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Abstract. The harmonic index H (G) of a graph G is defined as the sum of the weights ﬁ of all edges
uv of G, where d,, denotes the degree of a vertex u in G. In this paper, we determine (i) the trees of order
n and m pendant vertices with the second smallest harmonic index, (ii) the trees of order n and diameter r
with the smallest and the second smallest harmonic indices, and (iii) the trees of order n with the second,
the third and the fourth smallest harmonic index, respectively.

1. Introduction

In this work, we consider the harmonic index. For a simple graph (or a molecular graph) G = (V, E), the
harmonic index H (G) is defined in [7] as H (G) = }.,ek() ﬁ, where d,, denotes the degree of a vertex u in
G.

For a graph G and u € V(G), we denote N(u) the set of all neighbors of u in G and by 1(G) the number of
vertices of G. We denote respectively by S, and P, the star and the path with # vertices. By P,,,,, we denote
the graph obtained from S,.1 and P,, by identifying the center of S,.1 with a vertex of degree 1 of P,,. By
Sy,m, we denote the graph obtained from S,.,» and 5,41 by identifying a vertex of degree 1 of 5,4, with the
center of 5,41. We denote by D(G) the diameter of G, which is defined as D(G) = max {d(u,v) : u,v € V(G)}
where d(u, v) denotes the distance between the vertices # and v in G. We denote by 7 (n, 7) the set of all
trees T with n vertices and D(T) = r.

In [8], the authors considered the relation between the harmonic index and the eigenvalues of graphs.
Zhong in [17] presented the minimum and maximum values of harmonic index on simple connected graphs
and trees, and characterized the corresponding extremal graphs. Deng et al. in [2] considered the relation
relating the harmonic index H(G) and the chromatic number x(G) and proved that x(G) < 2H(G) by using
the effect of removal of a minimum degree vertex on the harmonic index. It strengthens a result relating the
Randi¢ index and the chromatic number conjectured by the system AutoGraphiX and proved by Hansen et
al. in[9]. Deng et al. [15] gave a best possible lower bound for the harmonic index of a graph (a triangle-free
graph, respectively) with minimum degree at least two and characterize the extremal graphs. Deng et al.
[3] considered the harmonic index H(G) and the radius r(G) and strengthened some results relating the
Randi¢ index and the radius in [1] [13] [16]. Deng et al. [4] obtained the following result on the tree of order
n with m pendant vertices and with the smallest harmonic index.
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Theorem 1.1. [4] Let T be a tree of order n > 3, with m (1 < m < n — 1) pendant vertices. Then

2(m—1)Jr 2 +2(rz—m—2)+g

>
H(T) = m+1 m+2 4 3

with equality if and only if T is the comet Ty, where Ty, = Pyt n-m+1.

Other related results see [5, 6, 11, 12, 14, 18, 19]. In [10], Li and Zhao determined the trees of order n
with m pendant vertices and the second smallest Randi¢ index, the trees of order n with diameter r and
the first and the second smallest Randi¢ indices, and the trees of order n with, respectively, the second, the
third and the fourth smallest Randi¢ index. Here, we determine all trees of order n with m pendant vertices
and the second smallest harmonic index, all trees of order n with diameter r and the first and the second
smallest harmonic indices, and the trees of order n with, respectively, the second, the third and the fourth
smallest harmonic index.

2. Main Results

In this section, we first give some basic lemmas, and then determine (i) the trees of order n with m
pendant vertices and the second smallest harmonic index, (ii) the trees of order n with diameter r and the
the smallest and the second smallest harmonic indices, and (iii) the trees of order n with, respectively, the
second, the third and the fourth smallest harmonic index.

Lemma 2.1. Let T be a tree with a vertex u such that dr (1) = k. Suppose that Nt (u) = {1,2,3,--- ,kyandv ¢ V (T).
Then
1

HT+uw) = HD =307 - Zie;u) (k+ 1 +dr )1k +dr ()]

Proof. Suppose that Q = {ui:i € Ny (u)} and Q = ¥, cg(r)

2 2
H(T) = Z)dT(x)+dT(y):Q+ Y k+dr ()

2
0 Ta )" Then we have

xy€eE(T ieNT(u)
and
H(T + uv) = Z 2
xyeE(T+uv) dT+uv (X) + dT+uv (]/)
2 2
=0+ ~ +
ie%;u)k+1 +dr (i) k+2
2 2 2
H(T+uo) ~H(T) = 1= +,Z [k+1+dT(i) Tk+dr ()

i€NT(u)

2 1
= M‘le 1+ dr O]k +dr ()]

ieNT(u)

O
Let u be a vertex of T with dr(u) = k. One can see that there is a vertex w € Nt (1) such that dr (w) > 2
except if u is the center of a star. So, we have

1 L _—2(k-1) 2

-2 k+1+dr@)]k+dr()] = k+1)(k+2) (k+2)(k+3) M

ieN- T(ll)

Denote Qy, », and Py, n, n, be the two graphs shown in Figure 1 and Figure 2, where G is a connected
graph. Specially, Py-1,n-m+1 = Pu-1,n-m+1,0 = Pm-1,n-m,1-
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Figure 1: Graph Qy, u,

ny

ns

Figure 2: Graph Py, y, ny

Lemma 2.2. Let ny > n3 + 2. Then H(Py, nyn,) < H(Puy=1,10,154+1)-
Proof. If n, > 3, then

H(P;11—1,n2,n3+1) - H(Pnl,nz,n3)
_2(m-1) N 2 2 2(n3z + 1) 21y 2 2 2n3

n+1 n+2 ns +4 ns+3 _1’[1+2_1’l1+3_1’13+3_1’l3+2
2(ny — n3 — 1)(84 + 42n1 + 612 + 40n3 + 13n1n3 + n3ns + 5n3 + nynl)
B (1’[1 + 1)(1’[1 + 2)(7’11 + 3)(1’13 + 2)(1’[3 + 3)(1’[3 + 4)

If n, = 2, then

H(Pnrl,nz,n3+1) - H(Pnl,nzm)

_ 2(n1 — 1) N 2 N 2m3+1)  2m 2 _ 2n3
n+1 n +nz+2 ns+3 n+2 nm+ng+2 nz+2

_ 4(ny —nz — 1)(n1 + n3 +4)

© (ny + 1)(nq + 2)(n3 + 2)(n3 + 3)

Since n1 > nz + 2, H(Pnl,nz,m) < H(Pnl—l,nz,n3+1)-

2957

Lemma 2.3. Let ny > ny > 2 and G be a tree. If Qy, n, has n vertices and m pendant vertices, then H(Qu, n,) =

H (Pm—Z,nfm,Z)

Proof. By induction on m. Clearly, m > ny +np > 4. Whenm =4, Qu, », = P2y-4p. So, the lemma is true
for m = 4 and all n > m + 2. Suppose that m > 5 and the lemma holds for every Qs s, of order n with
m — 1 pendant vertices, where s; > s, > 2. Now, let Qy, », have n vertices and m pendant vertices, where

ny > np > 2. We distinguish the following cases:
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Casel.m, =2. LetT = Qn 1. By Lemma 2.1, we have

2 2
CR+1+1)2+1) Q+1+dp ()2 +dy (v2))

H(Qm,nz) = H(T’) +

NI— N[

/ 1 2
H =H(T - ==
@un) =H(T) 3~ 5~ Grar @ arar @)
and
1 1 1
H(mez,nfm,Z) = H(Pm—Z,nferl) + E - 8 - 1_0
Note that T" has n — 1 vertices and m — 1 pendant vertices. From Theorem 1.1, we have that H (T) >
H (Py-24-m+1) and the equality holds if and only if T = P,_2,-ms1. So, we have that H(Qu n,) >
H (Py—2n-m2) and the equality holds if and only if Qy, u, = Pr—21-m,2-
Case 2. n, > 3.
Let T' = Qu n,-1. By Lemma 2.1, we have
, 2 2(ny - 1) 2
H =H(T - — 2
@ua) =H(T )+ s = G G 1D~ G 17 dy @) (a7 @) @
2 2(m—-3 2
H(mez,nfm,Z) = H(Pm73,n7m,2) + — = ( ) (3)

m m(m—l)_m(m+1)

Since T = Qu,n,-1 and T  has m — 1 pendant vertices, by the induction hypothesis, H (Py-3 n-m2) < H (T)

Note that 1y < m —ny < m —3 and Qy, », is not a star. Thus, we have H(Qy, 4,) > H (Pp-2,1-m2) from (2) and

3). O
Let v1v203 - - - v be a path Py and Ty, be a graph shown in Figure 3, where k > 5 and m > 1.

1 2 m
W X
01 U2 0; Uk-1

Figure 3: Graph Ty,

Lemma24. Ifr>4and n>r+ 3, then H(Py—y-1,-12) = H (Tys1,0n-r-1)-
Proof. By the definition of harmonic index, we have

2(n—r—1)+r—4 2

H(Pyp-r-1,-12) = n—r+1 2 n—r+2

L7
5
and

2(n—r—1)+ 4 +r—4 4
n—r+2 n—r+3 2 3

H(Tr+1,v3,nfr—1) =
Let x = n —r. Obviously, x is an integer and x > 3. So, we get that

H (Pnfr—l,rfl,Z) -H (Tr+1,v3,n—rfl) = (P (X) ’ (4)
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where
(2(x=1) r—4 2 7 2(x—-1) 4 r—4 4
W3 YT tre 5) ( x+2 x+3 2 '3
_ (x=3)(x* +9x + 38)
©15(x + 1)(x + 2)(x + 3)
And ¢ (x) =0 for x =3 and ¢ (x) > 0 for x > 4. So, H (Py—r-1,-1,2) = H (Tr+1,05,n-r-1)- O

Let 7 (n, r) be the set of trees with n vertices and diameter r.

Lemma 2.5. If T € 7 (n,4) —{Pp-4,4}, then H(T) > % + -4+ % and the equality holds if and only if T = Ts g, n-s.

Proof. By induction on n. Whenn =6, T = T(5,v3,1n — 5). So, the lemma is true for n = 6.

Suppose that the lemma is true for n — 1, where n > 7. Clearly, T has at most n — 3 pendant vertices if
T €T (n,4) — {Pn-44}. We have the following cases:

Case 1. There is a path ujusuzusus in T such that d (1) > 3 and d (u4) > 3. By Lemma 2.3 and Lemma
24, H(T) 2 H(Py-532) 2 H(T5,0,1-5)-

Case 2. For each path ujuyuzusus in T, we must have d (up) = 2 or d (us) = 2. Recalling that the diameter
D (T) = 4, one can see that T must be the graph U (11, f) shown in Figure 4, where k > 0,1 > 1,¢ > 2 and
n +2t+k=n.

Figure 4: Graph Uy(ny,t)

By Lemma 2.1, we have that

) 2 2(n—-06) 4
H (T5,05,n-5) = H (T5,05,n-6) + n-2 (n—-2)(n-3) ) (n=1)(n~2)
2 n-6__2
:H(TS,vg,n—6)+ n_z[l_ n-—3 - n_l]
2(n +3)

= H(TS,vs,nfé) + ( ®)

n—1)(n-2)(n-3)

Subcase 2.1. k > 1 in Uy (19, t).
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By Lemma 2.1, we have

2 2(k—-1) 2
HU D) = e ~ G pterts D) T m stk
2 2t-1)
m+t+k (k+t+1)(k+t+2)
2 2(k-1)
ZH(ukfl(nl’t))+k+t+l_(k+t)(k+t+1)
B 2t
k+t+1)(k+t+2)
2 k-1 t
:H(uk‘l(nl’t))+k+t+l[1_k+t_k+t+2]
B 2(k+3t+2)
_H(U"’l(nl’t))Jr(k+t)(k+t+1)(k+t+2)

Sincek>0,nm >1,t>2andn; +2t+k=n,wehavek+3t+2>k+t+6and

2(k + 3t +2) S 2(k +t+6) 2(x + 6)
k+t)k+t+DE+t+2) = k+)k+t+Dk+t+2)  x(x+1)(x+2)

where x = k+tand 2 < x =n—-t—-mn <n-—23. Note that f(x) = % is a decreasing function for

2§x§n—3,f(x)2f(n—3)=%. So,

2(n + 3)

H (U (n1,£)) 2 H (U (11, 1)) + (n—1)(n—-2)(n-23)

(6)

the equality holds if and only if n; = 1 and t = 2. By the induction hypothesis, H(Uy_1 (111, t)) > H(T5,,1-6)
with the equality if and only if Uy_; (111, t) = Ts 4, n—6. From (5) and (6), we have H (Ux (11, t)) > H (T, 1-5)
and the equality if and only if Uy (11, t) = Ts4, n-5.

Subcase 2.2. k = 0 and ¢ > 3 in Uy (11, t).

By Lemma 2.1, we have that

2 2
H(Uo (m,H) = H(Uy (m, £ =1) + 3 = t+)(+2)

and

H(U1 (711 +1,t—1)) =H(U1(Tl1,t—l))+

_ 27’11 _ 2
m+2)(m+3) M+t+1)(m +t+2)

nm+3

Clearly, n1 +3 > 3. So H (U (n1,t)) > H (U (n1 + 1,t — 1)). From the subcase 2.1, we have H (U (111, t)) >
H(U1 (1’[1 +1,t— 1)) > H(T5,213,n—5)‘

Subcase 2.3. k = 0 and f = 2 in Uy (11, t). Then Uy (n1,2) = P,-_44, which contradicts to the condition
TeT (n,4) —{Pp-sa}

By calculation, we have
2(n—15) 4 4

2 "noitw

H (TS,vg,n—S) =

This completes the proof. o
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2.1. Trees with m pendant vertices and the second smallest harmonic indices

Let T be a tree of order n > 3 with m pendant vertices. Obviously, m < n — 1 and the equality holds if
and only if T = S,,. When m = n — 2, one can see that T € {S,,, », : 11 + 12 = n— 2,11 > n,}. By Lemma 2.2,
we have H (S,-31) < H(Sy-42) < H(Su-t4-2) for 5 <t < 5 +1. So, 5,47 has the second smallest harmonic
index among all trees of order n with n — 2 pendant vertices.

Form < n —2,we have

Theorem 2.6. Let T be a tree of order n > 3 with m pendant vertices. If 3 <m <n—3and T # Py—1n-m+1, then

2(m—2)+n—m—3 4 4

> _
HMD === 2 twmi2'3

and the equality holds if and only if T € {Ty—mi2p,m—2 : 3 < i <n—m}.

Proof. Let T be a tree of order n > 3 with m pendant vertices, 3 < m < n— 3. By calculation, it is not difficult
to obtain thatfor3 <i<n-m,

2(11—111—3)+2(m—2)+ 4 4

H(Tn7m+2,v3,m—2) =H (Tn7m+2,v,,m72) = 4 m+1 — 5

So, we only need to prove that H(T) > H (T—m+2,,m-2) by induction on n. One can see that the diameter
D(T) =4if n = m+ 3. By Lemma 2.5, the theorem holds for n = m + 3.

Suppose that n > m + 4 and the theorem is true for all trees of order n — 1 with m pendant vertices. Now,
let T be a tree of order n with m pendant vertices, we consider the following cases:

Case 1. Tis a tree of form Q,,, », with 17 > 1y > 2. Then, from Lemma 2.3 and Lemma 2.4, it follows that
H(T) 2 H(Pm72,n7m,2) > H(Tn7m+2,v3,m—2)~

Case 2. There is a path ujusus in T such that d (1) = 1, d (u2) = 2 and d (u3) > 2.

Let T = T — uy. By Lemma 2.1, we have that

2 2

A =H(T)* 3~ 05 dayas dw) @)
and
H (Tp-m+2,0,,m-2) = H (Tn-m+1,05,m—2) + % ®

Clearly, T has n — 1 vertices and m pendant vertices. Since T % Py—1n-m+1, we have T = Ty_42 4, m—2 if
T = Pu-1y-m- For T % Py_1,-m, by the induction hypothesis, we have H (T) > H(Ty-m+1,0m—2)- From (7)
and (8), H(T) > H(Tn-m+2,0,m—2) and the equality holds if and only if T’ € {T)—ms1,0,m—2 : 3 <i<n—m—1}
and d(us) = 2, i.e., the equality holds if and only if T € {T;—pm+2,0,m—2 : 3 < i <n—mj. O

2.2. Trees with the diameter v and the first two smallest harmonic indices

In the following, using Theorem 1.1 and Theorem 2.6, we find the smallest value of the harmonic index
of trees in 7 (n,r) and determine the corresponding trees, where 7 (1, 7) is the set of trees with n vertices
and diameter 7.

Let T € 7 (n,r) and r > 3. Then, there is a path ujuy -+ 1,41 in T such that d (1) = d(4,41) = 1 and
d(u) > 2forall2 <i <r. So, T has at most n — r + 1 pendant vertices. By Theorem 1.1, it is not
difficult to see that H(T) > H (Py-1,4-m+1) if T has m pendant vertices. By Lemma 2.2, for m > 3 we have
H (Pm—Z,n—m+1,1) >H (Pm—l,n—m+1,0)/ that is/

H(mez,n7m+2) > H(Pm—l,nferl) . (9)

Thus, we have H(T) > H (P,-,,) and the equality if and only if T = P,_,,, i.e., P,_, is the tree with the
smallest harmonic index in 7 (n, r).
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For r = 3, P,_33 = Sy-3,1 is the tree with the smallest harmonic index in 7 (1, 3), and by Lemma 2.2, we
have that S,_4, is the tree with the second smallest harmonic index in 7 (1, 3).

Forr>4,if T € 7 (n,v) and T # Py, let m be the number of pendant vertices in T, then by Theorem 2.6
and (9), H(T) 2 H(Tr+1,0,n—r-1) form =n—r+1,and H(T) > H(Py-1,4-m+1) 2 H(Pp—r-1,41) form <n —r. By
calculation, we have

2(n—r—1)+ 4 r—4 4

H(Tr+1,v3,nfr—1)= —r+2 7’1—1’+3+ 5 +§.

(10)

and
_2(n-r-1) 2 r—2 2
H(Pur1) = n—r+1 n-r+2 2 3 (11)

Letx = n —r and (x) = H(Py—r-1,+1) — H(Tr+1,0n—r-1). From (10) and (11), we have

2(x—1) 2 r—=2 2 2(x-1) 4 r—4 4
YW= tyi2 T 2 T3 xv2 x43 2 3
_2@-1) 26-1) 2 4 1

x+1 x+2 x+2 x+3 3
(= 1)(x? +7x +18)
T3+ 1)(x +2)(x +3)

for x > 2. So, Ty41,0,,n-r—1 is the tree with the second smallest harmonic index in 7 (n, r) for r > 4.

Theorem 2.7. (i) For T € T (n,r) and r > 3, we have
Z(n—r)+ 2 +r—3+g
n—-r+2 n-—-r+3 2 3

and the equality holds if and only if T = P,,_,,.
(ii) Forr > 4and T € T (n,7) — {Py—r,}, we have

H() >

2(n-r-1) 4 r—4 4
> =
H(T) = n—r+2 +n—r+3+ 2 +3

and the equality holds if and only if T € {Tr11,0n—r-1:3 <i<r—1}

2.3. Trees with small harmonic indices

In the following, we determine the unique tree of order n with, respectively, the second, the third and
the fourth smallest harmonic index.

Let T be a tree of order n. For n = 2,3, we have T = §,;, and we can easily check that

(a) forn =4, H(Py) > H(S4);

(b) forn =25, H(P5) > H(Sz/l) > H(S5);

(c)forn=6,7, H(T) > H(Py-44) > H(Sn-42) > H(Su-31) > H(S,) if T & {Py-44,Sn-42,Sn-31, Su}-

Now, we consider the case nn > 8. By Lemma 2.2, we have

H(Spn,) > H(Syy41,,-1) for ng =np =2 (12)
By (9) and Theorem 2.7, we have
H(T) > H(Pn74,4) if TeT (n,7r)— {Pn—4,4} and r>4 (13)

By calculation, we obtain the following:
() H(Sps1) = 52 + 2 + 5
(ii) H (Sp-42) = 2(" 24+ 2 +1
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(i) H(Sp-53) = 222 + 2 4+ ¢

(V) H (P = 20 1 242

From (1) to (IV),H(Sn 53) > H(Sn 42) > H(Sn 31) and H(Pn 44) > H(Sn 42) > H(Sn 31)f01‘1’l > 8.
On the other hand, we have

n* —6n® — 169n% + 414n — 360
30n(n—1)(n—-2)(n —3)

H(Sy-53) — H(Pp-4,) =

By calculation, one obtains that H(S,-53) < H(Py-44) forn =8,9,---,15and H(S,-53) > H(Py-44) for n > 16.
From above, we can get the following theorem.

Theorem 2.8. Let T be a tree of order n > 6 and T & {Sy—42, Sn-31, Sn}. Then

(i) H(T) > H(Sn-s53) > H(Sn-42) > H(Sy-31) > H(S,) for n = 8,9, --- ,15 and the equality holds if and only
ifT =S, 53.

(ii) H(T) = H(Py-44) > H(Sn-42) > H(Sy-31) > H(Sy) for n = 6,7 or n > 16 and the equality holds if and
only if T = Ppy_yg4.

Acknowledgement: The authors thank the anonymous referee for some valuable corrections and
comments which improved the presentation of the work.
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