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Abstract. The main purpose of this paper is to introduce the spaces @’; [A, M, A,p], we [A,M,A,p] and
wy [A, M, A, p] generated by infinite matrices defined by Orlicz functions. Some properties of these spaces
are discussed. Also we introduce the concept of Sy [A, A] —statistical convergence and derive some results
between the spaces Sg [A, A] and Wy [A, A]. Further, we study some geometrical properties such as order
continuous, the Fatou property and the Banach-Saks property of the new space w [A, A, p]. Finally, we
introduce the notion of Sy [A, A] —statistical convergence of order a of real number sequences and obtain
some inclusion relations between the set of S[A, A] —statistical convergence of order a.

1. Introduction

Let p = (px) be a bounded sequence of positive real numbers. If H = sup, px < oo, then for any complex
numbers a; and by

Jai + bl < C (lagl”* + o) M
where C = max(1,2H1). Also, for any complex number a, (see [18])
laP* < max (1, |a|H). 2)

We denote w, £, c and ¢y, for the spaces of all, bounded, convergent, null sequences, respectively. Also, by
¢, and ¢, we denote the spaces of all absolutely summable and p-absolutely summable series, respectively.
Recall that a sequence (x(i));2; in a Banach space X is called Schauder (or basis) of X if for each x € X there
exists a unique sequence (a(i));; of scalars such that x = Y2, a(i)x(i), i.e. lim,—e .1y a(i)x(i) = x. A sequence
space X with a linear topology is called a K-space if each of the projection maps P; : X — C defined by
Pi(x) = x(i) for x = (x(i))i>; € X is continuous for each natural i. A Fréchet space is a complete metric linear
space and the metric is generated by a F-norm and a Fréchet space which is a K-space is called an FK-space
i.e. a K-space X is called an FK-space if X is a complete linear metric space. In other words, X is an FK-space
if X is a Fréchet space with contnuous cordinatewise projections. All the sequence spaces mentioned above
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are FK-space except the space cgo. An FK-space X which contains the space cp is said to have the property
AK if for every sequence (x(i))32; € X, x = Y20, x(i)e(i) where e(i) = (0,0, ...1"7%%,0,0, ...).

A Banach space X is said to be a Kothe sequence space if X is a subspace of w such that

(a) if x e w,y € X and |x(i)| < |y(i)| for all i € N, then x € X and ||x|| < ||yl
(b) there exists an element x € X such that x(i) > 0 for all i € IN.

We say that x € X is order continuous if for any sequence (x,) € X such that x,(i) < |x(7)| for all i € IN and
x,(i) = 0 as n — oo we have ||x,|| = 0 asn — oo holds.

A Kothe sequence space X is said to be order continuous if all sequences in X are order continuous. It is
easy to see that x € X order continuous if and only if [|(0,0, ..., 0, x(n + 1), x(n + 2),...)|]| = 0 as n — oo.

A Kothe sequence space X is said to have the Fatou property if for any real sequence x and (x,) in X such
that x,, T x coordinatewisely and sup,, [|x,|| < oo, we have that x € X and ||x,|| — [lx|| as n — oo.

A Banach space X is said to have the Banach-Saks property if every bounded sequence (x,) in X admits a
subsequence (z,) such that the sequence (x(z)) is convergent in X with respect to the norm, where

Z1+ 2+ ..o+ 2

T forall k € IN.

t(z) =
Some of works on geometric properties of sequence space can be found in [1, 2, 16, 19].

An Orlicz function M is a function M : [0,00) — [0, o) which is continuous, convex, nondecreasing
function such that M(0) = 0, M(x) > 0 for x > 0 and M (x) — oo as x — o0. If convexity of Orlicz function is
replaced by M(x + y) < M (x) + M (y) then this function is called the modulus function and characterized by
Nakano [20], followed by Ruckle [24]. An Orlicz function M is said to satisfy Ay—condition for all values u,
if there exists K > 0 such that M(2u) < KM(u), u > 0.

Lemma 1.1. An Orlicz function satisfies the inequality M (Ax) < AM (x) for all A with 0 < A < 1.

Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to construct the sequence space

Im = {(xk) : ZM(@) < oo, for some r > 0},
k=1

which is a Banach space normed by

el = inf{r >0 iM(@) < 1}.
k=1

The space Iy is closely related to the space I,, which is an Orlicz sequence space with M (x) = |x’, for
1<p<oo.

In the later stage, different Orlicz sequence spaces were introduced and studied by Esi [3, 4, 6], Esi and Et
[5], Glingor and Et [15], Parashar and Choudhary [22], Tripathy and Mahanta [26], Tripathy and Hazarika
[27], and many others.
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2. Classes of Lacunary Orlicz Difference Sequences

The strongly almost summable sequence spaces were introduced and studied by Maddox [18], Nanda
[21], Glingor et al., [12], Esi [7], Gungor and Et [15] and many authors. For matrix maps on sequence spaces
we refer to [23] and for difference sequence spaces we refer to [28-31] and references therein.

By lacunary sequence we mean an increasing sequence 6 = (k;) of positive integers satisfying; ko = 0 and
hy =k, —k,_1 = oo as v — oo. We denote the intervals, which 0 determines, by I, = (k,_1, k,;]. Let A=(11,-]-) be
an infinite matrix of non-negative real numbers with all rows are linearly independent for all7,j =1,2,3, ...
and By, (x) = Y01 axiXysi if the series converges for each k and n. Now we define the following sequence
spaces. Let M be an Orlicz function, p = (px) be a sequence of positive real numbers and 0 = (k,) be a
lacunary sequence, and for p > 0 then

|ABg, () \]"*

wy [A,M, A, p] = {x cew: lim — [M( o )] =0, uniformly on n} ,

NG
we [A,M, A, p] = {x ew: lim 1 [M (M)] =0, for some L, uniformly on n}

r—oo J1, = p
and
Pk
wy [A, M, A, p] = {x Ew: sup hl [M('ABk—p”(x)l)] < 0o, uniformly on n},
r r kel,

where ABy, (x) = Y21 (aki — Axs1,) Xnei-

Theorem 2.1. For any Orlicz function M and a bounded sequence p = (py) of positive real numbers, W% [A, M, A, p],
wo [A, M, A, p] and Wiy [A, M, A, p] are linear spaces over the set of complex field.

Proof. We give the proof only for the space @), [A, M, A, p] and for other spaces follow by applying similar
method. Letx = (xx),y = (yx) € 50\06 [A,M, A,p] and a, B € C. Then there exist p; > 0 and p, > 0 such that

r—o00
r kel, p1

and

Pk
lim [M[‘ABM (y)’]] - 0.
oo h kel

Define p3 = max {2 el p1,2 ‘ B | pg} . Since the operator ABy, is linear and M is non-decreasing and convex, we

have
[M ( |ABj, ((xx +By))| H"
kel,

1 |aABk,, (x)+ﬁABk,,(y)’ a
P

1 ltABg, ()| |BABw: (|
<5 2o (5 [
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1w 1 [ (1ABy @) |ABo N[
Sh_Zﬁ[M( o1 )+M( 0

r kel,

1 [M(wskn (x)|)+M(1AB,m (y)ﬂ]]"k
]’l, kel, P p2

C AB, @I\ C |8Bi [
P (P | s

kel, r kel,

IA

where C = max(1,2"1), soax + y € w? [A,M, A, p], hence it is a linear space. [J

Theorem 2.2. For any Orlicz function M and a bounded sequence p = (px) of positive real numbers, wy [A, M, A, p]
is a topological paranormed space, paranormed by

pe\T
g (x) = inf ppﬁr: (%Z[M('AB’(—;(XN)] ] <1,r=1,23,..

r kel,
where T = max(1,sup, px = H).

Proof. The subadditivity of g follows from the Theorem 2.1 by taking @« = f = 1 and it is clear that
g (x) = g(—x) . Since M(0) = 0, we get inf{p%} = 0 for x = 0. Suppose that x; # 0 for each k € IN. This implies
that ABy, (x) # 0 for each k and n. Let ¢ — 0, then

|ABkn (x)l = oo
e
It follows that

] -

r kel,

which is a contradiction. Now we prove that scalar multiplication is continuous. Let A be any complex
number, by definition

P\
g (Ax) = inf p%: [%Z[M(M)] ] <1,r=1,23,..

r kel, p

1
Pe\T
=inf]p¥ : [%Z[M(Mp’“(x)')] ) <1,r=1,23,..\.

r kel,

Suppose that s = %, then p = s|A| and since |A[* < max (1, |/\|H) we have

1
Pe\T
g (1) < AP < max (1, A1) inf s : [%Z[M(M)] ] <1123,

r kel,

which converges to zero as x converges to zero in wj [A, M, A, p] . Now suppose that A\; — 0 as i — co and x
is fixed in wY [A, M, A, p] . For arbitrary ¢ > 0 and let 7, be a positive integer such that

i 2 () < ()

r kel,
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for some p > 0 and r > r,. This implies that

[z

kel,

for some p > 0 and r > 7,. Let 0 < |A| < 1. Using the convexity of Orlicz function M, for r > r,, we get

> e Ny U NG

kel, kel,

Since M is continuous everywhere in [0, o0), then we consider the function, for r < 7,

o= R

keI

T
Then f is continous at zero. So there is a 0 € (0,1) such that | f (t)| < (%) for 0 < t < 0. Let A be such that
[Ail <6fori>Aandr <7,

1 |AiABy, ()] mh e
[EQM(—;) )]] 3

fori > A and all r, so that g (Ax) — 0 as A — 0. This completes the proof. [
Theorem 2.3. Let the sequence p = (px) be bounded. Then w) [A, M, A, p] C we [A, M, A, p] C Wy [A, M, A, p].
Proof. Letx = (x¢) € wg [A,M, A, p]. Then we have

1 Z[ (|ABkn <x>|)]

kel

C 1 |ABy, (x) —=L|\]"* C L]
< Ly (=) e T ()

kel, kel,

Cvoe 1 ABy, (x) = LI\ LN\
SE;ZW[MC K EJX) |)] +Cmax(1,sup[M(%)] ],

where H = sup, px < o and C = max (1 2H‘1). Thus we have x = (xx) € Wy [A, M, A, p]. The inclusion
wo [A,M, A, p] C wy [A, M, A, p] is obvious. [

Theorem 2.4. If0 < py < gy and ( ) is bounded, then wg [A, M, A, p] C wg [A, M, A, q].

Proof. If we take [M (w)] ‘= wy for all k € N, then using the same technique employed in the proof
of Theorem 2.9 of Guingér et al., [12]. O
Corollary 2.5. The following statements are valid.
(i) If 0 < infypr < 1 forall k € N, then wg [A, M, A, p] C W [A, M, A].
(i) If1 < px < sup,px = H < oo for all k € N, then wg [A, M, A] C wy [A, M, A, p].
The proof of the following result is a routine work, so we omitted.

Proposition 2.6. Let M bean Orlicz function satisfies Ap-condition. Then 5(7% [A, A p] c 5509 [A,M, A, p],wo[A, A, p] C
wo [A, M, A, p] and Wiy [A, A, p] € wyy [A, M, A, p].
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3. New Sequence Space of Order a

In this section let @ € (0, 1] be any real number, 6 = (k,) be a lacunary sequence, and p be a positive real
number such that 1 < p < co. Now we define the following sequence space.

5(75’0[ [A, Al (p) = {x Ew: sup — i 2 |ABj, (x) P < 00, uniformly on n. }

e Iy kel,

Special cases:

(a) Forp =1 wehave wy [A,A] (p) = Wiy, [A,A].
(b) For @ = 1and p = 1 we have w}y [A,A](p) = wy [A, Al

Theorem 3.1. Let a € (0,1] and p be a positive real number such that 1 < p < oo. Then the sequence space
we, [A, A] (p) is a BK-space normed by

1

1 s
el = sup 7 (Z |AB () |”] .

" kel
Proof. The proof of the result is straightforward, so omitted. [J
Theorem 3.2. Let o € (0, 1] and p be a positive real number such that 1 < p < co. Then w, wy [A,A] C wea [A, Al (p).
Proof. The proof of the result is straightforward, so omitted. [J

Theorem 3.3. Let o and B be fixed real numbers such that 0 < o < < 1 and p be a positive real number such that
1 <p < oo. Then wyy [A,A](p) C @g’ﬁ [A, Al (p).

Proof. The proof of the result is straightforward, so omitted. [

Theorem 3.4. Let a and p be fixed real numbers with 0 < a < p < 1 and p be a positive real number such that
1 < p < oo. For any two lacubary sequences 6 = (h,) and ¢ = (I,) for all r, then we;, [A, A] (p) C ww [A, A] (p) if and

only if sup, (%) < oo,

Proof. Letx = (x) € w . [A, Al (p) and sup,, ( ) < 00. Then

sup Z |ABy, (X) P < o0

r kel,

and there exists a positive number K such that h < K and so that lﬁ hﬁ for all . Therefore, we have

Y 8B P < 2 Y IAB ()P,
Iy kel, hy kel,
Now taking supremum over r, we get
sup — ZlABkn (W) < sup o5 Z |ABu () 17
’ lr kel, oI kel,

and hence x € @(‘;’a [A, Al (p).
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Next suppose that wiy, [A,A](p) € w3 ot [A,A]l(p) and sup, (%) = oo. Then there exists an incresing
he
sequence (r;) of natural numbers such that lim; (I—") = o0. Let L be a positive real number, then there exists

Therefore we can write

I,
ip € IN such that lﬁ > L for all ; > ip. Then hy > Llﬁ and so lﬁ > h‘*

T

5 Z IAB, ()P > — Z |ABy, (x) P for all 7; > io.

i kel, r i kel,

Now taking supremum over r; > iy then we get

sup 7 Y ABy (O > sup o= Y 1AB (). 3)

12 r, kel,, riZig r‘ kel,,

Since the relation (3) holds for all L € R* (we may take the number L sufficienlty large), we have

sup — Z |ABy, (x) P

rizi rl kel,,

but x = (xx) € Wiy, [A, A, p] with

e
Sl:p E < 00

Therefore x ¢ w ' [A, Al (p) which contradicts that @' wy, [A,Al(p) C w ' [A, Al (p). Hence sup,., ( ) <oco. O

Corollary 3.5. Let o and B be fixed real numbers with 0 < o < B < 1 and p be a positive real umber such that
1 < p < oo. For any two lacubary sequences 0 = (h,) and ¢ = (I;) for all r > 1, then

(@) Wy, [A, A1 () = T, [4, Al p) if and only if 0 < in, ( )< supr(h—;f) <.
(b) @y, [A, Al (p) = W5, [A, Al (p) if and only if O < inf, (%) < sup, () < eo.
(0) Wy, [A, A1 (p) = T, [A, A] () if and only if 0 < in, (—ﬁ) < sup, (7) co.

|‘

=

We state the following results without proof.
Theorem 3.6. {,[A,A] C w ' [A,A](p) € € [A,A].
Proof. The proof of the result is straightforward, so omitted. [

Theorem 3.7. If0 < p < g, then W}y [A,A] (p) C wiy, [A, Al (9).

Proof. The proof of the result is straightforward, so omitted. O

4. Some Geometric Properties of the New Space

In this section we study some of the geometric properties like order continuous, the Fatou property and
the Banach-Saks property of type p in this new sequence space.

Theorem 4.1. The space wyy, [A, A] (p) is order continuous.
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Proof. To show that the space wjy [A, A](p) is an AK-space. It is easy to see that wi; [A, A] (p) contains
coo which is the space of real sequences which have only a finite number of non—zero coordinates. By
using the definition of AK-properties, we have that x = (x(i)) €wpy, [A, A] (p) has a unique representation
x = Y0y x(ie(i) i.e. |lx— x, = 11(0,0,. L x(j),x(j+1),..)lla = 0as j = oo, which means that z’u\‘” [A, A] (p) has
AK. Therefore BK-space Wy, [A, A] (p) contains cop has AK-property, hence the space wg [A A] (p) is order
continuous. [J

Theorem 4.2. The space wiy, [A, A] (p) has the Fatou property.

Proof. Let x be a real sequence and (x;) be any nondecreasing sequence of non-negative elements form
wy,, [A, A] (p) such that x;(i) — x(i) as j — oo coordinatewisely and sup I [Ixlla < o0.

Let us denote T = sup j [Ixilla- Since the supremum is homogeneous, then we have

1 sup m (Z |ABjy x](z)) ]” < sup hl“ [Z

kel kel,

1
~\ PP
AByy, (x]'(l)) ! 1
= Ixulla =
[l la [1 Lo

Also by the assumptions that (x;) is non-dreceasing and convergent to x coordinatewisely and by the
Beppo-Levi theorem, we have
1
p\F
| <

1

14
7 lim sup 7= [Z 8B (31() I”] - P%[Z

kel,

AByy (x(7))
T

whence

lixlle < T = sup [lxjlle = Iim lxjlla < 0.
j j—00

Therefore x € wyy, [A, A] (p). On the other hand, since 0 < x; for any natural number jand the sequence (x;) is

non-decreasmg, we obtain that the sequence (le] | Ia) isbounded form above by [|x||,. Therefore lim; .« [Ixlla <
|Ixllo which contadicts the above inequality proved already, yields that [|x]|, = lim; e [|xjlla. O

Theorem 4.3. The space wy,, [A, A] (p) has the Banach-Saks property.

Proof. The proof of the result follows from the standard technique. [

5. Lacunary Statistical Convergence

The notion of statistical convergence was introduced by Fast [8] and studied various authors (see
[7,9, 25]). The notion of lacunary statistical convergence was introduced by Fridy and Orhan [10] and has
been investgated for the real case in [11]. For more details on lacunary statistical convergence we refer

to [13, 14] and many others. In this section, we define the concept of §9 [A, Al-statistical convergence and

establish the relationship of g@ [A, A] with wg [A, A]. Also we introduce the notion of §9 [A, A] —statistical
convergence of order « of real number sequences and obtain some inclusion relations between the set of

§[A, A] —statistical convergence of order a.

Definition 5.1. [8] A sequence x = (xy) is said to be statistically convergent to L, if for every € > 0
1
lim—|{k<n: |xx—Ll>¢}|=0.
non

In this case we write S — lim x = L or x;, — L(S).
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Definition 5.2. [10] Let 6 = (k,) be a lacunary sequence. A sequence x = (xy) is said to be lacunary statistically
convergent or Sg-convergent to L, if for every e > 0

1
Iim—{kel,: |xx—L|>¢}|=0.
vk,
In this case we write Sg — limx = L or xy — L(Sg) and Sg = {x e w : Sy —limx = L for some L}.

Definition 5.3. Let 6 = (k,) be a lacunary sequence. A sequence x = (x) is said to be gg [A, Al —convergent to L, if
for every e > 0

limhll{k €l : |ABy, (x)—L| = €}| = 0.

In this case we write Eg [A,A] —limx = L or x; — L(§9 [A, A]).

Theorem 5.4. Let 6 = (k,) be a lacunary sequence.

—

(@) If xx — L(@g [A, A]) then xi — L(Sg [A, Al),
(b) Ifx €l [A, Al and x; — L(Sg [A, A]), then xi — L(@g [A, A]),
(c) Wo[A, Al NI [A Al = Sp[A, Al N 1w [A, A], where

Io[A,A] = {x €w: sup|ABy, ()| < oo}.
k,n

Proof. (a) Suppose that ¢ > 0 and x; — L(wg [A, A]), then we have

Y IABu () =Ll Y ABk ()= L= elik et |ABg ()~ LI > e}l

kel, kel,
[ABy, (0)-L|ze

Therefore x;, — L(§9 [A, A]).
(b) Suppose that x € I, [A, Al and xx — L(S¢ [A, A)), i.e., for some K > 0, |ABy, (x) — L| < K for all k and n.
Given ¢ > 0, we get

1 1 1
) BB () ~Li= 5 Y} ABu () -Li+ - Y 1ABu (@)~ L]
r kel, r kel, r kel,
|ABy, (x)-L|>e |ABy,, (x)-L|<é

K
< W {kel,: |ABg, (x) —L| > €} + ¢,

as ¥ — oo, the right side goes to zero, which implies that x; — L(wg [A, A)).
(c) Follows from (a) and (b). O

Definition 5.5. Let 0 < o < 1 be given. A sequence x = (xy) is said to be almost statistically [A, A] — convergent of
oder o or S* [A, A]-convergent of oder « if there is a real number L such that for every € > 0

lim la [{k <n: |ABg, (x) —L| > ¢€}| = 0.

n—oo 1

In this case we write S¢ [A,A]l —limx = Lorx; — L(§“ [A, A)).
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Definition 5.6. Let O = (k) be a lacunary sequence and 0 < o < 1 be given. A sequence x = (xi) is said to be
S¢ [A, Al —convergent of oder a if there is a real number L such that for every ¢ > 0

1
lim |k € L |ABy (x) ~ LI 2 el = 0. (4)

In this case we write §g [A,A]l =limx = Lorx; — L(§g [A, A]).
Theorem 5.7. Let 0 < a < 1and x = (x¢) and (y = (yx)) be sequences of real numbers.

(a) IfS“ [A, A] = limy x, = xg and ¢ € C, then se [A,A] - limk(cxk) = CXp;
(b) IfS"‘ [A, A] = limy x; = xg and sa [A, A] = limy yx = yo, then sa [A, A] = limy(xx + yx) = X0 + Yo.

Proof. (a) For ¢ = 0, the result is trivial. Suppose that c # 0, then for every ¢ > 0 the result follows form the
following inequality

ol < 1ABy (e0) = ol > el = o fl < 51480 (9 -l >
(b) For every ¢ > 0. The result follows from the from the following inequality.

1
k< 1ABg (x4 y) = (0 + yo)l = e}l

1 € 1 e
S ‘{k <1 :|AByy (x) — x| 2 E}‘ t Hk <1 :|ABk (y) — yol > 5}’

Theorem 5.8. Let 0 < a < 1and x = (x¢) and (y = (yx)) be sequences of real numbers.
(a) If §g [A, A] = limy x; = xg and ¢ € C, then §g [A, A] = limg(cxy) = cxo;
(b) Ing [A, A] = limy x¢ = xg and Sg [A, Al = limy yx = yo, then Sg [A, A] = limg(xx + yi) = X0 + Yo.
Proof. (a) For ¢ = 0, the result is trivial. Suppose that ¢ # 0, then for every ¢ > 0 the result follows form the

following inequality

ellk € 1, £ 1ABy (c3) = exol = el =

{keI IABy, (x) — xOIZH}

hUé

(b) For every € > 0. The result follows from the from the following inequality.

el € £ 18Bes (x-+.) = (o + o)l > )

< {kel |ABg () — ol > }

h a

&
fieet s1aB0 0) - vl > £

Theorem 5.9. If0 < a < <1, then §g [A,A] C 7572 [A, A] and the inclusion is strict.

Proof. The proof of the result follows form the following inequality.

{kel IABgy (x) — |z—|}’

To prove the inclusion is strict, let O be given and we consider a sequence x = (xx) be defined by

[Vh], ifk=1,23,..,[Vh];

0, otherwise.

1
_ﬁl{k €1, 1 |ABy, (x) = L| > ¢} = =
I h

7

ABy(x) = {

Thenwehavexegz[A,A]for%<ﬁslbutx¢§‘é[A,A] for0<a<i. O
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Corollary 5.10. If a sequence is §g [A, Al-convergent to L then it is SolA, Al-convergent to L.

Theorem 5.11. Let 0 < o < 1and 0 = (k,) be a lacunary sequence. If liminf, q, > 1, then se [A,A] C §g [A,A].

Proof. Suppose that liminf, g, > 1, then there exists a 6 > 0 such that g, > 1 + 0 for sufficently large » which
implies that

Iﬁ>—6 =>ha>(—(S )a=>l>—6a 1
ke —1+0 k) ~\1+506 k¢~ (1 +0)*he
Ifxy = L <§“ [A, A]) then for every ¢ > 0 and for sufficiently large » we have

1 1

@ {k <k : |ABgy (x) — L| 2 €} = @ l{k € I : |AByy (x) — L| > €}
> LlerI :|ABy, (x) — L| > €}

(1 +0) ke r =

This complete the proof of the theorem. [

Theorem 5.12. Let 0 < o < 1and 0 = (k,) be a lacunary sequence. If limsup, g, < oo, then se [A,A] C §[A, Al.

Proof. If limsup, g, < oo, then there exists an K > 0 such that g, < K for all . Suppose that x; — L (E‘” [A, A])
and let M, = [{k € I, : |ABy, (x) — L| > €}|. Then form relation (4) for given ¢ > 0 there is an ry € IN such that
forO<a<1

%<g=>%<eforallr>r
he h, o

The rest of the proof of the theorem follows by using the similar technique of Lemma 3 [10]. O

Theorem 5.13. If

hlx
lim inf k_r' 5)

r—00 "

then S[A,A] € S*[A, Al
Proof. For a given ¢ > 0 we have
{k <k :|ABg, (x) = L| = €} D {k < I, : |ABgy, (x) — L| > &}.
Then we have
1 {k <k :|ABg, (x) = L| > €}| > ll{kelr D |ABiy (x) = L| = €}| = iy 1

i @ T

{kel :|ABy, (x) — L| > €}].

By taking limit as ¥ — oo and from relation (5) we have

X — L (E[A, A]) =x =L (Ea [A, A]).



A. Esi, B. Hazarika, A. Esi/ Filomat 30:12 (2016), 3195-3208 3206

Definition 5.14. Let M be an Orlicz function, p = (px) be a sequence of strictly positive real numbers, o € (0,1],
0 = (k,) be a lacunary sequence, and for p > 0, now we define

Eu\g [A, M A, p] = {x cew: lim h_ Z [ ('ABk" () - Ll)] =0, for some L, uniformly on n}.

r—oo
kel,

If M(x) = x and py = p for all k € N then we shall write W} [A, M, A, p] = W% [A, A (p) and if M(x) = x then we
shall write W [A, M, A, p] = w5 [A, A, p].

Theorem 5.15. Let (pi) be a bounded and 0 < infy py < pr < supipr = H < 0. Let a, f € (0,1] be real numbers
such that o < B, M be an Orlicz function and 6 = (k,) be a lacunary sequence, then z’E‘e" [A,M,A,p] gg [A,A].

Proof. Letx = (x) € iEg [A,M, A, p]. Let e > 0be given. As h¥ < h’f for each r we can write

S R A A

hy kel, r kel, kel,
[ABjy (x)-L|ze |AByy (0-L]<e
— Pk _ Pk
> lﬁ Z [M ( |AB, (x) — L )] N Z [M ( |ABy, (x) — L| )]
hr kel, P kel, P
|ABy ()-L|>e | By (0)-L|<e
1 e\[* _ 1 , e
z 5 Z [M(_)] z 3 Z mm([M (e’ [M(El)]H), £ = —
hV kel, p hr kel, p
‘ABk»x(”_LlZ‘ ‘ABk,,(X)—lea

> hlﬁ|{k € I, : |ABy, (x) — L| > e}l min ([M (e1)]", [M(e1)]").

From the above inequality we have (x;) € ’S\g [A,A]l. O

Corollary 5.16. Let 0 < o < 1, M be an Orlicz function and 0 = (k,) be a lacunary sequence, then Eu\g [A,M, A, p] C
Sy A, A].

Theorem 5.17. Let M be an Orlicz function, x = (xx) be a sequence in l [A, A], and 0 = (k,) be a lacunary sequence.
Iflimy o0 1% = 1, then S3 [A, A] € W8 [A, M, A, p].

Proof. Suppose that x = (x¢) is a in I [A, A] and S@ [A,A] = limy xx = L. As x = (x¢) € I [A, A] there exists
K > 0 such that |ABy, (x)| < K for all k and n. For given ¢ > 0 we have

1 |ABi, (x) = LI\ _ 1 |ABi, (x) —LI\["* 1 |ABy, (x) — L|\|"*
g np () = T (P e ()

T kel, kel, r kel,
[ABjy (x)-L|z¢ |ABgyy (9-L|<e
h H Pr
1 K K 1
2 g b2 3 )
r kel, p p r kel, p
[ABg, ()-L|ze |ABy, (¥)-L|<e

o ] e ol )

Therefore we have (x) € w5 [A,M,A,p]. O
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Theorem 5.18. Let M be an Orlicz function and if infy py > 0, then limit of any sequence x = (x;) in w5 [A, M, A, p]
is unique.

Proof. Let limy px = s > 0. Suppose that (xx) — I (fﬁg [A, M, A, p]) and (x;) = b (L'Eg [A, M, A, p]) Then there
exist p; > 0 and p; > 0 such that

_ Pk
lim la Z [M (M)] =0, uniformly on n

r—00
kel, P

and

— LI\
lim 1 Z M AB () ~ Bl (™ _ 0, uniformly on 7.
S S

Let p = max{2p1,2p,}. As M is nondecreasing and convex, we have

1 IL-LI\"* Dy 1 |AB, (x) — 1] \|"* |ABy, (x) — LI\ [
2] e T (P (=)

T kel, kel,

D |AB, (x) = LI\ . D |AB, (x) — LI\

EZ([M(T)] +EZMT —0asr— oo,
kel, kel,

where sup, pr = H and D = max(1, 2H71) Therefore we get

.1 I = LI\[* _
im e T (M| <o

kel,

As limy py = s, we have

e )

and so l; = I,. Hence the limit is unique. O
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