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Inverse Spectral Problems for Energy-Dependent
Sturm-Liouville Equations with δ−Interaction
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Abstract. In this study, inverse spectral problems for a energy-dependent Sturm-Liouville equations with
δ−interaction on a finite interval are considered. Some useful integral representations for the solutions
of the considered equation have been derived and using these, properties of the spectral characteristics
of the boundary value problem are investigated. The uniqueness theorems for the inverse problems of
reconstruction of the boundary value problem from the Weyl function, from the spectral data, and from
two spectra are proved.

1. Introduction

We consider inverse problems for the boundary value problem (BVP) L = L(q (x) , h,H, α, a) generated
by the differential equation

−y
′′

+ q(x)y = λ2y, x ∈ (0, a) ∪ (a, π), (1)

with the boundary conditions

U(y) := y
′

(0) − hy(0) = 0, V(y) := y
′

(π) + Hy(π) = 0 (2)

and conditions at the point x = a,

I(y) :=


y(a + 0) = y(a − 0) = y(a),

y′ (a + 0) − y′ (a − 0) = 2αλy(a),
(3)

where q(x) is a nonnegative real valued function in L2(0, π); h > 0, H > 0 and α are real numbers; and λ is
spectral parameter.

Notice that, we can understand problem (1)+(3) as one of the treatments of the equation

y
′′

+ (λ2
− 2λp(x) − q(x))y = 0, x ∈ (0, π), (4)

when p(x) = αδ(x − a), where δ(x) is the Dirac function (see [2]).
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Sturm-Liouville spectral problems with potentials depending on the spectral parameter arise in various
models of quantum and classical mechanics.For instance to this form can be reduced the corresponding
evolution equations (such as the Klein-Gordon equation [15],[22]) that are used to model interactions
between colliding relativistic spinless particles. Thenλ2 is related to the energy of the system this explaining
the term ”energy-dependent” in the (4).

Spectral problems of differential operators are studied in two main branches, namely, direct and inverse
spectral problems. Direct problems of spectral analysis consist in investigating the spectral properties
of an operator. On the other hand, inverse problems aim at recovering operators from their spectral
characteristics. One takes for the main spectral data, for instance, one, two, or more spectra, the spectral
function, the spectrum, and the normalized constans, the Weyl function.Direct and inverse problems for the
classical Sturm-Liouville operators have been extensively studied ( see [9], [16], [18], [23] and the references
therein).

The presence of discontinuities generates important qualitative modifications in the investigation of
the BVPs. Direct and inverse problems for discontinuous Sturm-Liouville (special case p(x) ≡ 0) BVPs in
various formulations have been studied in [3], [8], [13], [24].

Non-linear dependence of equation (4) on the spectral parameter λ should be regarded as a spectral
problem for a quadratic operator pencil. The problem with p(x) ∈W1

2(0, 1) and q(x) ∈ L2(0, 1) and with Robin
boundary conditions was discussed in [10]. Such problems for separated and nonseparated boundary
conditions were considered ( see [1], [4], [11], [14], [21], [25], [26] and the extensive references lists therein).
In this aspect, the spectral problem for integral representation on the solutions of the equation (4) with
Drichlet boundary conditions recently has been investigated in [19], the inverse scattering problem for
equation (4), with eigenparameter-dependent boundary condition on the line solved in [20].

In this paper, we give techniques to obtain the integral represantations for solutions and also study the
properties of solutions. The ortogonality of the eigenfunctions, realness and simplicity of the eigenvalues
are investigated. Uniqueness theorems for the solution of the inverse problem with Weyl function, spectral
data and two spectra are proved.

2. Integral Representations for Solutions of the Sturm-Liouville Equation with the δ−Interaction

In this section, an integral representation of the solution y(x, λ) of equation (1), satisfying the initial
conditions

y(0, λ) = 1, y
′

(0, λ) = iλ (5)

and conditions (3) are constructed and also the properties of solutions are studied.
Using the standard successive approximation methods ( see [9] ), the following theorem is proved.

Theorem 2.1. If q(x) ∈ L2[−b, b] (0 < b < π), then the solution y(x, λ) has the form

y(x, λ) = y0(x, λ) +

∫ x

−x
A(x, t)eiλtdt, (6)

where

y0(x, λ) =


eiλx, x < a

(1 − iα)eiλx + iαeiλ(2a−x), x > a

and the function A(x, t) satisfies the inequality∫ x

−x
|A(x, t)| dt ≤ ecσ(x)

− 1 (7)

with σ(x) =
∫ x

0 (x − t)
∣∣∣q(t)

∣∣∣ dt, c = 1 + 2 |α| .
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Proof. It is clear that if we consider the equation (4) separately on the intervals (0, a) and (a, π) ,we can write
the solutions

e0(x, λ) = eiλx +

∫ x

−x
K0(x, t)eiλtdt, 0 ≤ x < a, (8)

ea(x, λ) = eiλ(x−a) +

∫ x

−x+2a
Ka(x, t)eiλ(t−a)dt, x > a, (9)

respectively, where Ka(x, t) satisfies the integral equation (see [18, p.10])

Ka(x, t) =
1
2

∫ x+t
2

a
q(s)ds +

∫ x+t
2

a
du

∫ x−t
2

0
q(u + v)Ka(u + v,u − v)dv. (10)

Because ea(x,−λ) is also the solution of (4) on the interval a < x ≤ π, the solution y(x, λ) has the following
form:

y(x, λ) =


e0(x, λ), 0 ≤ x < a,

c1ea(x, λ) + c2ea(x,−λ), a < x ≤ π
(11)

where the constants c1, c2 are defined from the conditions (3). Hence, we have

y(x, λ) =


e0(x, λ), 0 ≤ x < a,

e0(a, λ) (1−2iα)ea(x,λ)+(1+2iα)ea(x,−λ)
2

+ 1
2iλ e′0(a, λ) [ea(x, λ) − ea(x,−λ)] , a < x ≤ π.

(12)

Using (8) and (9), after some simple computations, we find the following expression for y(x, λ) (a < x ≤ π) :

y(x, λ) = e(x, λ) +

∫ x

−x+2a
Ka(x, t)e(t, λ)dt, (13)

where

e(x, λ) = e0(a, λ) [cosλ(x − a) + 2α sinλ(x − a)] + e
′

0(a, λ)
sinλ(x − a)

λ
(14)

= (1 − iα)eiλx + iαeiλ(2a−x) +

∫ x

−x
A1(x, t)eiλtdt,

A1(x, t) = ς +
1
2

K0(a, t + 2a − x) +
1
2

K0(a, t + x) +
1
2

∫ t+x

t+2a−x
H(s)ds, |t| < x,

ς =


1
2

∫ a

0 q(t)dt + 1
4

∫ a

−a q
(

a+t
2

)
dt, 2a − x < t < x

0, −x < t < 2a − x,

H(t) =
1
2

∫ a

a−t
2

K0(s, t − a + s)q(s)ds +
1
2

∫ a

a+t
2

K0(s, t + a − s)q(s)ds. (15)

Here, we suppose that K0(a, t) ≡ 0, H(t) ≡ 0, for |t| > a and A1(x, t) = 0 for |t| > x. Now using the expression
(14) in (13), we have for a < x ≤ π (|t| < x)

y(x, λ) = (1 − iα)eiλx + iαeiλ(2a−x) +

∫ x

−x
A2(x, t)eiλtdt, (16)
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where

A2(x, t) = A1(x, t) + Ka(x, t) + Ka(x, 2a − t) +

∫ x

−x+2a
Ka(x, s)A1(s, t)ds. (17)

From (8) and (15), we can write the formula (6) for the solution y(x, λ), where

A(x, t) =


K0(x, t), if 0 ≤ x ≤ a, |t| < x,

A2(x, t), if a < x ≤ π, |t| < x.
(18)

It is easy to obtain from (10) that∫ x

2a−x
|Ka(x, t)| dt ≤ ecaσa(x)

− 1, (19)

where ca > 0 is a constant and σa(x) =
∫ x

a (x−s)
∣∣∣q(s)

∣∣∣ ds.Using (19), from (15) and (17), we have the estimation∫ x

−x
|A2(x, t)| dt ≤ ecσ(x)

− 1 (20)

for c > 0. Hence, from (18) and (20), we arrive at (7).

Theorem 2.2. The kernel A(x, t) of the representation (6) are continuous at
t , 2a − x, x , a belonging to the space L1(−x, x) for every x ∈ [0, π] and the following relations hold:

(i) d
dx A(x, x) =


1
2 q(x), 0 ≤ x ≤ a(

1
2 −

iα
2

)
q(x), a < x ≤ π ,

(ii) d
dx

{
A(x, t)|t=2a−x+0

t=2a−x−0

}
= iα

2 q(x)

(iii) A(x,−x) = 0

(21)

Proof. It follows from (17) and (18) that

A(x, t) = A0(x, t) +
1
2

∫ x

0
q(s)

∫ t+(x−s)

t−(x−s)
A(s, ξ)dξds (22)

+
iα
2

∫ a

0
q(s)

[∫ t+2a−x−s

t−x+s
A(s, ξ)dξ +

∫ t+x+s−2a

t−x+s
A(s, ξ)dξ

]
ds,

where

A0(x, t) =


1
2

∫ x+t
2

0 q(s)ds + iα
2

∫ x+t
2

t+2a−x
2

q(s)ds, for − x < t < 2a − x,

(
1
2 −

iα
2

) ∫ x+t
2

0 q(s)ds + iα
2

∫ x+2a−t
2

t+2a−x
2

q(s)ds, for 2a − x < t < x.

(23)

It is known that (see [18]) for x < a it holds

A(x, t) = A0(x, t) +
1
2

∫ x

0
q(s)

∫ t+x−s

t−x+s
K(s, ξ)dξds, (24)
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where

A0(x, t) =
1
2

∫ x+t
2

0
q(s)ds. (25)

Using the mathematical induction method, show that for each fixed x ∈ (0, a)∪ (a, π) the system of equations
(22), (24) has the solution A(x, .) ∈ L1(−x, x). Relations (i)-(iii) follows immediately from (22)-(25)

Let s(x, λ), c(x, λ) be solutions of equation (4) with initial conditions

s(0, λ) = c′(0, λ) = 0, s′(0, λ) = c(0, λ) = 1

and ϕ(x, λ), ψ(x, λ) be solutions of (4) under initial conditions at π :

ϕ(π, λ) = ψ′(π, λ) = 1, ϕ′(π, λ) = ψ(π, λ) = 0.

Because y(x, λ) and y(x,−λ) are two linearly independent solutions of (4), then

s(x, λ) =
y(x, λ) − y(x,−λ)

2iλ
and c(x, λ) =

y(x, λ) + y(x,−λ)
2

.

Using integral representation (6), we easily have(
s(x, λ)
c(x, λ)

)
=

(
s0(x, λ)
c0(x, λ)

)
+

∫ x

0

(
G−(x, t) sinλt

λ
G+(x, t) cosλt

)
dt, (26)

where

(
s0(x, λ)
c0(x, λ)

)
=



(
sinλx
λ

cosλx

)
, x < a

(1 − iα)
(

sinλx
λ

cosλx

)
+ iα

(
sinλ(2a−x)

λ
cosλ(2a − x)

)
, x > a,

(27)

G±(x, t) = A(x, t) ± A(x,−t).

Using (26) and (27), to obtain(
ψ(x, λ)
ϕ(x, λ)

)
=

(
ψ0(x, λ)
ϕ0(x, λ)

)
+

∫ π−x

0

(
Ψ(x, t) sinλt

λ
Φ(x, t) cosλt

)
dt, (28)

where

(
ψ0(x, λ)
ϕ0(x, λ)

)
=


(1 − iα)

(
−

sinλ(π−x)
λ

cosλ(π − x)

)
+ iα

(
sinλ(2a−x−π)

λ
cosλ(2a − x − π)

)
, x < a

(
−

sinλ(π−x)
λ

cosλ(π − x)

)
, x > a,

(29)

and Ψ(x, t), Φ(x, t) ∈ L1(0, π − x) for each x ∈ [0, π] .
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3. Properties of the Spectral Characteristics of the Energy-Dependent Sturm-Liouville Equation with
δ−Interaction

In the section, properties of eigenvalues eigenfunctions and norming constants of problem L are inves-
tigated.

Let y(x) and z(x) be continuously differentiable functions on (0, a) and (a, π). Denote < y, z >:= yz′ − y′z.
If y(x) and z(x) satisfy the matching conditions (3), then

< y, z >x=a−0=< y, z >x=a−0, (30)

i.e. the function < y, z > is continuous on (0, π).
Let w(x, λ), χ(x, λ) be solutions of (1) under the conditions

w(0, λ) = χ(π, λ) = 1,
w′(0, λ) = h, χ′(π, λ) = −H,

and under the matching conditions (3).
Denote 4(λ) :=< w(x, λ), χ(x, λ) > . By virtue of (30) and the Ostrogradskii-Liouville theorem (see [6]),

4(λ) does not depend on x. The function 4(λ) is called the characteristic function of L. Clearly,

4(λ) = −V(w) = U(χ). (31)

Obviously, the function 4(λ) is entre in λ and it has at most a countable set of zeros {λn} .

Lemma 3.1. The eigenvalues
{
λ2

n

}
n≥0

of the BVP L coincide with zeros of the characteristic function. The functions
w(x, λn) and χ(x, λn) are eigenfunctions, and

χ(x, λn) = βnw(x, λn), βn , 0. (32)

Denote

γn =

∫ π

0
w2(x, λn)dx −

α
λn

w2(a, λn). (33)

The set
{
λn, γn

}
n≥0 is called the spectral data of L.

Lemma 3.2. The equality

.
4(λn) = 2λnβnγn

holds. Here
.
4(λn) = d

dλ4(λ).

Lemma 3.3. Eigenfunctions y1(x, λn) and y2(x, λm) corresponding to different eigenvalues λn and λm of the problem
L are orthogonal in the sense of the equality

(λn + λm)
∫ π

0
y1(x, λn)y2(x, λm)dx − 2αy1(a, λn)y2(a, λm) = 0.

We omit the proofs of Lemmas 3.1-3.3 since they are similar to those for the classical Sturm-Liouville
operators (see [17]).

Lemma 3.4. The eigenvalues of BVP L are real, nonzero and simple.
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Proof. Suppose that λ is an eigenvalue of BVP L and that y(x, λ) is a corresponding eigenfunction such that∫ π
0

∣∣∣y(x, λ)
∣∣∣2 dx = 1. Multiplying both sides of (1) by y(x, λ) and integrate the result with respect to x from 0

to π :

−

∫ π

0
y′′(x, λ)y(x, λ) dx +

∫ π

0
q(x)

∣∣∣y(x, λ)
∣∣∣2 dx = λ2

∫ π

0

∣∣∣y(x, λ)
∣∣∣2 dx. (34)

Using the formula of integration by parts and the conditions (2) and (3), we obtain∫ π

0
y′′(x, λ)y(x, λ) dx = −h

∣∣∣y(0, λ)
∣∣∣2 −H

∣∣∣y(π, λ)
∣∣∣2 − 2αλ

∣∣∣y(a, λ)
∣∣∣2 − ∫ π

0

∣∣∣y′(x, λ)
∣∣∣2 dx.

It follows from here and (34) that

λ2 + B(λ)λ + C(λ) = 0, (35)

where

B(λ) = −2α
∣∣∣y(a, λ)

∣∣∣2 ,
C(λ) = −h

∣∣∣y(0, λ)
∣∣∣2 −H

∣∣∣y(π, λ)
∣∣∣2 − ∫ π

0
q(x)

∣∣∣y(x, λ)
∣∣∣2 dx −

∫ π

0

∣∣∣y′(x, λ)
∣∣∣2 dx.

Thus, the eigenvalue λ of the BVP L is a root of the quadratic equation (35). Therefore, B2(λ) − 4C(λ) > 0.
Consequently, the equation (35) has only real roots.

Let us show that λ0 is a simple eigenvalue. Assume that this is not true. Suppose that y1(x) and
y2(x) are linearly independent eigenfunctions corresponding to the eigenvalue λ0. Then for a given value
of λ0, each solution y0(x) of (4) will be given as linear combination of solutions y1(x) and y2(x). Moreover it
will satisfy boundary conditions (2) and conditions (3) at the point x = a. However, it is impossible.

Now, consider the solution w(x, λ). Because w(x, λ) = c(x, λ) + hs(x, λ) by the virtue of (26), (27) from
Theorem 2.1, we immediately have

w(x, λ) = cosλx +

(
h +

1
2

∫ x

0
q(t)dt

)
sinλx
λ

+ o
( 1
λ

exp (|τ| x)
)
, x < a, (36)

w(x, λ) =
√

α2 + 1 sin (λx + σ) − α sinλ(2a − x)

−

√

α2 + 1
cos (λx + σ)

λ

(
h +

1
2

∫ x

0
q(t)dt

)
+α

cosλ(2a − x)
λ

(
h +

∫ a

0
q(t)dt −

1
2

∫ x

0
q(t)dt

)
+ o

( 1
λ

exp (|τ| x)
)
, x > a, (37)

w′(x, λ) = −λ sinλx +

(
h +

1
2

∫ x

0
q(t)dt

)
cosλx + o

(
exp (|τ| x)

)
, x < a, (38)

w′(x, λ) = λ
(√
α2 + 1 cos (λx + σ) + α cosλ(2a − x)

)
+
√

α2 + 1 sin (λx + σ)
(
h +

1
2

∫ x

0
q(t)dt

)
+α sinλ(2a − x)

(
h +

∫ a

0
q(t)dt −

1
2

∫ x

0
q(t)dt

)
+ o

(
exp (|τ| x)

)
, x > a, (39)

where τ = Imλ and tan σ = α−1.
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It follows from (31), (37) and (39) that

(40)

∆(λ) = −λ
(√
α2 + 1 cos (λπ + σ) + α cosλ(2a − π)

−w1 sin (λπ + σ) − w2 sinλ(2a − π) + o
(
exp (|τ|π)

))
where

w1 =
√

α2 + 1
(
H + h +

1
2

∫ π

0
q(t)dt

)
,w2 = α

(
−H + h +

∫ a

0
q(t)dt −

1
2

∫ π

0
q(t)dt

)
. (41)

Let ∆0(λ) = −λ
(√
α2 + 1 cos (λπ + σ) + α cosλ(2a − π)

)
and

{
λ0

n

}
are zeros of ∆0(λ). Using (40), by the well-

known methods (see, for example, [5]) one can obtain the following properties of the characteristic function
∆(λ) of the BVP L :

1) For |λ| → ∞, ∆(λ) = O
(
|λ| exp (|τ|π)

)
.

2) Denote Gδ :=
{
λ :

∣∣∣λ − λ0
n

∣∣∣ ≥ δ} . Then exist Cδ > 0 such that

|∆(λ)| ≥ Cδ |λ| exp (|τ|π) for all λ ∈ Gδ (δ > 0). (42)

3) For sufficiently large values of n, one has

|∆(λ) − ∆0(λ)| <
Cδ
2
|λ| exp (|τ|π) , λ ∈ Γn =

{
λ : |λ| =

∣∣∣λ0
n

∣∣∣ +
1
2

inf
n,m

∣∣∣λ0
n − λ

0
m

∣∣∣} . (43)

Lemma 3.5. If one denotes by λ1, λ2, ... the positive eigenvalues arranged in increasing order and by λ−1, λ−2, ... the
negative eigenvalues arranged in decreasing order, then eigenvalues of the BVP L have the asymptotic behavior

λn = λ0
n +

Θn

λ0
n

+
kn

λ0
n
, |n| → ∞ (44)

where kn ∈ l2 and Θn is a bounded sequence.

Proof. According to (42) and (43), if n is a sufficiently large and λ ∈ Γn, we have |∆0(λ)| > |∆(λ) − ∆0(λ)| .
Applying Rouche’s theorem [7, page 125], we conclude that for sufficiently large n inside the contour Γn
the functions ∆0(λ) and ∆(λ) have the same number of zeros counting their multiplicities. That is, there
are exactly (n + 1) zeros λ0, λ1, ..., λn in Γn. Analogously, by using Rouches’s theorem one can prove that for
sufficiently large vales of n, the function ∆(λ) has a unique zero inside circle

∣∣∣λn − λ0
n

∣∣∣ < δ. Since δ > 0 is
arbitrary, it follows that λn = λ0

n + εn, where limn→∞ εn = 0. Further according to ∆(λn) = 0, we have

∆0(λ0
n + εn) +

∫ π

0
V(K+(x, t))x=π cos

(
λ0

n + εn

)
tdt +

∫ π

0
V(K−(x, t))x=π

sin
(
λ0

n + εn

)
t

λ0
n + εn

dt = 0. (45)

On the other hand, since

∆0(λ0
n + εn) =

.
∆

(
λ0

n

)
εn + o(εn), n→∞. (46)

Further, substituting (46) into (45) after certain transformations, we have

εn =
1

2
.
∆

(
λ0

n

)
λ0

n

[
w1 sin

(
λ0

nπ + σ
)

+ w2 sinλ0
n(2a − π)

]
+

kn

λ0
n
,

where

Θn =
1

2
.
∆

(
λ0

n

) [
w1 sin

(
λ0

nπ + σ
)

+ w2 sinλ0
n(2a − π)

]
is a bounded sequence. Here w1 and w2 are defined by (41). The proof is completed.
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Lemma 3.6. Normalizing numbers γn of the problem L are positive and the formula

γn =
a
2

+
(
α2 +

1
2

+ α
√

α2 + 1 cos
(
2λ0

na + σ
))

(π − a) +
Θn1

λ0
n

+
kn1

λ0
n
, (47)

holds, where

Θn1 =
1
4

(
1 + α2

)
sin 2λ0

na −
α
2

cos 2λ0
na +

α2 + 1
4

(sin 2
(
λ0

nπ + σ
)
− sin 2

(
λ0

na + σ
)
)

−
α2

4
sin 2λ0

n (2a − π) + α
√

α2 + 1
[(

2h +

∫ a

0
q(t)dt

)
sin

(
2λ0

na + σ
)

−
1
2

sin
(
2λ0

n (π − a) + σ
)]
, kn1 ∈ l2.

Proof. The formula (47) can be easily obtained from the (33), by using (36), (37) and (44).

4. Inverse Problems

In this section, we study three inverse problems of recovering L from its spectral characteristics, namely,
(i) from the Weyl function,
(ii) from the so-called spectral data,
(iii) from two spectra.

For each class of inverse problems we prove the corresponding uniqueness theorems and show connec-
tion between the different spectral characteristics.

4.1. The Inverse Problem from the Weyl Function
Let Φ (x, λ) be the solution of (4) under the conditions U(Φ) = 1 and V(Φ) = 0.We set M(λ) := Φ (0, λ) .The

functions Φ (x, λ) and M(λ) are called the Weyl solution and the Weyl function for the BVP L, respectively.The
notion of the Weyl function introduced here is a generalization of the Weyl function for the classical Sturm-
Liouville operators (see [9],[17]). Clearly,

Φ (x, λ) =
χ (x, λ)
∆(λ)

= s (x, λ) + M(λ)w (x, λ) , (48)

M(λ) =
χ (0, λ)
∆(λ)

, (49)

where χ (x, λ) is a solution of (4) satisfying the conditions U(χ) = 0, χ(π, λ) = 0 and s (x, λ) is defined from
the equality

χ (x, λ) = ∆(λ)s (x, λ) + χ (0, λ) w (x, λ) . (50)

Note that, by the virtue of equalities < w (x, λ) , s (x, λ) >≡ 1 and (48), one has

< Φ (x, λ) ,w (x, λ) >≡ 1, < w (x, λ) , χ (x, λ) >≡ ∆(λ) for x , a. (51)

Inverse Problem 1

Given the Weyl function M(λ), construct q(x), h, H, α and a.
Let us prove the uniqueness theorem for the solution of the Inverse Problem 1. For this purpose we

agree that together with L we consider a BVP
∼

L of the same form but with different coefficients
∼

q(x),
∼

h,
∼

H,
∼

α

and
∼

a. Everywhere below if a certain symbol e denotes an object related to L, then the corresponding symbol
∼

e with tilde denotes the analogous object related to
∼

L.
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Theorem 4.1. If M(λ) =
∼

M(λ), then L =
∼

L. Thus, the specification of the Weyl function M(λ) uniquely determines
L.

Proof. Let us define the matrix P(x, λ) =
[
P jk(x, λ)

]
j,k=1,2

by the formula

P(x, λ)


∼

w(x, λ)
∼

Φ (x, λ)

∼

w′(x, λ)
∼

Φ′ (x, λ)

 =

 w(x, λ) Φ (x, λ)

w′(x, λ) Φ′ (x, λ)

 . (52)

Using (51) and (52) we calculate for j = 1, 2 :

(53)

P j1(x, λ) = w( j−1)(x, λ)
∼

Φ′ (x, λ) −Φ( j−1) (x, λ)
∼

w′(x, λ),

P j2(x, λ) = Φ( j−1) (x, λ)
∼

w′(x, λ) − w( j−1)(x, λ)
∼

Φ (x, λ) .

Then we have

(54)

w (x, λ) = P11(x, λ)
∼

w(x, λ) + P12(x, λ)
∼

w′(x, λ),

Φ (x, λ) = P11(x, λ)
∼

Φ (x, λ) + P12(x, λ)
∼

Φ′ (x, λ) .

According to (48) and∣∣∣Φ(v) (x, λ)
∣∣∣ ≤ Cδ |λ|v−1 exp(− |τ| x), λ ∈ Gδ, v = 0, 1, (55)

for each fixed x, the functions P jk(x, λ) are meromorphic in λ with poles at points λn and
∼

λn. Denote

G◦δ = Gδ ∩
∼

Gδ . By virtue of (53), (55) and

w(v) (x, λ) = O
(
|λ|v exp(|τ| x)

)
, λ ∈ G◦δ ,

we get

|P11(x, λ) − 1| ≤ Cδ |λ|−1 , |P12(x, λ)| ≤ Cδ |λ|−1 , λ ∈ G◦δ . (56)

It follows from (48) and (53) that if M(λ) ≡
∼

M(λ), then for each fixed x the functions P1k(x, λ) are entire in λ.
Together with (56) this yields P12(x, λ) ≡ 0, P12(x, λ) ≡ A(x). Now using (54), we obtain

w(x, λ) ≡ A(x)
∼

w(x, λ), Φ (x, λ) ≡ A(x)
∼

Φ(x, λ). (57)

Therefore, for |λ| → ∞, argλ ∈ [ε, π − ε] (ε > 0), we have

w(x, λ) =
b
2

exp (i (−λx + σ))
(
1 + O

( 1
λ

))
,

where b = 1 for x < a and b = iα − 1 for x > a. Similarly, one can calculate

Φ (x, λ) = (ibλ)−1 exp (i (λx − σ))
(
1 + O

( 1
λ

))
.

Together with (51) and (55) this gives α =
∼

α, A(x) ≡ 1, that is w(x, λ) ≡
∼

w(x, λ),Φ (x, λ) =
∼

Φ(x, λ) for all x and

λ. Consequently, L ≡
∼

L.
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4.2. The Inverse Problem from the Spectral Data
Let {λn}n=0,±1,±2,... and

{
γn

}
n=0,±1,±2,... be the eigenvalues and norming constants of L, respectively.We con-

sider the following inverse problem.

Inverse Problem 2

Given the spectral data
{
λn, γn

}
n=0,±1,±2,..., construct q(x), h, H, α and a.

Let us prove a uniqueness theorem for the solution of Inverse Problem 2.

Theorem 4.2. If λn =
∼

λn, γn =
∼

γn, n = 0,±1,±2, ... then L =
∼

L. Thus, the specification of the spectral data{
λn, γn

}
n=0,±1,±2,... uniquely determines the operator.

Proof. It follows from (49) that the Weyl function M(λ) is meromorphic with simple poles at points λ2
n.Using

(49), (32) and equality
.
∆ (λn) = 2λnβnγn, we have

Res
λ=λn

M(λ) =
χ (0, λ)
.
∆(λn)

=
βn
.
∆(λn)

=
1

2λnγn
. (58)

Since the Weyl function M(λ) is regular for λ ∈ Γn, applying the Rouche theorem [7, page 112], we conclude
that

M(λ) =
1

2πi

∫
Γn

M(µ)
µ − λ

dµ, λ ∈ intFn,

where the contour Γn is assumed to have the counterclockwise circuit.
Taking (42) and (49) into account, we arrive at |M(λ)| ≤ Cδ |λ|−1 , λ ∈ Gδ. Hence, by the residue theorem,

we have

M(λ) =

∞∑
n=−∞

1
2λnγn (λ − λn)

. (59)

Under the hypothesis of the theorem we get, in view of (59), that M(λ) =
∼

M(λ), and consequently by

Theorem 4.1, L =
∼

L.

Remark 4.3. By the virtue of (59), the specification of the Weyl function M(λ) is equivalent to the specification of
the spectral data

{
λn, γn

}
n≥0 , that is, the Inverse Problem 1 is equivalent to the Inverse Problem 2.

4.3. The Inverse Problem from Two Spectra
Let {λn}n=0,±1,±2,... and

{
µn

}
n=0,±1,±2,...be the eigenvalues of the problem L. We consider the following in-

verse problem.

Inverse Problem 3

Given two spectra
{
λn, µn

}
n=0,±1,±2,... , construct q(x), h, H, α and a.

Let us prove a uniqueness theorem for the solution of Inverse Problem 3.

Theorem 4.4. If λn =
∼

λn, µn =
∼

µn, n = 0,±1,±2, ... then L =
∼

L. Thus, the specification of two spectra{
λn, µn

}
n=0,±1,±2,... uniquely determines the operator.

Proof. It is obvious that characteristic functions ∆(λ) and χ(0, λ) are uniquely determined by the sequences

{λn}
2 and

{
µn

}2 (n = 0,±1,±2, ..), respectively. Ifλn =
∼

λn, µn =
∼

µn, n = 0,±1,±2, ..., then ∆(λ) ≡
∼

∆(λ), χ(0, λ) =
∼

χ(0, λ). Together with (49) this yields M(λ) =
∼

M(λ). By Theorem 4.1 we get L =
∼

L.

Remark 4.5. It follows from Theorems 4.1 and 4.4 that the specification of Weyl function M(λ) is equivalent to the
specification of two spectra

{
λn, µn

}
n=0,±1,±2,... , that is, the Inverse Problem 1 is equivalent to the Inverse Problem 3.
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