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Abstract. In this paper we give a representation of the Moore-Penrose inverse and the group inverse of a
linear combination of Moore-Penrose Hermitian matrices, i.e., square matrices satisfying A† = A. Also, we
consider the invertibility of some linear combination of commuting Moore-Penrose Hermitian matrices.

1. Introduction

Let Cn×m denote the set of all n×m complex matrices. The symbols A∗, R(A), N(A) and r(A) will denote
the conjugate transpose, the range (column space), the null space and the rank of a matrix A, respectively.
By Cn×n

r we will denote the set of all matrices from Cn×n with a rank r. The symbol ⊕ denotes a direct sum.
We say that k and l are congruent modulo m, and we use the notation k ≡m l, if m|(k− l). The Moore-Penrose
inverse of A, is the unique matrix A† satisfying the equations

(1) AA†A = A, (2) A†AA† = A†, (3) AA† = (AA†)∗, (4) A†A = (A†A)∗.

For a square matrix A there exists a unique reflexive generalized inverse of A which commutes with A if
and only if A is of index 1, that is, r(A) = r(A2) ([2], Theorem 1). This generalized inverse is called the group
inverse of A and is denoted by A].

By In we will denote the identity matrix of order n. We use the notations CP
n ,COP

n and CEP
n for the subsets of

Cn×n consisting of projectors (idempotent matrices), orthogonal projectors (Hermitian idempotent matrices)
and EP (range-Hermitian) matrices, respectively, i.e.,

CP
n = {A ∈ Cn×n : A2 = A},

COP
n = {A ∈ Cn×n : A2 = A = A∗},

CEP
n = {A ∈ Cn×n : R(A) = R(A∗)} = {A ∈ Cn×n : AA† = A†A}.

PS denotes the orthogonal projector onto subspace S. Also, recall that a matrix A ∈ Cn×n is generalized
projector if A2 = A∗ and hypergeneralized k-projector for Ak = A†, where k ∈ N and k > 1. Specially, if
k = 2, we get the class of hypergeneralized projectors (A2 = A†).
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M. Mišić et al. / Filomat 30:11 (2016), 2965–2972 2966

A characterization of nonnegative matrices such that A = A† is derived by Berman [3]. In [4], the
author introduced the following concept: Consider a C∗-algebra A. A regular element a ∈ A will be called
Moore-Penrose Hermitian, if a† = a. In this paper our interest is the subset of the class of square matrices A
with the property A† = A, called as Moore-Penrose Hermitian matrices. Its basic properties are that A3 = A
and A2 is a orthogonal projector onto R(A).

The inspiration for this paper were [9], [10] in which authors considered the nonsingularity, i.e., the
Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projec-
tors, respectively, and [11] which includes the results related to the Moore-Penrose inverse of commuting
hypergeneralized k-projectors.

The first and main objective of the present work is to give a form of the Moore-Penrose inverse, i.e.,
the group inverse of a linear combination c1Am + c2Bk under various conditions, where A,B ∈ Cn×n are
commuting Moore-Penrose Hermitian matrices, m, k ∈ N and c1, c2 ∈ C \ {0} such that c2

1 − c2
2 , 0. Also,

we study the nonsingularity of c1Am + c2Bk + c3Cl and, in particular, c1In + c2Am + Bk, where m, k, l ∈ N
and A, B and C are commuting Moore-Penrose Hermitian matrices and we give necessary and sufficient
conditions for the simultaneous invertibility of A − B and A + B, in the case when A and B are commuting
Moore-Penrose Hermitian matrices.

2. Results

Using the fact that the Moore-Penrose Hermitian matrix A ∈ Cn×n
r is EP-matrix, by Theorem 4.3.1 [5] we

can conclude that A can be represented by

A = U
[

K 0
0 0

]
U∗, (1)

where U ∈ Cn×n is unitary and K ∈ Cr×r is such that K2 = Ir.

The following fact will be used very often:
If X,Y ∈ Cn×n and c1, c2 ∈ C, then

X2 = Y2 = In,XY = YX⇒ (c1X + c2Y)(c1X − c2Y) = (c2
1 − c2

2)In (2)

We first present the form of the Moore-Penrose inverse, i.e., the group inverse of c1Am +c2Bk, where m, k ∈N
and A, B are commuting Moore-Penrose Hermitian matrices.

Theorem 2.1. Let A ∈ Cn×n
r and B ∈ Cn×n be commuting Moore-Penrose Hermitian matrices, m, k ∈ N, c1, c2 ∈

C \ {0} and c2
1 − c2

2 , 0 . Then

(c1Am + c2Bk)† = (c1Am + c2AA†Bk)† + c−1
2 (In − AA†)Bk. (3)

Furthermore, c1Am+c2Bk is nonsingular if and only if (In−AA†)B+AA† is nonsingular and in this case (c1Am+c2Bk)−1

is given by (3).

Proof. Let a Moore-Penrose Hermitian matrix A ∈ Cn×n be of the form (1) and r(A) = r. We get that the
condition AB = BA is equivalent to the fact that B has the form

B = U
[

D 0
0 G

]
U∗, (4)

where D ∈ Cr×rand G ∈ C(n−r)×(n−r) are Moore-Penrose Hermitian matrices and KD = DK. Now,

c1Am + c2Bk = U
[

c1Km + c2Dk 0
0 c2Gk

]
U∗,
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where U ∈ Cn×n is unitary, K,D ∈ Cr×r are such that

Km =

{
Ir, m ≡2 0
K, m ≡2 1. (5)

D† = D, KD = DK and G ∈ C(n−r)×(n−r) is a Moore-Penrose Hermitian matrix such that

Gk =

{
PR(G), k ≡2 0

G, k ≡2 1. (6)

Since (Dk)2 is an orthogonal projector, K2m = Ir and (c1Km)2
− (c2Dk)2 = c2

1Ir − c2
2PR(D), we get that

(c1Km)2
− (c2Dk)2 is nonsingular for all constants c1, c2 ∈ C such that c1 , 0 and c2

1 − c2
2 , 0. From the

invertibility of (c1Km)2
− (c2Dk)2, it follows that c1Km + c2Dk is nonsingular.

Let

W = U
[

(c1Km + c2Dk)−1 0
0 c−1

2 (Gk)†

]
U∗,

i.e., the right hand side of (3), where

(Gk)† =

{
PR(G), k ≡2 0

G, k ≡2 1. (7)

Obviously, W is the Moore-Penrose inverse of c1Am + c2Bk.
Also, c1Am + c2Bk is nonsingular if and only if G is nonsingular, i.e., c1Am + c2Bk is nonsingular if and

only if (In − AA†)B + AA† is nonsingular and in this case (c1Am + c2Bk)−1 is given by (3).

With the additional requirements of Theorem 2.1 it is possible to give a more precise form of Moore-
Penrose inverse, i.e., the group inverse.

Corollary 2.2. Let m, k ∈ N, c1, c2 ∈ C \ {0}. If A,B ∈ Cn×n are commuting Moore-Penrose Hermitian matrices
such that AB = 0, then

(c1Am + c2Bk)† = c−1
1 Am + c−1

2 Bk. (8)

In the next theorem, we present the form of Moore-Penrose inverse, i.e., the group inverse of c1Am +c2Bk,
where A and B are commuting Moore-Penrose Hermitian matrices such that AB = A2 = BA.

Theorem 2.3. Let c1, c2 ∈ C, c2 , 0, c2
1 − c2

2 , 0 and m, k ∈ N. If A ∈ Cn×n
r and B ∈ Cn×n are commuting

Moore-Penrose Hermitian matrices such that AB = A2 = BA, then

(c1Am + c2Bk)† =
1

c2
1 − c2

2

(c1Am
− c2Ak) + c−1

2 (I − AA†)Bk. (9)

Proof. Suppose that A has the form (1) and B has the form given by (4). From AB = A2 = BA we get that

B = U
[

K 0
0 G

]
U∗,

where G ∈ C(n−r)×(n−r) is a Moore-Penrose Hermitian matrix. Now c1Am + c2Bk has the form

c1Am + c2Bk = U
[

c1Km + c2Kk 0
0 c2Gk

]
U∗,



M. Mišić et al. / Filomat 30:11 (2016), 2965–2972 2968

where

c1Km + c2Kk =


(c1 + c2)Ir, m ≡2 0, k ≡2 0
c1Ir + c2K, m ≡2 0, k ≡2 1
c1K + c2Ir, m ≡2 1, k ≡2 0
(c1 + c2)K, m ≡2 1, k ≡2 1

(10)

and Gk is given by (6). By (2) it follows that c1Km + c2Kk is nonsingular for every m, k ∈N and

(c1Km + c2Kk)−1 =


(c1 + c2)−1Ir, m ≡2 0, k ≡2 0

1
c2

1−c2
2
(c1Ir − c2K), m ≡2 0, k ≡2 1

1
c2

1−c2
2
(c1K − c2Ir), m ≡2 1, k ≡2 0

(c1 + c2)−1K, m ≡2 1, k ≡2 1

Obviously (c1Am + c2Bk)† = U
[

(c1Km + c2Kk)−1 0
0 c−1

2 (Gk)†

]
U∗, i.e., (c1Am + c2Bk)† is defined by (9).

Corollary 2.4. Let A ∈ Cn×n
r be a Moore-Penrose Hermitian matrix, c1, c2 ∈ C, c2

1 − c2
2 , 0 and m, k ∈N. Then

(c1Am + c2Ak)† =
1

c2
1 − c2

2

(c1Am
− c2Ak).

In the following we study the invertibility of linear combinations of Moore-Penrose Hermitian matrices.

First, we state an auxiliary result.

Lemma 2.5. [7] Let A,B ∈ Cn×n. Then

R(A∗) + R(B∗) = Cn×1
⇔N(A) ∩N(B) = {0},

R(A∗) ∩ R(B∗) = {0} ⇔ N(A) +N(B) = Cn×1.

The following theorem presents some necessary and sufficient conditions for the simultaneous invert-
ibility of A − B and A + B, in the case when A and B are commuting Moore-Penrose Hermitian matrices.

Theorem 2.6. Let A, B ∈ Cn×n be Moore-Penrose Hermitian matrices and AB = BA. The following conditions are
equivalent:

(i) R(A) ⊕ R(B) = Cn×1,

(ii) N(A) ⊕N(B) = Cn×1,

(iii) R(A) ∩ R(B) = {0} andN(A) ∩N(B) = {0},

(iv) A − B, A + B are nonsingular.

Proof. The part (i)⇔ (ii)⇔ (iii) follows by Lemma 2.1 and the fact that R(A∗) = R(A) and R(B∗) = R(B).
(iii)⇒ (iv) We prove that A − B is bijective.
Let (A − B)x = 0. Then Ax = Bx ∈ R(A) ∩ R(B) = {0}, so x ∈ N(A) ∩ N(B) = {0}. Thus A − B is injective,

so it is bijective.
The proof for the invertibility of A + B is similar, so we omit it.
(iv)⇒ (i) Since AB = BA,we have

A2
− B2 = (A − B)(A + B).

From (iv) it follows that A2
−B2 is nonsingular. Then from Theorem 1.2 [7] we get that R(A2)⊕R(B2) = Cn×1

which is equivalent to (i).
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In subsequent consideration, the first part of Theorem 2.1 in [8] plays a crucial role.

Theorem 2.7. [8] Let A,B ∈ CEP
n and let c1, c2 ∈ C \ {0}. If AB = 0, then the following conditions are equivalent:

(i) R(A) ⊕ R(B) = Cn×1,

(ii) N(A) ⊕N(B) = Cn×1,

(iii) R(A) ∩ R(B) = {0} andN(A) ∩N(B) = {0},

(iv) c1A + c2B is nonsingular.

It is obvious that any Moore-Penrose Hermitian matrix is a EP-matrix and if A is a Moore-Penrose
Hermitian matrix, then Ak, k ∈ N is also a Moore-Penrose Hermitian matrix. Thus, applies the following
corollary:

Corollary 2.8. Let A,B ∈ Cn×n be commuting Moore-Penrose Hermitian matrices and let k, l ∈ N, c1, c2 ∈ C \ {0}.
If AB = 0, then the following conditions are equivalent:

(i) c1Ak + c2Bl is nonsingular,

(ii) A + B is nonsingular.

Also, we need the following lemma:

Lemma 2.9. Let P1 ∈ Cn×n
r and P2 ∈ Cn×n be orthogonal projectors, c1, c2, c3 ∈ C, c1 , 0, c1− c2 , 0 and c1− c3 , 0.

If P1P2 = 0 = P2P1, then c1In − c2P1 − c3P2 is nonsingular.

Proof. Since P1 ∈ COP
n and r(P1) = r, then we get that P1 has the form

P1 = U
[

Ir 0
0 0

]
U∗,

where U ∈ Cn×n is unitary (by Lemma 1 [1]). The condition P1P2 = 0 = P2P1 is equivalent to the fact that P2
has the form

P2 = U
[

0 0
0 G

]
U∗,

where G ∈ C(n−r)×(n−r) is an orthogonal projector. Now,

c1In − c2P1 − c3P2 = U
[

(c1 − c2)Ir 0
0 c1In−r − c3G

]
U∗.

Since c1In−r−c3G is the sum of the identity matrix and an orthogonal projector, then c1In−r−c3G is nonsingular
for every constants c1, c3 ∈ C such that c1 , 0 and c1 − c3 , 0. Hence, c1In − c2P1 − c3P2 is nonsingular for
every constants c1, c2, c3 ∈ C such that c1 , 0, c1 − c2 , 0 and c1 − c3 , 0.

The following theorem presents necessary and sufficient conditions for the invertibility of c1Am +c2Bk +c3Cl.

Theorem 2.10. Let c1, c2, c3 ∈ C \ {0}, c2
1 − c2

2 , 0, c2
1 − c2

3 , 0 and m, k, l ∈ N. If A,B,C ∈ Cn×n are commuting
Moore-Penrose Hermitian matrices such that BC = 0, then c1Am + c2Bk + c3Cl is nonsingular if and only if
(In − AA†)(B + C) + AA† is nonsingular.
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Proof. Let A,B,C ∈ Cn×n be commuting Moore-Penrose Hermitian matrices. Let A ∈ Cn×n be of the form (1)
and r(A) = r. The condition AB = BA implies that B has the form (4).

The condition AC = CA implies that C has the form

C = U
[

M 0
0 N

]
U∗,

where M ∈ Cr×r and N ∈ C(n−r)×(n−r) are Moore-Penrose Hermitian matrices and KM = MK. From BC = 0 =
CB it follows that DM = 0 = MD and GN = 0 = NG. Now,

c1Am + c2Bk + c3Cl = U
[

c1Km + c2Dk + c3Ml 0
0 c2Gk + c3Nl

]
U∗,

where Km is given by (5), Dk, Ml Gk and Nl are given by (6).
Notice that (c1Km)2

− (c2Dk + c3Ml)2 = c2
1K2
− c2

2D2
− c2

3M2 = c2
1Ir − c2

2D2
− c2

3M2. Since D2 and M2 are
orthogonal projectors, then c2

1Ir− c2
2D2
− c2

3M2, i.e. (c1Km)2
− (c2Dk + c3Ml)2 is nonsingular for every constants

c1, c2, c3 ∈ C such that c1 , 0, c2
1 − c2

2 , 0 and c2
1 − c2

3 , 0 (by Lemma 2.9). From the invertibility of
(c1Km)2

− (c2Dk + c3Ml)2, it follows that c1Km + c2Dk + c3Ml is nonsingular.
Also,

(In − AA†)(B + C) + AA† = U
[

Ir 0
0 G + N

]
U∗.

Remark that the invertibility of c2Gk + c3Nl is equivalent to the invertibility of G + N for every constants
c2, c3 ∈ C\{0} (by Corollary 2.8). Hence, c1Am +c2Bk +c3Cl is nonsingular if and only if (In−AA†)(B+C)+AA†

is nonsingular.

As corollaries we get:

Corollary 2.11. Let c1, c2 ∈ C \ {0}, c2
1 − c2

2 , 0, c2
1 − c2

3 , 0 and m, k, l ∈ N. If A,B,C ∈ Cn×n are commuting
Moore-Penrose Hermitian matrices such that BC = 0, then the invertibility of c1Am + c2Bk + c3Cl is independent of
the choice of the constants c1, c2, c3,m, k, l.

Corollary 2.12. Let A,B,C ∈ Cn×n are commuting Moore-Penrose Hermitian matrices such that BC = 0, c1, c2, c3 ∈

C \ {0}, c2
1 − c2

2 , 0, c2
1 − c2

3 , 0 and m, k, l ∈N. If A is nonsingular, then c1Am + c2Bk + c3Cl is nonsingular.

Corollary 2.13. Let A, B ∈ Cn×n be commuting Moore-Penrose Hermitian matrices and let c1, c2 ∈ C\{0}, c2
1−c2

2 , 0
and m, k ∈ N. Then c1Am + c2Bk is nonsingular if and only if (In − AA†)B + AA† is nonsingular.

Notice that Corollary 2.13 is the part of Theorem 2.1.

Corollary 2.14. Let A, B ∈ Cn×n be commuting c2
1 − c2

2 , 0, c2
1 − c2

3 , 0 and let c1, c2 ∈ C \ {0}, c2
1 − c2

2 , 0 and
m, k ∈ N. If A is nonsingular, then c1Am + c2Bk is nonsingular.

By Theorem 2.10 we conclude that c1In +c2Am +c3Bk is nonsingular, in the case when A, B are commuting
Moore-Penrose Hermitian matrices such that AB = 0 and c1, c2, c3 ∈ C \ {0} such that c2

1 − c2
2 , 0, c2

1 − c2
3 , 0.

In the following theorem, we give the form (c1In + c2Am + c3Bk)−1.

Theorem 2.15. Let c1, c2, c3 ∈ C \ {0}, c2
1 − c2

2 , 0, c2
1 − c2

3 , 0 and m, k ∈ N. If A, B ∈ Cn×n are commuting
Moore-Penrose Hermitian matrices such that AB = 0, then c1In + c2Am + c3Bk is nonsingular and

(c1In + c2Am + c3Bk)−1 =
1

c2
1 − c2

2

[
c1A2m

− c2Am
]

+ (I − AA†)
[
c1In + c3Bk

]−1

. (11)
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Proof. Let A, B ∈ Cn×n be commuting generalized projectors such that AB = 0. If A is given by (1) and
r(A) = r, then B has the form

B = U
[

0 0
0 G

]
U∗, (12)

where G ∈ C(n−r)×(n−r) is a Moore-Penrose Hermitian matrix. Then

c1In + c2Am + c3Bk = U
[

c1Ir + c2Km 0
0 c1In−r + c3Gk

]
U∗,

where Km and Gk are given by (5) and (6), respectively. Obviously, c1In + c2Am + c3Bk is nonsingular if and
only if c1Ir + c2Km and c1In−r + c3Gk are nonsingular. By (2) it follows that c1Ir + c2Km is nonsingular for every
m ∈ N and

(c1Ir + c2Km)−1 =

{
(c1 + c2)−1Ir, m ≡2 0

1
c2

1−c2
2
(c1Ir − c2K), m ≡2 1 . (13)

By Theorem 2.1 we conclude that c1In−r + c3Gk is nonsingular. Now,

(c1In + c2Am)−1 = U
[

(c1Ir + c2Km)−1 0
0 (c1In−r + c3Gk)−1

]
U∗, (14)

where (c1Ir + c2Km)−1 is given by (13). Obviously, the form (14) is equivalent to the form (11).

As a corollary, we get the form (c1In + c2Am)−1 in the case when A is a Moore-Penrose Hermitian matrix
and c1, c2 ∈ C \ {0}, c2

1 − c2
2 , 0.

Corollary 2.16. Let A ∈ Cn×n
r be a commuting Moore-Penrose Hermitian matrix, c1, c2 ∈ C\{0} such that c2

1−c2
2 , 0

and m ∈N. Then c1In + c2Am is nonsingular and

(c1In + c2Am)−1 =
1

c2
1 − c2

2

[
c1A2m

− c2Am
]

+ c−1
1 (I − AA†).

Remark: If we consider a finite commuting family Ai ∈ Cn×n, i = 1,m, where all of the members are
commuting Moore-Penrose Hermitian matrices, then

∏m
i=1 Aki

i is also a Moore-Penrose Hermitian matrix.
Then c1In + c2

∏m
i=1 Aki

i is nonsingular, where m, k1, . . . , km ∈N, c1, c2 ∈ C \ {0} and c2
1 − c2

2 , 0.
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