(S
&

Filomat 30:12 (2016), 3291-3302
DOI 10.2298/FIL1612291H

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

o

)
U, o
gy as’

W
Ipupost

The Modification of Poisson-Sch Integral on Cones and Its App

Jinjin Huang®*, Beatriz Ychussie®

?Department of Economics and Management, Zhoukou Normal University, Zhoukou 466001, China
b Mathematics Institute, Roskilde University, DK-4000 Roskilde, Denmark

1. Introduction and Main Results

Let R and R, be the set of all real numbers and the s
We denote by R"(n > 2) the n-dimensional Euclide
X = (x1,%2,...,%;-1)- The Euclidean distance betw,

real numbers, respectively.
is denoted by P = (X, x,),

denoted by 9S and S, respectively.
We introduce a system of spherical co
cartesian coordinates (x1, X,...,X;-1, X
The unit sphere and the upper h
simplicity, a point (1,0) o
and (), respectively. For two

,0,-1), in R" which are related to

are denoted by S"~! and S"!, respectively. For
:(1,0) € Q} for a set Q, Q c S*1, are often identified with ®
!, the set {(r,®) € R";r € E,(1,0) € Q} in R" is simply
denoted by E x Q. In particul S” 1= {(X,x,) € R"; x, > 0} will be denoted by T,.
For P e R" and r > 0, let B(P, en ball w1th center at P and radius 7 in R". S, = dB(O, 7).
By C,(Q)), we denote h the domain Q on S"~!. We call it a cone. Then T, is a special
cone obtamed by p ote the sets I X Q and I X dQ with an interval on R by C,(Q;I)
1(Q) N S,. By $,(Q) we denote S,,(C; (0, +00)) which is dC,(Q) —
ay that{@ibe as a covering {rj, R;} if there exists a sequence of balls {B;} with centers
“f e 7; is the radius of B; and R; is the distance between the origin and the

class,of nonnegative radial potentials a(P), i.e. 0 < a(P) = a(r), P = (r,0) € C,(Q2), such
omeb >n/2ifn>4and withb=2ifn=2o0rn=3.
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where A is the Laplace operator and a € <. These solutions are called generalized harmonic functions
(associated with the operator Sch,). Note that they are (classical) harmonic functions in the case a = 0.
Under these assumptions the operator Sch, can be extended in the usual way from the space C3’(C,(Q)) to
an essentially self-adjoint operator on L?(C,(Q)) (see [13]). We will denote it Sch, as well. This last one has
a Green-Sch function G(€; a)(P, Q). Here G(€;a)(P, Q) is positive on C,(Q) and its inner normal derivative
dG(Q;a)(P,Q)/dng > 0. We denote this derivative by PI(Q; a)(P, Q), which is called the Poj -Sch kernel
with respect to C,,(€2). We remark that G(2; 0)(P, Q) and PI(C; 0)(P, Q) are the Green funaffo
kernel of the Laplacian in C,(Q) respectively.

Let A* be a Laplace-Beltrami operator (spherical part of the Laplace) on Q € " 'and A, (j =
A1 < Ax £ A3 £...) be the eigenvalues of the eigenvalue problem for A* on () (see, e.g., [14, p,

Np@®)+Ap®) =0 in Q,

P(©®) =0 on JQ.

Corresponding eigenfunctions are denoted by ¢, (1 < v < v)), w
Ag = 0, norm the eigenfunctions in L2(Q) and @1 =¢n >0.

In order to ensure the existences of A; (j =1,2,3...). We put a rat on Q: ifn >3,
then Q is a C>*-domain (0 < a < 1) on §"! surrounded by a fiai of mutually disjoint closed
hypersurfaces (e.g. see [4, p. 88-89] for the definition of C22_d ﬁ) (j=123,...,1<
v < v;) and d¢1/dn > 0 on JQ (here and below, d/dn denotes e interior normal).

Hence well-known estimates (see, e.g., [6, p. 14]) imply t

plicity gl A;. We set

9

0pio(®
}:@AG)Z( )SMmﬁ%*,

jo
n
v=1 @

ata € %, and we shall suppress this assumption for simplicity. Further,
max(u,0), u~ = —min(u, 0), [d] is the integer part of d and d = [d] + {d},

(n—2)2+4(k+ A;)
2

(j=0,1,2,3...).

(see [5]) that in the case under consideration the solutions to the equation (2) have the

Vi(r) ~ dir', Wi(r) ~ dor'ik, as r— oo, @3)

where d; and d, are two positive constants.
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If a € o, it is known that the following expansion for the Green function G(€; a)(P, Q) (see [3, Ch. 11])

[

GOQa)PQ =)

j=0

1

M Vi(min(r, £)) Wj(max(r, t)) (Z P(©@)p jv(q))] , (4)

v=1

where P = (1,0), Q = (t, @), r # t and x'(s) = w (W1(r), V1(¥)) |,=s is their Wronskian.
The series converges uniformly if either ¥ < st or t < sr (0 < s < 1). The expansion (
rewritten in terms of the Gegenbauer polynomials. In the case a = 0, this expansion G(€2; 0)(P, Q
with the result by Qiao-Deng (see [8, 9]). In the case 2 = 0 and Q = S"7!, this expansion
coincides with the result by Qiao-Deng (see [7]).
For a nonnegative integer m and two points P = (r,0), Q = (t, ®) € C,,(Q)), we put

also be

0 if 0<t<1,
K(Q;a,m)(P, Q) if 1<t<oo,

where @
K(©Qam(PQ) =) . V,»(r)wja)[ijv(@)(pjv(@). &

K(Q;a,m)(P, Q) = { g

j=0 X’(l) v=1

If we modify the Green-Sch function on cones as follows
G(Q;a,m)(P, Q) = G(C;a)(P, Q) — K(€; a,m)(P, Q)
for two points P = (r,0), Q = (t, ®) € C,(Q), then on cones can be defined by

dG(;a,m)(P, Q)

PIQ;a,m)(P,Q) = ===

We remark that

PI(€2; a, 0)(P, Q) = IPI

@
ig?s functight on JC,(Q) and dog is the surface area element on S,(Q).

+ +
— <
Lyt n+1<t

.
ik < Uyl +{yl-n+2.

( resp.  — LE'_y]’k —{=y}l-n+1< L;H,k < _Lfr—y],k —{—y}-n+2. )

If these conditions all hold, we write y € €(k, m, n) (resp. y € 2(k, m, n)).
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Let y € €'(k,m,n) (resp. y € P(k,m,n)) and u be functions on JC,(Q) satisfying

@ + -
f LD og < . (resp. f ju(t, D)I(L + 51" dag < co. ©)
s S4(Q)

A 1+ ot

For y and u, we define the positive measure u (resp. v) on R" by

_ | ol Vdog Q= (@) € S,(Q; (1, +00)),
4pQ) = { 0 ¢ Q € R — 5,(Q; (1, +00)).

lu(t, @)1 dog Q= (@) € S,(Q; (1, +00)), )
0

(resp. av(Q) = { Q e R" - 5,(Q; (1, +0)).

We remark that the total mass of y and v are finite.
Lete > 0,0 < C < nand p be any positive measure on R” having finite mass. F
the maximal function is defined by

M(P; 1, Q) = sup u(B(P, p))Vi(p)Wi(p)p 2.

0<p<}

The set
{P = (r,0) € R" — {O}; M(P; 1, Q) V1 (p)Wi(p)] ' p*© > €}
is denoted by E(€; y, C).

Recently, Qiao-Deng (cf. [9, Corollary 2.1]) g
cones.

vior of IPI[?] (m, u)(P) at infinity on

Theorem A. If u is a continuous functi
u(t,®
[ oy,
9C,(Q) 1 + thno™™

lim  PI)
r—o0,P=(r,®)eT,

then

Now we have

(6)
. - 1 -
o dlim DL @I, (m, u)(P) = 0. @)
. + -1 -
resp. P:(r@%lerCn(Q)fE(E'vC) Pty @5 (@)PIE (m, u)(P) = 0. (8)
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Remark. In the case thata = 0,y = n+m and C = n, then (6) is a finite sum, the set E(e; y, n) is a bounded
set and (7)-(8) hold in C,(Q). This is just the result of Theorem A.

As an application of modified Green-Sch kernel function and Theorem 1, we give the solutions of the
Dirichlet problem for the Schrodinger operator on C,((2).

Theorem 2. If u is a continuous function on dC,(Q) satisfying

[u(t, D)|
_ MEON 50 < o,
js‘y,(Q) T+ Vi (b1 ©

then the function IPI{,(m, u)(P) satisfies

IPIg, (m, u) € CH(Cy(€) N CU(Cu(QY),
Sch,PIg,(m,u) =0 in Cu(Q),
IPI¢,(m, u) = u on dC,(Q)

li “k (@) PIZ P) = 0.
r—)oo,P:(lrI,I@’l)ECn(Q)r ! (pl (6) Q(m’ u)( ) 0

2. Lemmas

Throughout this paper, Let M denote various gonsta: ependent of the variables in questions, which
may be different from line to line.

Lemma 1.

(HPI(€C;a)(P, Q) = M

) € Sx(Q) satisfying 0 < £ < 2 (resp. 0 < £ < 3);

7’<P1(@)
P - QI

e [3, p. 356] ). For a non-negative integer m, we have

dp1(D)
8n<p

IPHQs 2, m)(P, Q) < MOt m,5)V a2 Dy 0)

(10)

forany P = (r,0) € C,(QQ) and Q = (t, D) € 5,(Q) satisfying r < st (0 < s < 1), where M(n, m,s) is a constant
dependent of 1, m and s.
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Lemma 3. Let u be any positive measure on R" having finite total mass. Then E(e; u, C) has a covering
{rj,R;j} (j =1,2,...) satisfying

Z"’:(r])z C Vi(R)) Wi(R;) e
R Vi(r;) Wi(rj)

j=1

Proof. Set
610 = B0 NG 12,27)  (1=2,3,4,..)).

If P = (r,0) € Ej(€; u, C), then there exists a positive number p(P) such that

(p(P) )“ Vi) Wi (p(P) )"‘C _ HBE,p(P))

r Vi(p(P)) Wi(p(P)) r N € '
Here Ej(e; 1, C) can be covered by the union of a family of

(pji = p(Pj:)). By the Vitali Lemma (see [16]), there exists A; C Ej(e;

such that (B(Pj;, pj;) : Pj; € A;) are disjoint and E(e; pt, C) C Up,.en; B(P;
So

U;OZZE]‘(G; W, C) C U]» — Up (€A B(P]1,5p],)
On the other hand, note that U p,en;B(Pji, pji) € C

(%)“ V(IP;i) Wi(P;il)
o, Wil ) Vi5pji) Wi5pji)

~

Q;[2/71,27%2y)).

Hence we obtain

LE ()

j=1 PjieA;
i w(C(Q; [2771,212)))
= ¢

3u(R")

—

{P=(r0)eR",r>4} = U;.’iZE j(€; 1, C). Then E(e; u, C) is finally covered by a sequence
of balls (B( i), B(P1,6)) (j=2,3,...;i=1,2,...) satisfying

Z( pi )2 C V(P WP, Z( i )"-C SR e
= IP],zl V; (P]z) W; (p]z) |Pj,i| €

where B(P1,6) (P1 = (1,0, ...,0) € R") is the ball which covers {P = (r,0) € R"; r < 4}.
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3. Proof of Theorem 1

We only prove the case p > 1 and y > 0, the remaining cases can be proved similarly.
For any € > 0, there exists Rc > 1 such that

u(Q)|
j; WdGQ <E.

(R 1+ Fk

The relation G(€; a)(P, Q) < G(€; 0)(P, Q) implies this inequality (see [1])
PI(CY; a)(P, Q) < PI(C%;0)(P, Q).

For0 <s < % and any fixed point P = (r,0) € C,(Q) — E(e; p, C) satisfying r >

L = Sy ILR), Iz = Su(Q;(Re, 37]), I = Su(Q (31, 37), Is = Su(Q;[31,L)), I
Su(;[1, %)), we write

2Re, let I

6
PI G, 0P) = Y f1 PI(Q;a, m)(P, Qu(Q)dog
i=1 Vi
5
- Y [ Pr@o®ou@isn - [
i=1 Vi 7
' f PI(Q; 0, m)(P, Qu(Q)dog,
Is
which yields that
7
PIm,u)(P) < Y Ui(P),
=1
where

U(P) = fl IPIQ; o) (Pl (@i o WAL 2,3, 4,5),

Ue(P) =

< Mr‘ik(pl(G))ftqfk_llu(Q)ldoQ
I

Mr‘ikRlel'k+LI’V]'k+{y}_1(P1(®). (13)
U (P) < Mr'iq:(©). (14)

Us(P) < Mer'n 17410, @), (15)
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We obtain by (11), Lemma 1 (ii) and Holder’s inequality

Us(P)

IA

Mr'ixqp1(©) M u(Q)ldog
S»I(Q;[ghm))

< Mern V0 @), (16)

By (12) and Lemma 1 (iii), we consider the inequality

Uy(P) < U,(P) + U (P),

where

LL’I(P):M(p1(®)ft1_”|u(Q)ldaQ, Ui’(P):Mr(pl(G))f luEQ)lndaQ.
L L IP=Q
We first have
u,(P) Mg1(©) fl £t u(Q)ldog &

)f tu7 w(Q)ldog
Su(Q;(§1,00))
< Merns e @),

A
z
‘I\
s
€

which is similar to the estimate of Us(P).
Next, we shall estimate U/ (P).

Take a sufficiently small positive number d3

IfP=(r,0) e C,Q)-TII
hence

uyp) <

{QeR":|P-Q| <06(P)} = @, we have
i(P)

WP =M ; Li(m "P1(®) Ill’uf%ll" doq,

where i(P) is a positive integer satisfying 2/P)716(P) < £ < 2P)5(P).
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Since r@1(©) < M6(P) for any P = (r,0) € C,(€) (see [10, 11]), similar to the estimate of U} (P), we obtain

u(Q)l
ff;i(p) "1(@) [P —Ql" doq

200 @0(P [ o) (@l

IN

i(P

IA

Mol (@)5(P)" f A u(Q)ldog

H;(P

IA

My ol (@)5(P) " f Hu(Q)ldog
Hi(P)
et u(H(P))
< Mer T 0@ Gy

fori=0,1,2,...,iP).
Since P = (r,0) ¢ E(e; u, C), we have from (3)

p(Hi(P))
{2'o(P)}r=*

Mu(B(P, 2'6(P)))[V1(2'6(P)) Wi (2'6(P) I [2'6(P)]"

MM(P; u, Q)
e[Vi(r)Wi(n]r2
er*™ (i=0,1,2,...,iP) = 1).

IANIN A

and
pHip(P) _ 2
{2ip(P)yn=¢ —

<

MuBE Vi GWGP (5
So

Uy (P) < Mer'ot = (17)

We only consider Uy(P) in, sem>1,s Uy(P) = 0 for m = 0. By the definition of E(Q; a,m), (1)

and Lemma 2, we see

.

Uz(P) < 0

where

Wt Wt
ORI ) = V@ OO
t s f

110 = Vien© | oo
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o<+ -n+l+1 then (-, —n+2+ W il 2= —)g +n—1> 0. Notice that
Vi1 (£) Vi1 (r) ¢l r
V; <M < Mrimek t>1,R. < -).
i Vit r ’ ( € s)

Thus, by (3), (5) and Holder’s inequality we conclude

7 = VinNe(©) f V'Tglel 9Q
< MVi(r)g:(©) f :Hl(t) ‘)zE)QtZLdOQ
2 m+1k ]
L Mr‘m+1,k_ Re_ Gt 1 )= n+1(P1(®)‘

Analogous to the estimate of q;.(r), we have

77 (r) < Mer'ow 71, @),
Thus we can conclude that
9,(r) < Mer'tu g (@),

which yields

U;(P) < Mer'm7%1 0 (@). (18)
By (11), Lemma 2 and Holder’s inequality wghave
UP) < MVya0)r(©) [
J o1 W””) daQ);
(19)

(r,0) € Cu(€Y; (Re, +0)) — E(e; , C). Finally, there ex1sts an addl—
¢]), which together with Lemma 3, gives the conclusion of Theorem

) € Ca(€), take a number satisfying R > max(1, %) (0 <s < 2).
d Lemma 2, we have

IPI(CY; a, m)(P, Q)l|u(Q)ldog

Sn(Q;(R,00))
[u(Q)I
< Voheu® =" do
1(e1(®) 5@ R Vit (D12
< MV (ne:(©)

< o009,
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Then IPI¢, (m, u)(P) is absolutely convergent and finite for any P € C,(Q). Thus PI{,(m, u)(P) is a gener-
alized harmonic function on C,(Q).

Now we study the boundary behavior of IPIf, (1, u)(P). Let Q' = (¢, ®’) € dC,(Q) be any fixed point and
I be any positive number satisfying I > max(#’ + 1 2R).

Set xsq) is the characteristic function of S(I) = {Q = (t,®) € dC,(Q), t < I} and write

P (m, u)(P) = ( f + f + f )]P]I(Q;a,m)(P, Qu(Q)dog
S,(€%(0,1) S,,(Q;[l,%l]) Sn(Q;(%erO))
- wE) - P+ urp),
where

IKa,mP,Q)

u® = [ PIOE QuQoo, U'P) = [ :
Su(@Q0,31) Su(@IL31) "o

u(p) = f PI(Q; a, m)(P, Qu(Q)doo.
Sa(Q(31,00))

Notice that U’(P) is the Poisson a-integral of ”(Q)XS(Z ), we ha
G%ir%’(p]-z,((a) =0(j=123...;1<0v<0)asP=(r,0) > Q =(

from the definition of the kernel function K(Q; a, m)(P, Q). U]
Zero.
So the function IPII¢, (1, 1)(P) can be continuously

= u(Q’). Since

lim U’(P)=0
P—(Q’,PeC,(Q)

: a _ ’
o Q!,‘%?c” - T, (m, u)(P) = u(Q’)

for any Q' = (¢, 9’) € dC,(Q) from the a
Theorem 2.
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