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Generalized Inverses of a Linear Combination of
Moore-Penrose Hermitian Matrices

Milan Misié?, Marina To$i¢?, Zoran J. Popovié?

* High Technical School of Professional Studies, Zvecan, Serbia.

Abstract. In this paper we give a representation of the Moore-Penrose inverse and the group inverse of a
linear combination of Moore-Penrose Hermitian matrices, i.e., square matrices satisfying At = A. Also, we
consider the invertibility of some linear combination of commuting Moore-Penrose Hermitian matrices.

1. Introduction

Let C™ denote the set of all n X m complex matrices. The symbols A*, R(A), N(A) and r(A) will denote
the conjugate transpose, the range (column space), the null space and the rank of a matrix A, respectively.
By C*" we will denote the set of all matrices from C"" with a rank r. The symbol & denotes a direct sum.
We say that k and [ are congruent modulo m, and we use the notation k =,, I, if m|(k — [). The Moore-Penrose
inverse of A, is the unique matrix A satisfying the equations

(1) AATA = A, @)ATAAT = A", (3) AAT = (AAT)", (4) ATA = (ATA)".

For a square matrix A there exists a unique reflexive generalized inverse of A which commutes with A if
and only if A is of index 1, that is, 7(A) = r(A?) ([2], Theorem 1). This generalized inverse is called the group
inverse of A and is denoted by A*.

By I, we will denote the identity matrix of order n. We use the notations C, C9” and CE for the subsets of
C™" consisting of projectors (idempotent matrices), orthogonal projectors (Hermitian idempotent matrices)

and EP (range-Hermitian) matrices, respectively, i.e.,
Ch={AeC™:A?=A),
Clr={AeC™ :A>=A=A"),
CEP = (A e O™ : R(A) = R(A")}) = {A e C™" : AAT = ATA}.
Ps denotes the orthogonal projector onto subspace S. Also, recall that a matrix A € C™" is generalized

projector if A2 = A* and hypergeneralized k-projector for A¥ = A', where k € IN and k > 1. Specially, if
k = 2, we get the class of hypergeneralized projectors (A2 = A").
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A characterization of nonnegative matrices such that A = A" is derived by Berman [3]. In [4], the
author introduced the following concept: Consider a C*-algebra A. A regular element a € A will be called
Moore-Penrose Hermitian, if a* = 4. In this paper our interest is the subset of the class of square matrices A
with the property A" = A, called as Moore-Penrose Hermitian matrices. Its basic properties are that A> = A
and A? is a orthogonal projector onto R(A).

The inspiration for this paper were [9], [10] in which authors considered the nonsingularity, i.e., the
Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projec-
tors, respectively, and [11] which includes the results related to the Moore-Penrose inverse of commuting
hypergeneralized k-projectors.

The first and main objective of the present work is to give a form of the Moore-Penrose inverse, i.e.,
the group inverse of a linear combination c;A™ + c,B* under various conditions, where A,B € C"™" are
commuting Moore-Penrose Hermitian matrices, m,k € IN and ¢;,c, € C\ {0} such that c% - C% # 0. Also,
we study the nonsingularity of c;A™ + c,BF 4+ ¢3C! and, in particular, c1l, + cA™ + B, where m, k,1 € N
and A, B and C are commuting Moore-Penrose Hermitian matrices and we give necessary and sufficient
conditions for the simultaneous invertibility of A — B and A + B, in the case when A and B are commuting
Moore-Penrose Hermitian matrices.

2. Results

Using the fact that the Moore-Penrose Hermitian matrix A € C**" is EP-matrix, by Theorem 4.3.1 [5] we
can conclude that A can be represented by

K o],.
A:u[o O]U, (1)

where U € C™" is unitary and K € C™" is such that K? = I,.

The following fact will be used very often:
IfX,Y e C™ and c1,c € C, then

X*=Y=1,XY=YX= @X+aY)(aX-aY)=(] - )

We first present the form of the Moore-Penrose inverse, i.e., the group inverse of c;A™ + ¢, B¥, where m, k € N
and A, B are commuting Moore-Penrose Hermitian matrices.

Theorem 2.1. Let A € CP" and B € C™" be commuting Moore-Penrose Hermitian matrices, m,k € IN, c1,c; €
C\ {0} and ¢ —c5 # 0. Then

(@A™ + c2B")' = (1 A™ + uAATBY)' + ;' (I, - AAT)BE. (3)

Furthermore, c; A" +c,BX is nonsin qular ifand only if (I, —-AANB+AA%is nonsingular and in this case (c1 A™ +cpBF)1
is given by (3).

Proof. Let a Moore-Penrose Hermitian matrix A € C™" be of the form (1) and r(A) = r. We get that the
condition AB = BA is equivalent to the fact that B has the form

D o01],.
B=u|O G]u, 4)

where D € C™"and G € C"="%(=1) are Moore-Penrose Hermitian matrices and KD = DK. Now,

K™ + C2Dk 0 "

aA™ + B = U 0 &Gk ur,
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where U € C™" is unitary, K, D € C™" are such that

I mEzo
m o o__ rs
K _{K, m=, 1. ()

D' =D, KD = DK and G € C""%("=") j5 a Moore-Penrose Hermitian matrix such that

x| Prg)y k=20
¢ ‘{ G, k=1. (©)

Since (D¥)? is an orthogonal projector, K*" = I, and (c1K™)* — (c2D*)? = ¢2I, — c2Pgrp), we get that
(c1K™)? = (c2D*)? is nonsingular for all constants ¢;,¢; € C such that ¢; # 0 and ¢t — ¢ # 0. From the

invertibility of (c;K™)? — (c2D¥)?, it follows that ¢;K™ + c,D* is nonsingular.

Let
(1K™ + c,DF)1 0 X
W=u _ u,
0 C21(Gk)’r
i.e., the right hand side of (3), where
P k=0
GHYF = R(G)s 2 7

Obviously, W is the Moore-Penrose inverse of c;A™ + coBF.
Also, ;A" + B is nonsingular if and only if G is nonsingular, i.e., c;A™ + 0B is nonsingular if and
only if (I, — AANB + AAt is nonsingular and in this case (c;A™ + B is givenby (3). O

With the additional requirements of Theorem 2.1 it is possible to give a more precise form of Moore-

Penrose inverse, i.e., the group inverse.

Corollary 2.2. Let m,k € IN, c1,c2 € C\ {0}. If A,B € C™" are commuting Moore-Penrose Hermitian matrices
such that AB = 0, then

(@A™ + c2B")" = [ A™ + ;' BF. (8)

In the next theorem, we present the form of Moore-Penrose inverse, i.e., the group inverse of c;A™ + B,
where A and B are commuting Moore-Penrose Hermitian matrices such that AB = A% = BA.

Theorem 2.3. Let c1,c; € C, ¢ # 0, ¢3 —c # 0and mk € N. If A € C”" and B € C™" are commuting
Moore-Penrose Hermitian matrices such that AB = A% = BA, then

1
(ClAm + Csz)‘r =3

pEa (@A™ = cuA) + ;1 (1 - AAY)BE. 9)
1

2
2

Proof. Suppose that A has the form (1) and B has the form given by (4). From AB = A2 = BA we get that

K 0 .
B—U[O G]U,

where G € C=%(1=1) jg 3 Moore-Penrose Hermitian matrix. Now ¢;A™ + ¢, B* has the form

LA™ 4+ oBF = U[ aK"+ K" 0 ] .

0 Co Gk
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where

(r+)l,, m=0,k=0
cl, + oK, m=,0, k =1
aK+col, m=1,k=,0
(C1 + Cz)K, m=,1, k =1

K™ + C2Kk = (10)

and G* is given by (6). By (2) it follows that c;K™ + ¢, K is nonsingular for every m, k € N and

(Cl + CZ)_lL’/ m =y 0, k =y 0

=@l - oK), m=0k=1
K"+ k1 =] a7
(c1 2K") ﬁ(cﬂ(—qlr), m=,1,k=,0

(C1 + Cz)_lK, m=,1, k=1

u (1K™ + Csz)_1 0

Obviously (ClAm + C2Bk)+ = 0 Cgl(Gk)+

U, ie., (c;A™ + c,B")! is defined by (9). O

Corollary 2.4. Let A € CI*" be a Moore-Penrose Hermitian matrix, c1,c; € C, c% — c% # 0and m, k € IN. Then

1

2 _
1

(1 A™ + c, AN = (1 A™ — e AF).

2
&

In the following we study the invertibility of linear combinations of Moore-Penrose Hermitian matrices.

First, we state an auxiliary result.
Lemma 2.5. [7] Let A,B € C"™". Then
R(AY) + R(B) = C™! & N(A) N N(B) = {0},
R(A) NR(B) = {0} & N(A) + N(B) = C™.

The following theorem presents some necessary and sufficient conditions for the simultaneous invert-
ibility of A — B and A + B, in the case when A and B are commuting Moore-Penrose Hermitian matrices.

Theorem 2.6. Let A, B € C™" be Moore-Penrose Hermitian matrices and AB = BA. The following conditions are
equivalent:

(i) R(A) @ R(B) = C™,
(i) N(A) @ N(B) =C™,
(iii) R(A) N R(B) = {0} and N(A) N N(B) = {0},
(iv) A— B, A + B are nonsingular.
Proof. The part (i) & (ii) & (iii) follows by Lemma 2.1 and the fact that R(A*) = R(A) and R(B*) = R(B).
(iif) = (iv) We prove that A — B is bijective.
Let (A — B)x = 0. Then Ax = Bx € R(A) N R(B) = {0}, so x € N(A) N N(B) = {0}. Thus A — B is injective,
so it is bijective.
The proof for the invertibility of A + B is similar, so we omit it.
(iv) = (i) Since AB = BA, we have
A2 -B?=(A-B)A+B).

From (iv) it follows that A% — B? is nonsingular. Then from Theorem 1.2 [7] we get that R(A?) @ R(B?) = C"™!
which is equivalent to (i). O
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In subsequent consideration, the first part of Theorem 2.1 in [8] plays a crucial role.

Theorem 2.7. [8] Let A, B € CEP and let ¢1,co € C \ {0}. If AB = 0, then the following conditions are equivalent:
(i) R(A)®R(B) =C™,
(i) N(A) @ N(B) =C™,
(iii) R(A) N R(B) = {0} and N(A) N N(B) = {0},
(iv) c1A + 2B is nonsingular.

It is obvious that any Moore-Penrose Hermitian matrix is a EP-matrix and if A is a Moore-Penrose
Hermitian matrix, then A%, k € N is also a Moore-Penrose Hermitian matrix. Thus, applies the following
corollary:

Corollary 2.8. Let A, B € C™" be commuting Moore-Penrose Hermitian matrices and let k,1 € N, c¢1,c, € C \ {0}.
If AB = 0, then the following conditions are equivalent:

(i) c1A¥ + coB is nonsingular,
(ii) A + B is nonsingular.
Also, we need the following lemma:

Lemma 2.9. Let P; € C" and P, € C™" be orthogonal projectors, c1,¢2,¢c3 € C,c1 #0,¢c1—cp # 0and ¢ —c3 # 0.
If P1Py = 0 = PyPy, then c11, — caP1 — 3P, is nonsingular.

Proof. Since Py € C9F and r(P;) = r, then we get that P; has the form

I, 0 .
el 0]

where U € C™" is unitary (by Lemma 1 [1]). The condition PP, = 0 = P,P; is equivalent to the fact that P,

has the form
0 0 .
] $ 0 |

where G € Ct"="X("=1) jg an orthogonal projector. Now,

3 B _ (Cl - C2)Ir 0 *
c1ly — 2P — c3P2 = LI[ 0 cily—r — 3G -

Since c11,-,—c3G is the sum of the identity matrix and an orthogonal projector, then ¢1I,,—,—c3G is nonsingular
for every constants ¢;,c3 € C such that ¢; # 0 and ¢; — ¢z # 0. Hence, c11, — coP1 — c3P» is nonsingular for
every constants c1,cp,¢c3 € Csuch thatcy #0,c1 —c; #0andc; —c3 #0. O

The following theorem presents necessary and sufficient conditions for the invertibility of c;A™ + coB* +c3CL
Theorem 2.10. Let c1,¢5,¢c3 € C\ (0}, ¢; —c; # 0, 3 — 5 # 0and m,k,l € N. If A,B,C € C™" are commuting

Moore-Penrose Hermitian matrices such that BC = 0, then ciA™ + ¢;B* + ¢3C' is nonsingular if and only if
(I, — AAT)(B + C) + AA" is nonsingular.
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Proof. Let A, B, C € C"™" be commuting Moore-Penrose Hermitian matrices. Let A € C™" be of the form (1)
and r(A) = r. The condition AB = BA implies that B has the form (4).
The condition AC = CA implies that C has the form

M 0 .
cuf ¥ 8w

where M € C™" and N € C»="x("=) are Moore-Penrose Hermitian matrices and KM = MK. From BC =0 =
CB it follows that DM = 0 = MD and GN = 0 = NG. Now,

c1K™ + ¢ DF + csM! 0 .

m k 1 _
C1A + B +C3C =U 0 C2Gk+C3Nl ur,

where K™ is given by (5), D¥, M! G* and N' are given by (6).

Notice that (c;K™)? — (c2D* + csM')? = 2 K* — 3D — AM? = 2l — 3D* — c2M?. Since D? and M? are
orthogonal projectors, then ¢2I, —c3D? — c2M?, i.e. (c1K™)? — (c2D* + csM')? is nonsingular for every constants
c1,c2,03 € Csuch that ¢ # 0, 2 -3 # 0 and ¢ — 3 # 0 (by Lemma 2.9). From the invertibility of
(c1K™)? = (c2D* + c3M")?, it follows that c1K™ + ¢aD* + c3M! is nonsingular.

Also,

At t_oq| 0 .
(I, — AAY)B + C) + AA _u[o can U

Remark that the invertibility of c;G* + ¢3N' is equivalent to the invertibility of G + N for every constants
2, ¢3 € C\ {0} (by Corollary 2.8). Hence, c;A™ + c2Bf+¢3Clis nonsingular if and only if (I, —AAY(B+C)+AAY
is nonsingular. []

As corollaries we get:

Corollary 2.11. Let c1,c; € C\ {0}, ¢} —=¢5 # 0, ¢ = ¢} # 0.and m,k,] € N. If A,B,C € C™" are commuting
Moore-Penrose Hermitian matrices such that BC = 0, then the invertibility of c;A™ + caB¥ + c3C' is independent of
the choice of the constants c1, ¢z, c3,m,k, .

Corollary 2.12. Let A, B, C € C™" are commuting Moore-Penrose Hermitian matrices such that BC = 0, ¢1,¢2,¢3 €
C\{0}, =3 # 0,2 -2+ 0and m,k,| € N. If Ais nonsingular, then c;A™ + c;B* + c3C' is nonsingular.

Corollary 2.13. Let A, B € C"™" be commuting Moore-Penrose Hermitian matrices and let ¢q, ¢, € C\ {0}, C% —c% #0
and m,k € N. Then c;A™ + coB* is nonsingular if and only if (I, — AAY)B + AAY is nonsingular.

Notice that Corollary 2.13 is the part of Theorem 2.1.

Corollary 2.14. Let A, B € C™" be commuting ¢; — c5 # 0, ¢; — c5 # 0 and let ¢1,¢c; € C\ {0}, & — ¢; # 0 and
m,k € N. If A is nonsingular, then c;A™ + B is nonsingular.

By Theorem 2.10 we conclude that c11,, + c;A™ +¢c3 BFis nonsingular, in the case when A, B are commuting
Moore-Penrose Hermitian matrices such that AB = 0 and ¢y, ¢, c3 € C \ {0} such that c% - c% #0, c% - cg # 0.

In the following theorem, we give the form (c11, + c;A™ + c3BF~1.

Theorem 2.15. Let c1,¢5,c3 € C\ {0}, ¢§ —¢c5 # 0, ¢§ =5 # 0 and m,k € N. If A, B € C™" are commuting
Moore-Penrose Hermitian matrices such that AB = 0, then c11, + c2A™ + c3B* is nonsingular and

(Clln + C2Am + C3Bk)_1 =

2

-1
[c1A2m - czAm] (- AA*)[clln ; C3Bk] . (11)
2

2 _
C1 C
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Proof. Let A, B € C"™" be commuting generalized projectors such that AB = 0. If A is given by (1) and
r(A) = r, then B has the form

0 0 .
B_u[0 G]u, (12)
where G € Cl=%("=1) jg 3 Moore-Penrose Hermitian matrix. Then
m k Cllr + Csz 0 .
c1l, + A" + 3B =U 0 el + C3Gk ur,

where K™ and G are given by (5) and (6), respectively. Obviously, ¢1I,, + c2A™ + ¢3B* is nonsingular if and
only if 11, + oK™ and ¢11,—, + c3GF are nonsingular. By (2) it follows that c11, + c;K™ is nonsingular for every
m € N and

(C1 + Cz)_llr, m=,0
my—1 _
(ClIr + CZK ) = { C%‘ITC%(ClL’ _ CZK), m=, 1 - (13)
By Theorem 2.1 we conclude that c11,—, + c3Gk is nonsingular. Now,
my—1 _ (Cllr + CZKm)_l 0 "
(Clln + CzA ) = U[ 0 (Clln—r n C3Gk)_1 u , (14)

where (c1], + ;K™)7! is given by (13). Obviously, the form (14) is equivalent to the form (11). [

As a corollary, we get the form (c11,, + coA™)7! in the case when A is a Moore-Penrose Hermitian matrix
and ¢1,¢, € C\ {0}, 2 — 2 # 0.

Corollary 2.16. Let A € C>" be a commuting Moore-Penrose Hermitian matrix, c1, c; € C\ {0} such that C% —c% #0
and m € IN. Then c11,, + c,A™ is nonsingular and

1

(el + A" =
Z-c

_ [c1A2”’ - czAm] (I - AAY).
2

Remark: If we consider a finite commuting family A; € C™", i = 1,m, where all of the members are
commuting Moore-Penrose Hermitian matrices, then []}.; Af" is also a Moore-Penrose Hermitian matrix.
Then 11, + 2 [T, Af" is nonsingular, where m,ky, ..., ky € N, c1,¢2 € C\ {0} and ¢ — ¢35 # 0.
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