(1)
k (t)′]d{µ0k(t)},

where λ0k(t) = du0k(t)/dt, ν⊗2 = νν′, s(0)
k (t), s(1)

k (t), s(2)
zk (t), s(3)

zk (t), s(2)
wk(t), s(3)

wk(t), z̄k(t) and w̄k(t) are respectively the
limits of S(0)

k (t; β0), S(1)
k (t; β0), S(2)

zk (t; β0), S(3)
zk (t; β0), S(2)

wk(t; β0), S(3)
wk(t; β0), Z̄k(t; β0) and W̄k(t; β0), 1̇ = d1(t)/dt and

S(0)(t; β) = n−1
n∑

i=1

Yik(t; β1)1(β′2Zik),

S(1)(t; β) = n−1
n∑

i=1

Yik(t; β1)1̇(β′2Zik)Zik,

S(2)
z (t; β) = n−1

n∑
i=1

Yik(t; β1)1(β′2Zik)Z⊗2
ik ,

S(3)
z (t; β) = n−1

n∑
i=1

Yik(t; β1)1̇(β′2Zik)Z⊗2
ik ,

S(2)
w (t; β) = n−1

n∑
i=1

Yik(t; β1)1(β′2Zik)W(t,Zi; β)Z′ik,

S(3)
w (t; β) = n−1

n∑
i=1

Yik(t; β1)1̇(β′2Zik)W(t,Zi; β)Z′ik.

To establish the asymptotic properties of β̂, we first need to establish the asymptotic properties of U(β0).
Theorem 1 Under conditions (C1-C4), n−1/2U(β0) is asymptotically normal with mean zero and covari-

ance matrix Σ = E{did′i }where di =
∑K

k=1

∫ τ
0 [Z∗ik(t; β0) − z̄∗k(t)]dMik(t; β0) and z̄∗k(t) = (z̄k(t)′, w̄k(t)′)′.

Proof A simple algebraic manipulation yields

U(β0) =

n∑
i=1

K∑
k=1

∫ τ

0
[Z∗ik(t; β0) − Z̄∗(t; β0)]dMik(t; β0).

Using arguments similar to those in the proof of Theorem 1 of Lin et al. [11], it is easy to obtain that

n−1/2U(β0) = n−1/2
n∑

i=1

di + op(1).

Utilizing the multivariate central limit theorem, n−1/2U(β0) converges in distribution to a normal random
variable with mean zero and variance matrix Σ = E{did′i }. This completes the proof. �

LetU(β) be the limit of n−1U(β), andN be a compact neighborhood of β0 on which ‖U(β)‖ is minimized
to obtain β̂.

Theorem 2 Assume that conditions (C1-C6) hold, and U(β) , 0 for all β ∈ N but β , β0. Then β̂ is
strongly consistent and n1/2(β̂ − β0) converges in distribution to zero-mean normal with covariance matrix
A−1Σ(A−1)′.

Proof Clearly, U(β) = (U1(β)′,U2(β)′)′. Firstly, we establish the asymptotic properties of U1(β).

U1(β) −U1(β0) = [U1(β1, β2) −U1(β1, β20)] + [U1(β1, β20) −U1(β10, β20)]. (5)
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For the first term on the right-hand side of (5), using the Taylor series expansion, we can get that

U1(β1, β2) −U1(β1, β20) = U̇1(β1, β20)(β2 − β20) + op(n‖β2 − β20‖),

where U̇1(β1, β2) is the derivative of U1(β1, β2) with respect to β2.
It is easy to check that

U̇1(β1, β20) = −n
K∑

k=1

∫ τ

0
[S(3)

z (t; β1, β20) − Z̄(t; β1, β20)S(1)(t; β1, β20)]dµ0k(t).

For any sequence εn → 0 and ‖β − β0‖ ≤ εn, by uniform strong law of large numbers [15], we have

U1(β1, β2) −U1(β1, β20) = −nA12(β2 − β20) + op(n‖β2 − β20‖).

For the second term of (5), we have

U1(β1, β20) −U1(β10, β20)

=

n∑
i=1

K∑
k=1

∫ τ

0
[Zik(t; β1, β20) − Z̄(t; β1, β20)]dMik(t; β1, β20)

−

n∑
i=1

K∑
k=1

∫ τ

0
[Zik(t; β10, β20) − Z̄(t; β10, β20)]dMik(t; β10, β20)

=

{ n∑
i=1

K∑
k=1

∫ τ

0
[Zik(t; β1, β20) − Z̄(t; β1, β20)][dÑik(t; β1) − Yik(t; β1)1(β′20Zik)dµ0k(te(β10−β1)′Zik )]

−

n∑
i=1

K∑
k=1

∫ τ

0
[Zik(t; β10, β20) − Z̄(t; β10, β20)][dÑik(t; β10) − Yik(t; β10)1(β′20Zik)dµ0k(t)]

}

+

n∑
i=1

K∑
k=1

∫ τ

0
[Zik(t; β1, β20) − Z̄(t; β1, β20)]Yik(t; β1)1(β′20Zik)d[µ0k(te(β10−β1)′Zik ) − µ0k(t)]. (6)

Applying the technique of Ying [18] and Lin et al. [11], we can find that the first term on the right-hand
side of (6) is of order op(n1/2).

Moreover, it follows from a Taylor series expansion that

µ0k(te(β10−β1)′Zik ) − µ0k(t) = {λ0k(t) + op(1)}t(β10 − β1)′Zik.

Then, the second term on the right-hand side of (6) is rewritten as:

n
K∑

k=1

∫ τ

0
[S(2)

z (t; β1, β20) − Z̄(t; β1, β20)⊗2S(0)(t; β1, β2)]d{tλ0k(t)}(β10 − β1) + op(n‖β10 − β1‖)

= −nA11(β1 − β10) + op(n‖β1 − β10‖).

Therefore, for any sequence εn → 0, it follows that

sup
‖β − β0‖ ≤ εn

‖U1(β) −U1(β0) + n(A11,A12)(β − β0)‖
n1/2 + n‖β − β0‖

= op(1)

almost surely.
Similarly, for any sequence εn → 0, we have

sup
‖β − β0‖ ≤ εn

‖U2(β) −U2(β0) + n(A21,A22)(β − β0)‖
n1/2 + n‖β − β0‖

= op(1)
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almost surely.
For any sequence εn → 0, using the last two equalities, we find that

sup
‖β − β0‖ ≤ εn

‖U(β) −U(β0) + nA(β − β0)‖
n1/2 + n‖β − β0‖

= op(1) (7)

almost surely.
Furthermore, it is easy to show thatU(β0) = 0. Note that n−1U(β)→U(β) uniformly in N andU(β0) , 0

for all β , β0.
Following the argument used in Theorem 2 of Lin et al. [11], we can get that β̂ is strongly consistent

under the regularity conditions (C1)-(C5).
In addition, by the definition of β̂ and condition (C6), it follows from (7) that n1/2(β̂−β0) is asymptotically

normal with mean zero and covariance matrix A−1 ∑
(A−1)′. This completes the proof. �

Theorem 3 Under conditions (C1-C6), n1/2(µ̂0k(t) − µ0k(t)) converges weakly to a zero-mean Gaussian
process with covariance function Γkl(s, t; β0) = E{Ψ1k(s; β0)Ψ1l(t; β0)}, where

Ψik(t; β0) =

∫ t

0

dMik(u; β0)
s(0)(u)

− hk(t)′A−1
∫ t

0
[Z∗ik(u; β0) − z̄∗k(u)]dMik(u; β0),

h1k(t) =

∫ t

0
z̄∗k(u)d[λ0k(u)u], h2k(t) =

∫ t

0

s(1)(u)
s(0)(u)

dµ0k(u),

and h(t) = (h1k(t)′, h2k(t)′)′.
Proof Note that

µ̂0k(t) − µ0k(t) = [µ̂0k(t; β̂1, β̂2) − µ̂0k(t; β̂1, β20)] + [µ̂0k(t; β̂1, β20) − µ̂0k(t; β10, β20)]

+[µ̂0k(t; β10, β20) − µ0k(t; β10, β20)]. (8)

Using a Taylor expansion and the uniform strong law of large number [15], we obtain that

µ̂0k(t; β̂1, β̂2) − µ̂0k(t; β̂1, β20) = −h2k(t)′(β̂2 − β20) + op(n−1/2)

uniformly in t ∈ [0, τ].
For the second term on the right-hand side of (8), we have

µ̂0k(t; β̂1, β20) − µ̂0k(t; β10, β20) = −h1k(t)′(β̂1 − β10) + op(n−1/2)

uniformly in t ∈ [0, τ].
It is easy to verify that

µ̂0k(t; β10, β20) − µ0k(t; β10, β20) = n−1
n∑

i=1

∫ t

0

dMik(µ; β0)
s(0)(µ)

+ op(n−1/2)

uniformly in t ∈ [0, τ].
Thus, it follows from Theorem 1 that

n1/2(µ̂0k(t) − µ0k(t)) = n−1/2
n∑

i=1

Ψik(t; β0) + op(1)

uniformly in t ∈ [0, τ].
Since Ψik(t; β0) are independent zero-mean random variables for each t, the multivariate central limit

theorem implies that n−1/2
n∑

i=1
Ψik(t; β0) converges in finite dimensional distributions to a zero-mean Gaussian

process.

Using the modern empirical theory as in Lin et al. [9], we can show that n−1/2
n∑

i=1
Ψik(t; β0) is tight. Thus,

n1/2(µ̂0k(t) − µ0k(t)) converges weakly to a zero-mean Gaussian process with covariance function Γkl(s, t; β0).
This completes the proof. �
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4. Conclusion

In this paper, the multiple type recurrent event data is considered. We first propose a general class
of accelerated means regression models which are flexible and include some commonly used models as
special cases for such a data. We then formulate estimating equations for the model parameters. Finally,
we examine asymptotic properties of the parameter estimators.
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