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Abstract. In this paper, we construct a modified Poisson-Sch integral on cones. As applications, we not only
obtain the asymptotic behaviors of generalized harmonic functions but also characterize the geometrical
properties of the exceptional sets with respect to the Schrödinger operator on cones.

1. Introduction and Main Results

Let R and R+ be the set of all real numbers and the set of all positive real numbers, respectively.
We denote by Rn(n ≥ 2) the n-dimensional Euclidean space. A point in Rn is denoted by P = (X, xn),
X = (x1, x2, . . . , xn−1). The Euclidean distance between two points P and Q in Rn is denoted by |P −Q|. Also
|P −O| with the origin O of Rn is simply denoted by |P|. The boundary and the closure of a set S in Rn are
denoted by ∂S and S, respectively.

We introduce a system of spherical coordinates (r,Θ), Θ = (θ1, θ2, . . . , θn−1), in Rn which are related to
cartesian coordinates (x1, x2, . . . , xn−1, xn) by xn = r cosθ1.

The unit sphere and the upper half unit sphere in Rn are denoted by Sn−1 and Sn−1
+ , respectively. For

simplicity, a point (1,Θ) on Sn−1 and the set {Θ; (1,Θ) ∈ Ω} for a set Ω, Ω ⊂ Sn−1, are often identified with Θ
and Ω, respectively. For two sets Ξ ⊂ R+ and Ω ⊂ Sn−1, the set {(r,Θ) ∈ Rn; r ∈ Ξ, (1,Θ) ∈ Ω} in Rn is simply
denoted by Ξ ×Ω. In particular, the half space R+ × Sn−1

+ = {(X, xn) ∈ Rn; xn > 0}will be denoted by Tn.
For P ∈ Rn and r > 0, let B(P, r) denote the open ball with center at P and radius r in Rn. Sr = ∂B(O, r).

By Cn(Ω), we denote the set R+ ×Ω in Rn with the domain Ω on Sn−1. We call it a cone. Then Tn is a special
cone obtained by putting Ω = Sn−1

+ . We denote the sets I ×Ω and I × ∂Ω with an interval on R by Cn(Ω; I)
and Sn(Ω; I). By Sn(Ω; r) we denote Cn(Ω) ∩ Sr. By Sn(Ω) we denote Sn(Ω; (0,+∞)) which is ∂Cn(Ω) − {O}.

We shall say that a set E ⊂ Cn(Ω) has a covering {r j,R j} if there exists a sequence of balls {B j}with centers
in Cn(Ω) such that E ⊂ ∪∞j=1B j, where r j is the radius of B j and R j is the distance between the origin and the
center of B j.

Let Aa denote the class of nonnegative radial potentials a(P), i.e. 0 ≤ a(P) = a(r), P = (r,Θ) ∈ Cn(Ω), such
that a ∈ Lb

loc(Cn(Ω)) with some b > n/2 if n ≥ 4 and with b = 2 if n = 2 or n = 3.
This article is devoted to the stationary Schrödinger equation

Schau(P) = −∆u(P) + a(P)u(P) = 0 for P ∈ Cn(Ω),
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where ∆ is the Laplace operator and a ∈ Aa. These solutions are called generalized harmonic functions
(associated with the operator Scha). Note that they are (classical) harmonic functions in the case a = 0.
Under these assumptions the operator Scha can be extended in the usual way from the space C∞0 (Cn(Ω)) to
an essentially self-adjoint operator on L2(Cn(Ω)) (see [13]). We will denote it Scha as well. This last one has
a Green-Sch function G(Ω; a)(P,Q). Here G(Ω; a)(P,Q) is positive on Cn(Ω) and its inner normal derivative
∂G(Ω; a)(P,Q)/∂nQ ≥ 0. We denote this derivative by PI(Ω; a)(P,Q), which is called the Poisson-Sch kernel
with respect to Cn(Ω). We remark that G(Ω; 0)(P,Q) and PI(Ω; 0)(P,Q) are the Green function and Poisson
kernel of the Laplacian in Cn(Ω) respectively.

Let ∆∗ be a Laplace-Beltrami operator (spherical part of the Laplace) on Ω ⊂ Sn−1 andλ j ( j = 1, 2, 3 . . . , 0 <
λ1 < λ2 ≤ λ3 ≤ . . .) be the eigenvalues of the eigenvalue problem for ∆∗ on Ω (see, e.g., [14, p. 41])

∆∗ϕ(Θ) + λϕ(Θ) = 0 in Ω,

ϕ(Θ) = 0 on ∂Ω.

Corresponding eigenfunctions are denoted by ϕ jv (1 ≤ v ≤ v j), where v j is the multiplicity of λ j. We set
λ0 = 0, norm the eigenfunctions in L2(Ω) and ϕ1 = ϕ11 > 0.

In order to ensure the existences of λ j ( j = 1, 2, 3 . . .). We put a rather strong assumption on Ω: if n ≥ 3,
then Ω is a C2,α-domain (0 < α < 1) on Sn−1 surrounded by a finite number of mutually disjoint closed
hypersurfaces (e.g. see [4, p. 88-89] for the definition of C2,α-domain). Then ϕ jv ∈ C2(Ω) ( j = 1, 2, 3, . . . , 1 ≤
v ≤ v j) and ∂ϕ1/∂n > 0 on ∂Ω (here and below, ∂/∂n denotes differentiation along the interior normal).

Hence well-known estimates (see, e.g., [6, p. 14]) imply the following inequality:

v j∑
v=1

ϕ jv(Θ)
∂ϕ jv(Φ)
∂nΦ

≤M(n) j2n−1, (1)

where the symbol M(n) denotes a constant depending only on n.
Let V j(r) ( j = 1, 2, 3, . . .) and W j(r) ( j = 1, 2, 3, . . .) stand, respectively, for the increasing and non-

increasing, as r→ +∞, solutions of the equation

−Q′′(r) −
n − 1

r
Q′(r) +

(
λ j

r2 + a(r)
)

Q(r) = 0, 0 < r < ∞, (2)

normalized under the condition V j(1) = W j(1) = 1 (see [17–19]).
We shall also consider the class Ba, consisting of the potentials a ∈ Aa such that there exists a finite limit

lim
r→∞

r2a(r) = k ∈ [0,∞), moreover, r−1
|r2a(r) − k| ∈ L(1,∞). If a ∈ Ba, then the g.h.f.s are continuous (see [15]).

In the rest of paper, we assume that a ∈ Ba and we shall suppress this assumption for simplicity. Further,
we use the standard notations u+ = max(u, 0), u− = −min(u, 0), [d] is the integer part of d and d = [d] + {d},
where d is a positive real number.

Denote

ι±j,k =
2 − n ±

√
(n − 2)2 + 4(k + λ j)

2
( j = 0, 1, 2, 3 . . .).

It is known (see [5]) that in the case under consideration the solutions to the equation (2) have the
asymptotics

V j(r) ∼ d1rι
+
j,k , W j(r) ∼ d2rι

−

j,k , as r→∞, (3)

where d1 and d2 are two positive constants.
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If a ∈ Aa, it is known that the following expansion for the Green function G(Ω; a)(P,Q) (see [3, Ch. 11])

G(Ω; a)(P,Q) =

∞∑
j=0

1
χ′(1)

V j(min(r, t))W j(max(r, t))

 v j∑
v=1

ϕ jv(Θ)ϕ jv(Φ)

 , (4)

where P = (r,Θ), Q = (t,Φ), r , t and χ′(s) = w (W1(r),V1(r)) |r=s is their Wronskian.
The series converges uniformly if either r ≤ st or t ≤ sr (0 < s < 1). The expansion (4) can also be

rewritten in terms of the Gegenbauer polynomials. In the case a = 0, this expansion G(Ω; 0)(P,Q) coincides
with the result by Qiao-Deng (see [8, 9]). In the case a = 0 and Ω = Sn−1

+ , this expansion G(Sn−1
+ ; 0)(P,Q)

coincides with the result by Qiao-Deng (see [7]).
For a nonnegative integer m and two points P = (r,Θ),Q = (t,Φ) ∈ Cn(Ω), we put

K(Ω; a,m)(P,Q) =

{
0 if 0 < t < 1,
K̃(Ω; a,m)(P,Q) if 1 ≤ t < ∞,

where

K̃(Ω; a,m)(P,Q) =

m∑
j=0

1
χ′(1)

V j(r)W j(t)

 v j∑
v=1

ϕ jv(Θ)ϕ jv(Φ)

 .
If we modify the Green-Sch function on cones as follows

G(Ω; a,m)(P,Q) = G(Ω; a)(P,Q) − K(Ω; a,m)(P,Q)

for two points P = (r,Θ),Q = (t,Φ) ∈ Cn(Ω), then the modified Poisson-Sch on cones can be defined by

PI(Ω; a,m)(P,Q) =
∂G(Ω; a,m)(P,Q)

∂nQ
.

We remark that

PI(Ω; a, 0)(P,Q) = PI(Ω; a)(P,Q),

In this paper, we shall use the following modified Poisson-Sch integrals defined by

PIaΩ(m,u)(P) =

∫
Sn(Ω)
PI(Ω; a,m)(P,Q)u(Q)dσQ,

where u(Q) is a continuous function on ∂Cn(Ω) and dσQ is the surface area element on Sn(Ω).
If γ is a real number and γ ≥ 0 (resp. γ < 0), we assume in addition that

ι+[γ],k + {γ} > −ι+1,k + 1,

(resp. − ι+[−γ],k − {−γ} > −ι
+
1,k + 1, )

ι+[γ],k + {γ} − n + 1 ≤ ι+m+1,k < ι
+
[γ],k + {γ} − n + 2.

(
resp. − ι+[−γ],k − {−γ} − n + 1 ≤ ι+m+1,k < −ι

+
[−γ],k − {−γ} − n + 2.

)
If these conditions all hold, we write γ ∈ C (k,m,n) (resp. γ ∈ D(k,m,n)).
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Let γ ∈ C (k,m,n) (resp. γ ∈ D(k,m,n)) and u be functions on ∂Cn(Ω) satisfying∫
Sn(Ω)

|u(t,Φ)|

1 + tι
+
[γ],k+{γ}

dσQ < ∞.

(
resp.

∫
Sn(Ω)
|u(t,Φ)|(1 + tι

+
[−γ],k+{−γ})dσQ < ∞.

)
(5)

For γ and u, we define the positive measure µ (resp. ν) on Rn by

dµ(Q) =

{
|u(t,Φ)|t−ι

+
[γ],k−{γ}dσQ Q = (t,Φ) ∈ Sn(Ω; (1,+∞)),

0 Q ∈ Rn
− Sn(Ω; (1,+∞)).

(
resp. dν(Q) =

{
|u(t,Φ)|tι

+
[−γ],k+{−γ}dσQ Q = (t,Φ) ∈ Sn(Ω; (1,+∞)),

0 Q ∈ Rn
− Sn(Ω; (1,+∞)).

)
We remark that the total mass of µ and ν are finite.
Let ε > 0, 0 ≤ ζ ≤ n andµbe any positive measure on Rn having finite mass. For each P = (r,Θ) ∈ Rn

−{O},
the maximal function is defined by

M(P;µ, ζ) = sup
0<ρ< r

2

µ(B(P, ρ))V1(ρ)W1(ρ)ρζ−2.

The set

{P = (r,Θ) ∈ Rn
− {O}; M(P;µ, ζ)[V1(ρ)W1(ρ)]−1ρ2−ζ > ε}

is denoted by E(ε;µ, ζ).
Recently, Qiao-Deng (cf. [9, Corollary 2.1]) gave the asymptotic behavior of PI0Ω(m,u)(P) at infinity on

cones.

Theorem A. If u is a continuous function on ∂Cn(Ω) satisfying∫
∂Cn(Ω)

|u(t,Φ)|

1 + tι
+
n,0+m

dQ < ∞,

then

lim
r→∞,P=(r,Θ)∈Tn

PI0Ω(m,u)(P) = o(ι+m+1,0ϕ
1−n
1 (Θ)).

Now we have

Theorem 1. If γ ∈ C (k,m,n) (resp. γ ∈ D(k,m,n)) and u is a measurable function on ∂Cn(Ω) satisfying
(5), then there exists a covering {r j,R j} ( j = 0, 1, 2, . . .) of E(ε;µ, ζ) (resp. E(ε; ν, ζ)) (⊂ Cn(Ω)) satisfying

∞∑
j=0

(
r j

R j

)2−ζ V j(R j)
V j(r j)

W j(R j)
W j(r j)

< ∞ (6)

such that

lim
r→∞,P=(r,Θ)∈Cn(Ω)−E(ε;µ,ζ)

r−ι
+
[γ],k−{γ}+n−1ϕζ−1

1 (Θ)PIaΩ(m,u)(P) = 0. (7)

(
resp. lim

r→∞,P=(r,Θ)∈Cn(Ω)−E(ε;ν,ζ)
rι

+
[−γ],k+{−γ}+n−1ϕζ−1

1 (Θ)PIaΩ(m,u)(P) = 0.
)

(8)
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Remark. In the case that a = 0, γ = n + m and ζ = n, then (6) is a finite sum, the set E(ε;µ,n) is a bounded
set and (7)-(8) hold in Cn(Ω). This is just the result of Theorem A.

As an application of modified Green-Sch kernel function and Theorem 1, we give the solutions of the
Dirichlet problem for the Schrödinger operator on Cn(Ω).

Theorem 2. If u is a continuous function on ∂Cn(Ω) satisfying∫
Sn(Ω)

|u(t,Φ)|
1 + Vm+1(t)tn−1 dσQ < ∞, (9)

then the function PIaΩ(m,u)(P) satisfies

PIaΩ(m,u) ∈ C2(Cn(Ω)) ∩ C0(Cn(Ω)),

SchaPI
a
Ω(m,u) = 0 in Cn(Ω),

PIaΩ(m,u) = u on ∂Cn(Ω)

lim
r→∞,P=(r,Θ)∈Cn(Ω)

r−ι
+
m+1,kϕn−1

1 (Θ)PIaΩ(m,u)(P) = 0.

2. Lemmas

Throughout this paper, Let M denote various constants independent of the variables in questions, which
may be different from line to line.

Lemma 1.

(i)PI(Ω; a)(P,Q) ≤Mrι
−

1,k tι
+
1,k−1ϕ1(Θ)

(ii)(resp. PI(Ω; a)(P,Q) ≤Mrι
+
1,k tι

−

1,k−1ϕ1(Θ))

for any P = (r,Θ) ∈ Cn(Ω) and any Q = (t,Φ) ∈ Sn(Ω) satisfying 0 < t
r ≤

4
5 (resp. 0 < r

t ≤
4
5 );

(iii)PI(Ω; 0)(P,Q) ≤M
ϕ1(Θ)
tn−1 + M

rϕ1(Θ)
|P −Q|n

for any P = (r,Θ) ∈ Cn(Ω) and any Q = (t,Φ) ∈ Sn(Ω; ( 4
5 r, 5

4 r)).

Proof. (i) and (ii) are obtained by B. Levin (see [3, Ch. 11]). (iii) follows from V. S. Azarin (see [2, Lemma
4 and Remark]).

Lemma 2 (see [3, p. 356] ). For a non-negative integer m, we have

|PI(Ω; a,m)(P,Q)| ≤M(n,m, s)Vm+1(r)
Wm+1(t)

t
ϕ1(Θ)

∂ϕ1(Φ)
∂nΦ

(10)

for any P = (r,Θ) ∈ Cn(Ω) and Q = (t,Φ) ∈ Sn(Ω) satisfying r ≤ st (0 < s < 1), where M(n,m, s) is a constant
dependent of n, m and s.
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Lemma 3. Let µ be any positive measure on Rn having finite total mass. Then E(ε;µ, ζ) has a covering
{r j,R j} ( j = 1, 2, . . .) satisfying

∞∑
j=1

(
r j

R j

)2−ζ V j(R j)
V j(r j)

W j(R j)
W j(r j)

< ∞.

Proof. Set

E j(ε;µ, ζ) = E(ε;µ, ζ) ∩ Cn(Ω; [2 j, 2 j+1)) ( j = 2, 3, 4, . . .).

If P = (r,Θ) ∈ E j(ε;µ, ζ), then there exists a positive number ρ(P) such that(
ρ(P)

r

)2−ζ V j(r)
V j(ρ(P))

W j(r)
W j(ρ(P))

∼

(
ρ(P)

r

)n−ζ

≤
µ(B(P, ρ(P)))

ε
.

Here E j(ε;µ, ζ) can be covered by the union of a family of balls (B(P j,i, ρ j,i) : P j,i ∈ E j(ε;µ,n − ζ))
(ρ j,i = ρ(P j,i)). By the Vitali Lemma (see [16]), there exists Λ j ⊂ E j(ε;µ,n − ζ), which is at most countable,
such that (B(P j,i, ρ j,i) : P j,i ∈ Λ j) are disjoint and E j(ε;µ, ζ) ⊂ ∪P j,i∈Λ j B(P j,i, 5ρ j,i).

So

∪
∞

j=2E j(ε;µ, ζ) ⊂ ∪∞j=2 ∪P j,i∈Λ j B(P j,i, 5ρ j,i).

On the other hand, note that ∪P j,i∈Λ j B(P j,i, ρ j,i) ⊂ Cn(Ω; [2 j−1, 2 j+2)), so that

∑
P j,i∈Λ j

(
5ρ j,i

|P j,i|

)2−ζ V j(|P j,i|)
V j(5ρ j,i)

W j(|P j,i|)
W j(5ρ j,i)

∼

∑
P j,i∈Λ j

(
5ρ j,i

|P j,i|

)n−ζ

≤ 5n−ζ
∑

P j,i∈Λ j

µ(B(P j,i, ρ j,i))
ε

≤
5n−ζ

ε
µ(Cn(Ω; [2 j−1, 2 j+2))).

Hence we obtain

∞∑
j=1

∑
P j,i∈Λ j

(
ρ j,i

|P j,i|

)2−ζ V j(|P j,i|)
V j(ρ j,i)

W j(|P j,i|)
W j(ρ j,i)

∼

∞∑
j=1

∑
P j,i∈Λ j

(
ρ j,i

|P j,i|

)n−ζ

≤

∞∑
j=1

µ(Cn(Ω; [2 j−1, 2 j+2)))
ε

≤
3µ(Rn)
ε

.

Since E(ε;µ, ζ) ∩ {P = (r,Θ) ∈ Rn; r ≥ 4} = ∪∞j=2E j(ε;µ, ζ). Then E(ε;µ, ζ) is finally covered by a sequence
of balls (B(P j,i, ρ j,i),B(P1, 6)) ( j = 2, 3, . . . ; i = 1, 2, . . .) satisfying

∑
j,i

(
ρ j,i

|P j,i|

)2−ζ V j(|P j,i|)
V j(ρ j,i)

W j(|P j,i|)
W j(ρ j,i)

∼

∑
j,i

(
ρ j,i

|P j,i|

)n−ζ

≤
3µ(Rn)
ε

+ 6n−ζ < +∞,

where B(P1, 6) (P1 = (1, 0, . . . , 0) ∈ Rn) is the ball which covers {P = (r,Θ) ∈ Rn; r < 4}.
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3. Proof of Theorem 1

We only prove the case p > 1 and γ ≥ 0, the remaining cases can be proved similarly.
For any ε > 0, there exists Rε > 1 such that∫

Sn(Ω;(Rε,∞))

|u(Q)|

1 + tι
+
[γ],k+{γ}

dσQ < ε. (11)

The relation G(Ω; a)(P,Q) ≤ G(Ω; 0)(P,Q) implies this inequality (see [1])

PI(Ω; a)(P,Q) ≤ PI(Ω; 0)(P,Q). (12)

For 0 < s < 4
5 and any fixed point P = (r,Θ) ∈ Cn(Ω) − E(ε;µ, ζ) satisfying r > 5

4 Rε, let I1 = Sn(Ω; (0, 1)),
I2 = Sn(Ω; [1,Rε]), I3 = Sn(Ω; (Rε, 4

5 r]), I4 = Sn(Ω; ( 4
5 r, 5

4 r)), I5 = Sn(Ω; [ 5
4 r, r

s )), I6 = Sn(Ω; [ r
s ,∞)) and I7 =

Sn(Ω; [1, r
s )), we write

PIaΩ(m,u)(P) =

6∑
i=1

∫
Ii

PI(Ω; a,m)(P,Q)u(Q)dσQ

=

5∑
i=1

∫
Ii

PI(Ω; a)(P,Q)u(Q)dσQ −

∫
I7

∂K̃(Ω; a,m)(P,Q)
∂nQ

u(Q)dσQ

+

∫
I6

PI(Ω; a,m)(P,Q)u(Q)dσQ,

which yields that

PIaΩ(m,u)(P) ≤

7∑
i=1

Ui(P),

where

Ui(P) =

∫
Ii

|PI(Ω; a)(P,Q)||u(Q)|dσQ (i = 1, 2, 3, 4, 5),

U6(P) =

∫
I6

|PI(Ω; a,m)(P,Q)||u(Q)|dσQ,

U7(P) =

∫
I7

|
∂K̃(Ω; a,m)(P,Q)

∂nQ
||u(Q)|dσQ.

By (5), (11), Lemma 1 (i) and Hölder’s inequality, we have the following growth estimates

U2(P) ≤ Mrι
−

1,kϕ1(Θ)
∫

I2

tι
+
1,k−1
|u(Q)|dσQ

≤ Mrι
−

1,k R
ι+1,k+ι

+
[γ],k+{γ}−1

ε ϕ1(Θ). (13)

U1(P) ≤Mrι
−

1,kϕ1(Θ). (14)

U3(P) ≤Mεrι
+
[γ],k+{γ}−n+1ϕ1(Θ). (15)
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We obtain by (11), Lemma 1 (ii) and Hölder’s inequality

U5(P) ≤ Mrι
+
1,kϕ1(Θ)

∫
Sn(Ω;[ 5

4 r,∞))
tι
−

1,k−1
|u(Q)|dσQ

≤ Mεrι
+
[γ],k+{γ}−n+1ϕ1(Θ). (16)

By (12) and Lemma 1 (iii), we consider the inequality

U4(P) ≤ U′4(P) + U′′4 (P),

where

U′4(P) = Mϕ1(Θ)
∫

I4

t1−n
|u(Q)|dσQ, U′′4 (P) = Mrϕ1(Θ)

∫
I4

|u(Q)|
|P −Q|n

dσQ.

We first have

U′4(P) = Mϕ1(Θ)
∫

I4

tι
+
1,k+ι

−

1,k−1
|u(Q)|dσQ

≤ Mrι
+
1,kϕ1(Θ)

∫
Sn(Ω;( 4

5 r,∞))
tι
−

1,k−1
|u(Q)|dσQ

≤ Mεrι
+
[γ],k+{γ}−n+1ϕ1(Θ),

which is similar to the estimate of U5(P).
Next, we shall estimate U′′4 (P).
Take a sufficiently small positive number d3 such that I4 ⊂ B(P, 1

2 r) for any P = (r,Θ) ∈ Π(d3), where

Π(d3) = {P = (r,Θ) ∈ Cn(Ω); inf
z∈∂Ω
|(1,Θ) − (1, z)| < d3, 0 < r < ∞}.

and divide Cn(Ω) into two sets Π(d3) and Cn(Ω) −Π(d3).
If P = (r,Θ) ∈ Cn(Ω)−Π(d3), then there exists a positive d′3 such that |P−Q| ≥ d′3r for any Q ∈ Sn(Ω), and

hence

U′′4 (P) ≤ Mϕ1(Θ)
∫

I4

t1−n
|u(Q)|dσQ

≤ Mεrι
+
[γ],k+{γ}−n+1ϕ1(Θ),

which is similar to the estimate of U′4(P).
We shall consider the case P = (r,Θ) ∈ Π(d3). Now put

Hi(P) = {Q ∈ I4; 2i−1δ(P) ≤ |P −Q| < 2iδ(P)},

where δ(P) = inf
Q∈∂Cn(Ω)

|P −Q|.

Since Sn(Ω) ∩ {Q ∈ Rn : |P −Q| < δ(P)} = ∅, we have

U′′4 (P) = M
i(P)∑
i=1

∫
Hi(P)

rϕ1(Θ)
|u(Q)|
|P −Q|n

dσQ,

where i(P) is a positive integer satisfying 2i(P)−1δ(P) ≤ r
2 < 2i(P)δ(P).
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Since rϕ1(Θ) ≤Mδ(P) for any P = (r,Θ) ∈ Cn(Ω) (see [10, 11]), similar to the estimate of U′4(P), we obtain∫
Hi(P)

rϕ1(Θ)
|u(Q)|
|P −Q|n

dσQ

≤ 2(1−i)nϕ1(Θ)δ(P)ζ−n
∫

Hi(P)
δ(P)ζ−n

|u(Q)|dσQ

≤ Mϕ1−ζ
1 (Θ)δ(P)ζ−n

∫
Hi(P)

r1−ζ
|u(Q)|dσQ

≤ Mrn− ζpϕ1−ζ
1 (Θ)δ(P)ζ−n

∫
Hi(P)

t1−n
|u(Q)|dσQ

≤ Mεr
ι+[γ],k+{γ}−n−ζ+1

p +nϕ1−ζ
1 (Θ)

µ(Hi(P))
(2iδ(P))ζ

for i = 0, 1, 2, . . . , i(P).
Since P = (r,Θ) < E(ε;µ, ζ), we have from (3)

µ(Hi(P))
{2iδ(P)}n−ζ

≤ Mµ(B(P, 2iδ(P)))[V1(2iδ(P))W1(2iδ(P))]p[2iδ(P)]ζ−2

≤ MM(P;µ, ζ)
≤ ε[V1(r)W1(r)]prζ−2

≤ εrζ−n (i = 0, 1, 2, . . . , i(P) − 1).

and

µ(Hi(P)(P))
{2iδ(P)}n−ζ

≤Mµ(B(P,
r
2

))[V1(
r
2

)W1(
r
2

)]p
( r

2

)ζ−2
≤ εrζ−n.

So

U′′4 (P) ≤Mεrι
+
[γ],k+{γ}−n+1ϕ1−ζ

1 (Θ). (17)

We only consider U7(P) in the case m ≥ 1, since U7(P) ≡ 0 for m = 0. By the definition of K̃(Ω; a,m), (1)
and Lemma 2, we see

U7(P) ≤
M
χ′(1)

m∑
j=0

j2n−1q j(r),

where

q j(r) = V j(r)ϕ1(Θ)
∫

I7

W j(t)|u(Q)|
t

dσQ.

To estimate q j(r), we write

q j(r) ≤ q′j(r) + q′′j (r),

where

q′j(r) = V j(r)ϕ1(Θ)
∫

I2

W j(t)|u(Q)|
t

dσQ, q′′j (r) = V j(r)ϕ1(Θ)
∫

Sn(Ω;(Rε, r
s ))

W j(t)|u(Q)|
t

dσQ.
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If ι+m+1,k < ι
+
[γ],k + {γ} − n + 1 + 1, then (−ι+m+1,k − n + 2 +

ι+[γ],k+{γ}

p )q + n − 1 > 0. Notice that

V j(r)
Vm+1(t)
V j(t)t

≤M
Vm+1(r)

r
≤Mrι

+
m+1,k−1 (t ≥ 1,Rε <

r
s

).

Thus, by (3), (5) and Hölder’s inequality we conclude

q′j(r) = V j(r)ϕ1(Θ)
∫

I2

|u(Q)|
V j(t)tn−1 dσQ

≤ MV j(r)ϕ1(Θ)
∫

I2

Vm+1(t)

tι
+
m+1,k

|u(Q)|
V j(t)tn−1 dσQ

≤ Mrι
+
m+1,k−1R

−ι+m+1,k+1+ι+[γ],k+{γ}−n+1
ε ϕ1(Θ).

Analogous to the estimate of q′j(r), we have

q′′j (r) ≤Mεrι
+
[γ],k+{γ}−n+1ϕ1(Θ).

Thus we can conclude that

q j(r) ≤Mεrι
+
[γ],k+{γ}−n+1ϕ1(Θ),

which yields

U7(P) ≤Mεrι
+
[γ],k+{γ}−n+1ϕ1(Θ). (18)

By (11), Lemma 2 and Hölder’s inequality we have

U6(P) ≤ MVm+1(r)ϕ1(Θ)
∫

I6

|u(Q)|
Vm+1(t)tn−1 dσQ

≤ MVm+1(r)ϕ1(Θ)
( ∫

I6

|u(Q)|

tι
+
[γ],k+{γ}

dσQ

) 1
p
( ∫

I6

t(−ι+m+1,k−n+1+
ι+[γ],k+{γ}

p )qdσQ

) 1
q

≤ Mεrι
+
[γ],k+{γ}−n+1ϕ1(Θ). (19)

Combining (13)-(19), we obtain that if Rε is sufficiently large and ε is sufficiently small, thenPIaΩ(m,u)(P) =

o(rι
+
[γ],k+{γ}−n+1ϕ1−ζ

1 (Θ)) as r→ ∞, where P = (r,Θ) ∈ Cn(Ω; (Rε,+∞)) − E(ε;µ, ζ). Finally, there exists an addi-
tional finite ball B0 covering Cn(Ω; (0,Rε]), which together with Lemma 3, gives the conclusion of Theorem
1.

4. Proof of Theorem 2

For any fixed P = (r,Θ) ∈ Cn(Ω), take a number satisfying R > max(1, r
s ) (0 < s < 4

5 ).
By (9) and Lemma 2, we have∫

Sn(Ω;(R,∞))
|PI(Ω; a,m)(P,Q)||u(Q)|dσQ

≤ Vm+1(r)ϕ1(Θ)
∫

Sn(Ω;(R,∞))

|u(Q)|
Vm+1(t)tn−1 dσQ

≤ MVm+1(r)ϕ1(Θ)
< ∞.
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Then PIaΩ(m,u)(P) is absolutely convergent and finite for any P ∈ Cn(Ω). Thus PIaΩ(m,u)(P) is a gener-
alized harmonic function on Cn(Ω).

Now we study the boundary behavior of PIaΩ(m,u)(P). Let Q′ = (t′,Φ′) ∈ ∂Cn(Ω) be any fixed point and
l be any positive number satisfying l > max(t′ + 1, 4

5 R).
Set χS(l) is the characteristic function of S(l) = {Q = (t,Φ) ∈ ∂Cn(Ω), t ≤ l} and write

PIaΩ(m,u)(P) =
( ∫

Sn(Ω;(0,1)
+

∫
Sn(Ω;[1, 5

4 l])
+

∫
Sn(Ω;( 5

4 l,∞))

)
PI(Ω; a,m)(P,Q)u(Q)dσQ

= U′(P) −U′′(P) + U′′′(P),

where

U′(P) =

∫
Sn(Ω;(0, 5

4 l])
PI(Ω; a)(P,Q)u(Q)dσQ, U′′(P) =

∫
Sn(Ω;[1, 5

4 l])

∂K(Ω; a,m)(P,Q)
∂nQ

u(Q)dσQ,

U′′′(P) =

∫
Sn(Ω;( 5

4 l,∞))
PI(Ω; a,m)(P,Q)u(Q)dσQ.

Notice that U′(P) is the Poisson a-integral of u(Q)χS( 5
4 l), we have lim

P→Q′,P∈Cn(Ω)
U′(P) = u(Q′). Since

lim
Θ→Φ′

ϕ jv(Θ) = 0 ( j = 1, 2, 3 . . . ; 1 ≤ v ≤ v j) as P = (r,Θ)→ Q′ = (t′,Φ′) ∈ Sn(Ω), we have lim
P→Q′,P∈Cn(Ω)

U′′(P) = 0

from the definition of the kernel function K(Ω; a,m)(P,Q). U′′′(P) = O(Vm+1(r)ϕ1(Θ)) and therefore tends to
zero.

So the function PIaΩ(m,u)(P) can be continuously extended to Cn(Ω) such that

lim
P→Q′,P∈Cn(Ω)

PIaΩ(m,u)(P) = u(Q′)

for any Q′ = (t′,Φ′) ∈ ∂Cn(Ω) from the arbitrariness of l, which with Theorem 1 gives the conclusion of
Theorem 2.
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