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Abstract. For two square matrices P and Q over skew fields, the explicit formulas for the Drazin inverse
of P + Q are given in the cases of (i) PQ2 = 0, P2QP = 0, (QP)2 = 0; (ii) P2QP = 0, P3Q = 0, Q2 = 0, which
extend the results in [M.F. Martı́nez-Serrano et al., On the Drazin inverse of block matrices and generalized
Schur complement, Appl. Math. Comput.] and [C. Deng et al., New additive results for the generalized
Drazin inverse, J. Math. Anal. Appl.]. By using these formulas, the representations for the Drazin inverse
of 2 × 2 block matrices over skew fields are obtained, which also extend some existing results.

1. Introduction

Let Km×n and Cm×n be the sets of all the m × n matrices over the skew field K and the complex field
C, respectively. For A ∈Kn×n, the index of A is the smallest nonnegative integer k such that rank(Ak) =
rank(Ak+1), denoted by Ind(A). The matrix X ∈ Kn×n is called the Drazin inverse of A ∈ Kn×n if the following
equations hold

Ak+1X = Ak, XAX = X, AX = XA,

X is denoted by AD. It is well-known that AD exists and is unique [1]. When Ind(A) = 1, AD is called the
group inverse of A, denoted by A#. If A is invertible, then AD = A−1. Throughout this paper, denote the
identity matrix by I and Aπ = I − AAD. The Drazin inverse has many applications in singular differential
equations and singular difference equations [2, 3], Markov chains [4, 5] and iterative methods [6].

For P, Q ∈Cn×n, Drazin gave the explicit formula of (P + Q)D in the case of PQ = QP = 0 [7], which
spurred the interest in additive formula of the Drazin inverse. And after that, there emerged many results
on it. In 2001, the formula of (P + Q)D was obtained when PQ = 0 in [8]. In 2009, the representation of
(P + Q)D was establshed in the case of

P2Q = 0, Q2 = 0 (see[9]). (1)
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In 2010, Deng and Wei derived a result under the condition PQ = QP (see [10]), and the results were
extended to the case of P3Q = QP, Q3P = PQ (see [11]). In 2011, the additive formula was given under the
new conditions

PQ2 = 0, PQP = 0 (see[12]). (2)

In 2012 and 2013, Bu et al. gave the formulas of (P + Q)D under the conditions (i) P2Q = 0, Q2P = 0; (ii)
P3Q = 0, QPQ = 0, QP2Q = 0 (see [13]); (iii)S2i−1PS2i−1P = 0, S2i−1PS2i−1QS2(i−1) = 0, QS2(i−1)PQS2(i−1)Q2 = 0,
where Si = (P + Q)i, i ≥ 1 (see [14]), respectively. And there are some other papers on the additive results
for the Drazin inverse of matrices and operators in [15, 16].

In 1979, Campbell and Meyer proposed an open problem to find an explicit representation for the

Drazin inverse of M =

(
A B
C D

)
∈ Cn×n (A and D are square) (see [2]). In 1989, Miao gave an expression

for the Drazin inverse of M with the conditions AπB = 0, CAπ = 0 and the generalized Schur complement
S = D−CADB = 0 (see [17]). In 2006, the above result was extended to the case of AAπB = 0, CAπB = 0, S = 0
(see [18]). And there are some results on the representations for the Drazin (group) inverse of M (see [9],
[12], [19]-[23], [28]). Here we list some cases:

A2AπB = 0, CAπAB = 0, BCAπB = 0, S = 0 (see [9]); (3)

AAπBC = 0, CAπBC = 0, S = 0 (see [12]); (4)

ABC = 0, S = 0 (see [9]). (5)

For the representations for the Drazin (group) inverse of block matrices over skew fields, there are some
papers showed by Cao et al. (see [24]-[26]) and Bu et al. (see [27]). This paper is also devoted to the
formulas for the Drazin inverse of block matrices over skew fields.

We organize this paper as follows. In section 2, we present some lemmas which are used in the proof of
the main results. In section 3, for the matrices P, Q ∈ Kn×n, we give the explicit formulas of (P + Q)D under
the following conditions, respectively:

(i) PQ2 = 0, P2QP = 0, (QP)2 = 0;
(ii) P2QP = 0, P3Q = 0, Q2 = 0.

Clearly, the above results generalize Equ.(2) and Equ.(1), respectively. In section 4, we apply the formulas

obtained in section 3 to establish the representations for the Drazin inverse of M =

(
A B
C D

)
∈ Kn×n (A and

D are square) under the following conditions, respectively:
(i) A2AπBC = 0, BCAπBC = 0, CAAπBC = 0, S = 0;
(ii) A2BC = 0, ABCA = 0, ABCB = 0, S = 0.

Obviously, the above statement (i) generalizes Equ.(3) and Equ.(4), the above statement (ii) generalizes
Equ.(5).

2. Some Lemmas

In order to prove our main results, we first present some lemmas as follows.

Lemma 2.1. [25] Let A ∈Km×n and B ∈Kn×m. Then

(AB)D = A((BA)2)DB and (AB)D A = A (BA)D .

Lemma 2.2. [26] Let M =

(
A B
0 C

)
∈Kn×n, where A and C are square. Then

MD =

(
AD X
0 CD

)
,

where X =
l−1∑
i=0

(
AD

)i+2
BCiCπ + Aπ

s−1∑
i=0

AiB
(
CD

)i+2
− ADBCD, s = Ind (A) and l = Ind (C).
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Lemma 2.3. Let P, Q ∈Kn×n. If PQ = 0, then

(P + Q)D =
(
I −QQD

) l−1∑
i=0

Qi
(
PD

)i+1
+

s−1∑
i=0

(
QD

)i+1
Pi

(
I − PPD

)
,

where l = Ind (Q) , s = Ind (P).

The above result over complex fields was given in [8]. Similarly, it can be extended to skew fields. Here
we omit the proof.

3. Some Formulas of (P + Q)D over Skew Fields

For P, Q ∈Cn×n, the formula of (P + Q)D with the conditions PQ2 = 0 and PQP = 0 was given in [12].
Next, we establish a theorem, which extends the above result.

Theorem 3.1. Let P, Q ∈Kn×n. If PQ2 = 0, P2QP = 0 and (QP)2 = 0, then

(P + Q)D =
[
(Qπ
−QDP + PQ(PD)

2
)(PD)

2
+ (QD)

3
(P + Q)Pπ

]
(P + Q)

+

m2−1∑
i=0

Q2i+1Qπ (P + Q)
(
PD

)2i+4
(P + Q)

+

m1−1∑
i=0

(QD)
2i+5 (P + Q) P2i+2Pπ (P + Q) ,

where m1 = Ind(P2) and m2 = Ind(Q2).

Proof. It is easy to see that

(P + Q)D = (P + Q)((P + Q)2)D

= (P + Q)(P2 + PQ + QP + Q2)D (6)

= (P + Q)(M + N)D,

where M = P2 + PQ and N = Q2 + QP. Since PQ2 = 0 and P2QP = 0, we have MN = 0. It follows from
Lemma 2.3 that

(M + N)D =

l−1∑
i=0

(ND)i+1Mi(I −MMD) +

s−1∑
i=0

(
I −NND

)
Ni

(
MD

)i+1
, (7)

where l = Ind(M), s = Ind(N). Lemma 2.3 shows that

ND = (I −Q2(Q2)D)
l−1∑
i=0

Q2i((QP)D)i+1 +

s−1∑
i=0

(QD)2(i+1)(QP)i(I −QP(QP)D),

where l = Ind(Q2), s = Ind(QP). Note that (QP)2 = 0, then (QP)D = 0. Hence,

ND =

s−1∑
i=0

(QD)2(i+1)(QP)i = (Q2)D + (QD)3P.

It follows from P(Q2)D = PQ2(Q4)D = 0 that (ND)2 = (QD)4 + (QD)5P. Similarly,

(ND)i = (QD)2i + (QD)2i+1P, (8)
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for i > 1. From P2QP = 0, (QP)2 = 0 and Lemma 2.1, we get

MD = [P(P + Q)]D = P[(P2 + QP)2]D(P + Q)

= P(P4 + QP3)D(P + Q).

By applying Lemma 2.3 to P4 + QP3, we have

(P4 + QP3)D = (PD)4 + Q(PD)5,

hence,

MD = (PD)2 + (PD)3Q + PQ(PD)4 + PQ(PD)5Q.

It follows from PDPQPD = (P2)DP2QP(P2)D = 0 that (MD)2 = (PD)4 +(PD)5Q+PQ(PD)6 +PQ(PD)7Q. Similarly,

(MD)i = (PD)2i + (PD)2i+1Q + PQ(PD)2i+2 + PQ(PD)2i+3Q, (9)

for i > 1. By substituting Equ.(8) and Equ.(9) into Equ.(7), and substituting Equ.(7) into Equ.(6), it yields
that

(P + Q)D =
[
(Qπ
−QDP + PQ(PD)2)(PD)2 + (QD)3(P + Q)Pπ

]
(P + Q)

+

s−1∑
i=0

Q2i+1Qπ (P + Q)
(
PD

)2i+4
(P + Q) (10)

+

l−1∑
i=0

(QD)2i+5 (P + Q) P2i+2Pπ (P + Q) .

Let m1 = Ind(P2) and m2 = Ind(Q2). For i > m1, j > m2, we have

P2i+2Pπ = 0 and Q2 j+1Qπ = 0.

In Equ.(10), replace l and s with m1 and m2, respectively. Thus, the proof is complete.

Similarly, we give the following theorem, which generalizes Theorem 3.1 in [12].

Theorem 3.2. Let P, Q ∈ Kn×n. If P2Q = 0, QPQ2 = 0 and (QP)2 = 0, then

(P + Q)D = (P + Q)
[
Qπ(P + Q)(PD)

3
+ (QD)

2
(Pπ −QPD + (QD)

2
PQ)

]
.

+

m1−1∑
i=0

(P + Q) Q2i+2Qπ (P + Q)
(
PD

)2i+5

+

m2−1∑
i=0

(P + Q) (QD)
2i+4 (P + Q) P2i+1Pπ,

where m1 = Ind(Q2),m2 = Ind(P2).

Next, we give an example which doesn’t satisfy the conditions of Theorem 2.1 in [12] to demonstrate
Theorem 3.1.
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Example 3.1 Let H= {a + bi + cj + dk} be the real quaternion skew fields, where a, b, c and d are real
numbers. Consider the following two matrices P, Q ∈H7×7,

P =



i 0 0 0 j 0 0
0 0 k 0 0 0 0
0 0 0 k 0 0 0
0 0 0 0 0 0 0
j 0 0 j i 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, Q =



0 0 0 0 0 0 0
0 0 0 0 i 0 0
0 0 0 0 i 0 0
0 0 0 0 0 j 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 k


,

Computation gives that
Ind(P2) = 2, Ind(Q2) = 1,

PD =



−i/2 0 0 0 − j/2 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
− j/2 0 0 − j/2 −i/2 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


, Pπ =



0 0 0 −1/2 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 k/2 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

QD =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −k


, Qπ =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


.

Since PQ2 = 0,P2QP = 0, (QP)2 = 0, and applying Theorem 3.1, we get

(P + Q)D =



−i/2 0 0 0 − j/2 − j/4 0
−1/4 0 0 −1/4 − j/4 −i/2 − k/4 −i/4 − k/8 0

0 0 0 − j/4 −i/2 −i/4 0
0 0 0 0 0 0 0
− j/2 0 0 − j/2 −i/2 −i/4 0

0 0 0 0 0 0 0
0 0 0 0 0 0 −k


.

When P2Q = 0 and Q2 = 0, the formula of (P + Q)D was given in [9]. The following theorem generalizes
the above result.

Theorem 3.3. Let P, Q ∈Kn×n. If P2QP = 0, P3Q = 0 and Q2 = 0, then

(P + Q)D =

n2−1∑
i=0

(
P(QP)i(QP)π + (QP)i(QP)πP

)(
PD

)2i+2

+

n1−1∑
i=0

(
P
(
(QP)D

)i+1
+

(
(QP)D

)i+1
P
)
P2iPπ

+ (QP)DQ + P((QP)D)2PQ − PD,

where n1 = Ind(P2), n2 = Ind(QP).
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Proof. It is easy to see that

(P + Q)D = (P + Q)((P + Q)2)D

= (P + Q)(P2 + PQ + QP + Q2)D

= (P + Q)(M + N)D, (11)

where M = P2 + Q2, N = PQ + QP. Since P2QP = 0, P3Q = 0 and Q2 = 0, we have

(M + N)D =

l−1∑
i=0

(ND)i+1Mi(I −MMD) +

s−1∑
i=0

(
I −NND

)
Ni

(
MD

)i+1
, (12)

where l = Ind(M), s = Ind(N). Clearly,

(MD)i = (PD)2i, (13)

for i > 1. Note that the matrix N satisfies the condition of Lemma 2.3, then

(N)D =
(
I − (QP)DQP

) l−1∑
i=0

(QP)i
(
(PQ)D

)i+1

+

s−1∑
i=0

(
(QP)D

)i+1
(PQ)i

(
I − PQ(PQ)D

)
,

where l = Ind (QP) and s = Ind (PQ). It follows from P2QP = 0 that P(PQ)D = P2QPQ((PQ)3)D = 0 and
(QP)D(PQ)2 = ((QP)2)DQP2QPQ = 0. Hence,

ND =
(
I − (QP)DQP

)
(PQ)D +

1∑
i=0

(
(QP)D

)i+1
(PQ)i

(
I − PQ(PQ)D

)
= (PQ)D + (QP)D + ((QP)D)2PQ.

It follows from Q2 = 0 and P2QP = 0 that (ND)2 = ((PQ)D)2 + ((QP)D)2 + ((QP)D)3PQ. Similarly,

(ND)i = ((PQ)D)i + ((QP)D)i + ((QP)D)i+1PQ, (14)

for i > 1. By substituting Equ.(13) and Equ.(14) into Equ.(12), and substituting Equ.(12) into Equ.(11), it
yields that

(P + Q)D =

l−1∑
i=0

(
P
(
(QP)D

)i+1
+

(
(QP)D

)i+1
P
)
P2iPπ

+

s−1∑
i=0

(
P (QP)i (QP)π + (QP)i (QP)π P

) (
PD

)2i+2
(15)

+ (QP)D Q + P((QP)D)2PQ − PD.

Let n1 = Ind(P2) and n2 = Ind(QP). For i > n1, j > n2, we have

P2iPπ = 0, (QP) j(QP)π = 0.

In Equ.(15), replace l and s with n1 and n2, respectively. Thus, the proof is complete.

Similarly, we give the following theorem, which generalizes Corollary 2.3 in [9].
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Theorem 3.4. Let P, Q ∈Kn×n. If PQP2 = 0, QP3 = 0 and Q2 = 0, then

(P + Q)D =

n1−1∑
i=0

P2iPπ[P
(
(PQ)D

)i+1
+

(
(PQ)D

)i+1
P]

+

n2−1∑
i=0

(
PD

)2i+2
[P (PQ)i (PQ)π + (PQ)i (PQ)π P]

+ Q (PQ)D + QP((PQ)D)2P − PD,

where n1 = Ind(P2), n2 = Ind(PQ).

The following is an example which doesn’t satisfy the conditions of Theorem 2.2 in [9] to demonstrate
Theorem 3.3.

Example 3.2 Let H= {a + bi + cj + dk} be the real quaternion skew fields, where a, b, c and d are real
numbers. Consider the following two matrices P, Q ∈H5×5

P =


i 0 0 0 0
0 0 j 0 0
0 0 0 0 0
0 k 0 0 0
0 0 0 0 0

 ,Q =


0 0 0 0 0
0 0 0 j 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0

 ,
Computation gives that

Ind
(
P2

)
= 2, Ind (QP) = 1,

PD =


−i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , Pπ =


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

(QP)D =


0 0 0 0 0
0 −i 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (QP)π =


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .
Since P2QP = 0, P3Q = 0 and Q2 = 0, applying Theorem 3.3, we get

(P + Q)D =


−i 0 0 0 0
0 0 −k −k 0
0 0 0 0 0
0 − j 0 0 −1
0 0 0 0 0

 .

4. The Formulas of the Drazin Inverse for some 2 × 2 Block Matrices over Skew Fields

In this section, we consider a class of block matrices with generalized Schur complement being zero,
that is

M =

(
A B
C D

)
∈ Kn×n, A ∈ Kr×r and D = CADB. (16)

We give the expression of MD, which generalizes Theorem 3.1 in [9] and Theorem 3.3 in [12].
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Theorem 4.1. Let M be the form as in (16). If A2AπBC = 0, BCAπBC = 0 and CAAπBC = 0, then

MD = M2(PD
1 )4

I +

s−1∑
i=0

(PD
1 )i+1

(
Ai+1Aπ 0
CAiAπ 0

) M,

where s = Ind(A) and
(
PD

1

)t
=

(
I

CAD

)
[(AW)D]t+1A

(
I ADB

)
, W = AAD + ADBCAD, t > 1.

Proof. Note that M =

(
A AADB
C CADB

)
+

(
0 AπB
0 0

)
:= P+Q. Obviously, Q2 = 0. The conditions A2AπBC = 0,

BCAπBC = 0 and CAAπBC = 0 imply that P2QP = 0 and (QP)2 = 0. Applying Theorem 3.1, it yields that

MD =
(
P2 + QP + PQ

)
(PD)4 (P + Q) . (17)

We consider P =

(
A2AD AADB
CAAD CADB

)
+

(
AAπ 0
CAπ 0

)
:= P1 + P2. Obviously, P2P1 = 0 and Ps+1

2 = 0, where

s = Ind(A). It follows from Lemma 2.3 that

PD =

s∑
i=0

(PD
1 )i+1Pi

2. (18)

Decompose PD
1 into the following form

PD
1 =

(
A2AD AADB
CAAD CADB

)D

=

(
I 0

CAD I

) (
AW AADB

0 0

)D (
I 0

−CAD I

)
,

where W = AAD + ADBCAD. It follows from Lemma 2.2 that(
AW AADB

0 0

)D

=

(
(AW)D ((AW)D)2AADB

0 0

)
=

(
I
0

) (
(AW)D ((AW)D)2AADB

)
.

Since (AW)DA2AD = (AW)DA, we have

PD
1 =

(
I

CAD

)
[(AW)D]2A

(
I ADB

)
.

Computation shows that(
PD

1

)t
=

(
I

CAD

)
[(AW)D]t+1A

(
I ADB

)
, (19)

for t > 1. By substituting Equ.(19) into Equ.(18), we obtain the expression of PD, substituting PD into
Equ.(17), the expression of MD is obtained.

By using Theorem 3.2, we have the following theorem, which generalizes Corollary 3.2 in [9] and
Theorem 3.4 in [12].

Theorem 4.2. Let M be the form as in (16). If BCA2Aπ = 0, BCAAπB = 0 and BCAπBC = 0, then

MD = M

 s−1∑
i=0

(
Ai+1Aπ 0
CAiAπ 0

)
(PD

1 )i+1 + I

 (PD
1 )4M2,

where s = Ind(A) and
(
PD

1

)t
=

(
I

CAD

)
[(AW)D]t+1A

(
I ADB

)
, W = AAD + ADBCAD, t > 1.
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Next. we give an example which does not satisfy the conditions of Theorem 3.3 in [12] to demonstrate
Theorem 4.1.

Example 4.1 Let H= {a + bi + cj + dk} be the real quaternion skew fields, where a, b, c and d are real

numbers. Consider a 2 × 2 block matrix M =

(
A B
C D

)
overH, where

A =


1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , B =


1 0 0
1 0 0
1 0 0
0 1 0

 ,

C =

 1 0 0 1
0 0 0 0
0 0 1 0

 , D =

 1 0 0
0 0 0
0 0 0

 .
Computation shows that

Ind (A) = 3, AD =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

Aπ =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (P1)D =



1/4 0 0 0 1/4 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1/4 0 0 0 1/4 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Since A2AπBC = 0, BCAπBC = 0, CAAπBC = 0, D = CADB, by Theorem 4.1, we obtain

MD =



1/4 0 0 1/8 1/4 1/16 0
3/16 0 0 3/32 3/16 3/64 0
1/8 0 0 1/16 1/8 1/32 0
0 0 0 0 0 0 0

1/4 0 0 1/8 1/4 1/16 0
0 0 0 0 0 0 0

1/16 0 0 1/32 1/16 1/64 0


.

Next, we give a theorem, which generalizes Theorem 3.6 in [9].

Theorem 4.3. Let M be the form as in (16). If A2BC = 0, ABCA = 0 and ABCB = 0, then

MD =

 BΨA + AD

+B((CB)D)3[(CB)2CAD
− CABC] BΨB + (I − B(CB)DC)(AD)2B

ΨA2 + (CB)DCAπ ΨAB − (CB)DCADB

 ,
where Ψ =

w1−1∑
i=0

((CB)D)i+2CA2iAπ +
w2−1∑
i=0

(CB)π (CB)i C(AD)2i+4, w1 = Ind
(
A2

)
and w2 = Ind (CB).
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Proof. Note that M =

(
A B
0 CADB

)
+

(
0 0
C 0

)
:= P + Q. Obviously, Q2 = 0. The conditions A2BC =

0, ABCA = 0 and ABCB = 0 imply that P2QP = 0, P3Q = 0. It follows from Theorem 3.3 that

MD =

n1−1∑
i=0

(
P
(
(QP)D

)i+1
+

(
(QP)D

)i+1
P
)
P2iPπ

+

n2−1∑
i=0

(
P (QP)i (QP)π + (QP)i (QP)π P

) (
PD

)2i+2
(20)

+ (QP)D Q + P((QP)D)2PQ − PD,

where n1 = Ind(P2),n2 = Ind(QP). Lemma 2.2 gives that

(PD)2i+2 =

(
(AD)2i+2 (AD)2i+3B

0 0

)
, (21)

((QP)D)i+1 =

(
0 0

((CB)D)i+2CA ((CB)D)i+1

)
, (22)

for i > 0. By substituting Equ.(21) and Equ.(22) into Equ.(20), it yields that

MD =

(
BΨA + Γ BΨB + (I − B(CB)DC)(AD)2B

ΨA2 + (CB)DCAπ ΨAB − (CB)DCADB

)
,

where

Ψ =

n1−1∑
i=0

((CB)D)i+2CA2iAπ +

n2−1∑
i=0

(CB)π (CB)i C(AD)2i+4, (23)

Γ = AD + B((CB)D)3[(CB)2CAD
− CABC].

Let w1 = Ind
(
A2

)
and w2 = Ind (CB). For i > w1, j > w2, we have

A2iAπ = 0, (CB) j(CB)π = 0.

In Equ.(23), replace n1 and n2 with w1 and w2, respectively. Thus, we complete the proof of the theorem.

Applying the Theorem 3.4, we get the following theorem, it generalizes Corollary 3.7 in [9].

Theorem 4.4. Let M be the form as in (16). If BCA2 = 0, ABCA = 0 and CBCA = 0, then

MD =

(
AΨC + AD(I − B(CB)DC) + BCAB((CB)D)3C A2Ψ + AπB(CB)D

CΨC + C(AD)2(I − B(CB)DC) CAΨ − CADB(CB)D

)
,

where Ψ =
w1−1∑
i=0

(AD)2i+4B(CB)π (CB)i +
w2−1∑
i=0

A2iAπB((CB)D)i+2, w1 = Ind (CB) and w2 = Ind
(
A2

)
.

The following is an example which does not satisfy the conditions of Theorem 3.6 in [9] to demonstrate
Theorem 4.3.

Example 4.2 Let H= {a + bi + cj + dk} be the real quaternion skew fields, where a, b, c and d are real

numbers. Consider a 2 × 2 block matrix M =

(
A B
C D

)
overH, where

A =


1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B =


1 0 0 1
0 0 0 0
1 1 −1 1
1 1 −1 1

 ,
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C =


1 1 1 1
0 1 0 1
0 −1 0 1
−1 −1 −1 −1

 , D =


1 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 −1

 .
Computation gives that

Ind
(
A2

)
= 1, Ind(CB) = 2,

AD =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Aπ =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (CB)D = 0, (CB)π = I.

Since A2BC = 0, ABCA = 0, ABCB = 0, D = CADB, by Theorem 4.3, we obtain

MD =



1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 −1 0 0 −1


.
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