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Abstract. A new class of nonconvex smooth semi-infinite multiobjective fractional programming prob-
lems with both inequality and equality constraints is considered. We formulate and establish several
parametric sufficient optimality conditions for efficient solutions in such nonconvex vector optimization
problems under

(
Φ, ρ

)
-V-invexity and/or generalized

(
Φ, ρ

)
-V-invexity hypotheses. With the reference to

the said functions, we extend some results of efficiency for a larger class of nonconvex smooth semi-infinite
multiobjective programming problems in comparison to those ones previously established in the literature
under other generalized convexity notions. Namely, we prove the sufficient optimality conditions for
such nonconvex semi-infinite multiobjective fractional programming problems in which not all functions
constituting them have the fundamental property of convexity, invexity and most generalized convexity
notions.

1. Introduction

The term multiobjective programming, also known as vector programming, is used to denote a type of
optimization problem in which two or more objectives are to be minimized subject to certain constraints.
Multiobjective fractional programming refers to a vector optimization problem in which the objective
functions are quotients. Nonlinear multiobjective fractional programming problems arise from many
applied areas including portfolio selection, stock cutting, physics, engineering problems, optimal control,
game theory and numerous decision problems in management science. Therefore, considerable attention
has been given recently to obtaining new optimality results for various classes of nonlinear nonconvex
multiobjective fractional programming problems (see, for example, [4], [10], [12], [26], [27], [29], [31] and
the references therein).

Semi-infinite programming became in recent years a powerful tool for the mathematical modeling of
many real-life problems. Semi-infinite programming problems, that is, optimization problems with a finite
number of variables and infinitely many constraints, occur in a wide variety of fields, such as approxi-
mation theory, computer aided design, game theory, boundary values problems, robot trajectory planning
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and pollution control, defect minimization for operator equations, geometry, random graphs related to
Newton flows, wavelet analysis, reliability testing, environmental protection planning, decision making
under uncertainty, statistics, semidefinite programming, geometric programming, disjunctive program-
ming, optimal control problems, robotics, and continuum mechanics, among others, (see, for instance, [15],
[17], [20], [21], [22], and others).

Recently, many scholars have been making deeper research for optimality conditions for semi-infinite
programming (see, for instance, [21], [22], [24], [30], [32], [34]). Although semi-infinite optimization became
a very active research area in recent years, however, so far semi-infinite nonlinear multiobjective fractional
programming problems have not received much attention in optimization literature. Some results for such
vector optimization problems can be found mainly in papers by Zalmai and Zhang [35], [36], [37], [38].

In this paper, therefore, we consider a class of nonconvex semi-infinite multiobjective fractional pro-
gramming problems with both inequality and equality constraints. Several parametric sufficient optimality
conditions for efficiency are established for such a class of nonconvex smooth semi-infinite multiobjective
fractional programming problems in which the functions involved are

(
Φ, ρ

)
-V-invex and/or generalized(

Φ, ρ
)
-V-invex. Subsequently, we illustrate the results established in the paper by a suitable example of

a nonconvex semi-infinite multiobjective fractional programming problem involving
(
Φ, ρ

)
-V-invex func-

tions with respect to the same functional Φ and with respect to, not necessarily, the same ρ. It turns out that
it is not possible to prove efficiency for the considered semi-infinite multiobjective fractional programming
problem under a fairly large number of other generalized convexity notions existing in the literature. Thus,
to the best of our knowledge, all the sufficient optimality conditions established in this paper for the con-
sidered class of nonconvex smooth semi-infinite multiobjective fractional programming problems are new
in the area of semi-infinite programming.

2.
(
Φ, ρ
)
-V-Invexity and Generalized

(
Φ, ρ
)
-V-Invexity

In this section, we provide some definitions and some results that we shall use in the sequel.
The following convention for equalities and inequalities will be used in the paper.
For any x = (x1, x2, ..., xn)T, y =

(
y1, y2, ..., yn

)T, we define:
(i) x = y if and only if xi = yi for all i = 1, 2, ...,n;
(ii) x > y if and only if xi > yi for all i = 1, 2, ...,n;
(iii) x = y if and only if xi = yi for all i = 1, 2, ...,n;
(iv) x ≥ y if and only if x = y and x , y.
Following Jeyakumar and Mond [23] and Caristi et al. [11], we introduce a new class of nonconvex

vector-valued functions. The class of so-called
(
Φ, ρ

)
-V-invex functions is a generalization and extension

both the class of V-invex functions introduced by Jeyakumar and Mond [23] for differentiable multiobjective
programming problems and the class of

(
Φ, ρ

)
-invex functions introduced by Caristi et al. [11] for smooth

scalar optimization problems.
Let X be a nonempty open subset of Rn, u ∈ X be given, and the function f :

(
f1, f2, ..., fk

)
: X → Rk be

differentiable at u ∈ X.

Definition 2.1. If there exist a function Φ : X×X×Rn+1
→ R, where Φ (x,u, ·) is convex on Rn+1, Φ (x,u, (0, a)) = 0

for all x ∈ X and every a ∈ R+ and ρ =
(
ρ1, ..., ρk

)
∈ Rk, where ρi, i = 1, ..., k, are real numbers, and real-valued

functions αi : X × X→ R+\{0}, i = 1, ..., k, such that the following inequalities

fi(x) − fi(u) = Φ
(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
(>), i = 1, ..., k (1)

hold for all x ∈ X, then f is said to be a
(
Φ, ρ

)
-V-invex (strictly

(
Φ, ρ

)
-V-invex) function at u on X.

If inequalities (1) are satisfied at each u, then f is said to be a
(
Φ, ρ

)
-V-invex (strictly

(
Φ, ρ

)
-V-invex) function on X.

Definition 2.2. Each function fi, i = 1, ..., k, satisfying inequality (1) is said to be
(
Φ, ρi

)
-αi-invex (strictly

(
Φ, ρi

)
-αi-

invex) at u on X. If inequality (1) is satisfied at each u, then fi is said to be a
(
Φ, ρi

)
-αi-invex (strictly

(
Φ, ρi

)
-αi-invex)

function on X.
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Remark 2.3. Note that the concept of
(
Φ, ρ

)
-V-invexity generalizes and extends many generalized convexity and

generalized invexity notions, previously introduced in the literature. Indeed, there are the following special cases:

i) If Φ
(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
= ∇ fi (u) (x − u), αi (x,u) ≡ 1, ρi = 0, i = 1, ..., k, then we obtain the definition

of a differentiable vector-valued convex function.
ii) If Φ

(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
= αi (x,u)∇ fi (u) (x − u) and ρi = 0, i = 1, ..., k, then we obtain the definition

of a differentiable V-convex function.
iii) If Φ

(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
= ∇ fi (u) η (x,u) for a certain mapping η : X × X → Rn and, moreover,

αi (x,u) ≡ 1, ρi = 0, i = 1, ..., k, then we obtain the definition of a differentiable invex function (in the scalar
case, k = 1, see, Hanson [18]; in the vectorial case, see, Egudo and Hanson [14]).

iv) If Φ
(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
= αi (x,u)∇ fi (u) η (x,u) for a certain mapping η : X×X→ Rn and, moreover,

ρi = 0, i = 1, ..., k, then we obtain the definition of a differentiable V-invex function (see, Jeyakumar and Mond
[23]).

v) If Φ
(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
= 1

bi(x,u)∇ fi (u) η (x,u) for a certain mapping η : X × X → Rn, bi : X × X →
R+\{0} and ρi = 0, i = 1, ..., k, then

(
Φ, ρ

)
-V-invexity reduces to the definition of a vector-valued

(
b, η

)
-invex

function (see, Bector [7]).
vi) If Φ

(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
= ∇ fi (u) (x − u) + ρ ‖x − u‖2, then

(
Φ, ρ

)
-V-invexity reduces to the definition

of a vector-valued ρ-convex function (see, in the scalar case, Vial [33]).
vii) If Φ

(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
= ∇ fi (u) η (x,u) + ρ ‖θ (x,u)‖2 for a certain mapping η : X × X→ Rn, where

αi (x,u) ≡ 1 and θ : X×X→ Rn, θ (x,u) , 0, whenever x , u, then
(
Φ, ρ

)
-V-invexity reduces to the definition

of a vector-valued ρ-invex function (with respect to η and θ) (see, Craven [13] and also Ahmad [1]).
ix) If Φ

(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
= αi (x,u)∇ fi (u) η (x,u) +ρ ‖θ (x,u)‖2 for a certain mapping η : X×X→ Rn,

where θ : X × X → Rn, θ (x,u) , 0, whenever x , u, then
(
Φ, ρ

)
-V-invexity reduces to the definition of a

V-ρ-invex function (with respect to η and θ) (see, Kuk et al. [25]).
x) If Φ

(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
= F

(
x,u,∇ fi (u)

)
, where F (x,u, ·) is a sublinear functional on Rn andαi (x,u) ≡

1, ρi = 0, i = 1, ..., k, then
(
Φ, ρ

)
-V-invexity reduces to the definition of F-convexity introduced by Hanson and

Mond [19], and considered by Gulati and Islam [16] in a vectorial case.
xi) If Φ

(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
= F

(
x,u,∇ fi (u)

)
+ ρd2 (x,u), where F (x,u, ·) is a sublinear functional on Rn,

αi (x,u) ≡ 1, i = 1, ..., k, and d : X × X→ R, then the concept of
(
Φ, ρ

)
-V-invexity reduces to the definition of(

F, ρ
)
-convexity introduced by Preda [29].

xii) If Φ
(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
= 1

bi(x,u)

(
F
(
x,u,∇ fi (u)

)
+ ρid2 (x,u)

)
, where F (x,u, ·) is a sublinear functional

on Rn, bi : X×X→ R+\{0} and d : X×X→ R, then
(
Φ, ρ

)
-V-invexity reduces to

(
b,F, ρ

)
-convexity introduced

by Pandian [28].
xiii) If αi (x,u) ≡ 1, ρi = 0, i = 1, ..., k, then

(
Φ, ρ

)
-V-invexity reduces to the definition of differentiable

(
Φ, ρ

)
-

invexity introduced by Caristi et al. [11].

Now, in the vectorial case, we introduce the definitions of generalized
(
Φ, ρ

)
-V-invex functions.

Definition 2.4. If there exist a function Φ : X×X×Rn+1
→ R, where Φ (x,u, ·) is convex on Rn+1, Φ (x,u, (0, a)) = 0

for all x ∈ X and every a ∈ R+, ρ =
(
ρ1, ..., ρk

)
∈ Rk, where ρi, i = 1, ..., k, are real numbers, and real-valued functions

αi : X × X→ R+\{0}, i = 1, ..., k, such that the following relations

fi(x) < fi(u) =⇒ Φ
(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
< 0, i = 1, ..., k (2)

hold for all x ∈ X, then f is said to be a
(
Φ, ρ

)
-V-pseudo-invex function at u on X.

If relations (2) are satisfied at each u, then f is said to be a
(
Φ, ρ

)
-V-pseudo-invex function on X.

Each function fi, i = 1, ..., k, satisfying the relation (2) is said to be
(
Φ, ρi

)
-αi-pseudo-invex at u on X. If relation

(2) is satisfied at each u, then fi is said to be a
(
Φ, ρi

)
-αi-pseudo-invex function on X.

Definition 2.5. If there exist a function Φ : X×X×Rn+1
→ R, where Φ (x,u, ·) is convex on Rn+1, Φ (x,u, (0, a)) = 0

for all x ∈ X and every a ∈ R+, ρ =
(
ρ1, ..., ρk

)
∈ Rk, where ρi, i = 1, ..., k, are real numbers, and real-valued functions

αi : X × X→ R+\{0}, i = 1, ..., k, such that the following relations

fi(x) 5 fi(u) =⇒ Φ
(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
< 0, i = 1, ..., k (3)
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hold for all x ∈ X, then f is said to be a strictly
(
Φ, ρ

)
-V-pseudo-invex function at u on X.

If relations (3) are satisfied at each u, then f is said to be a strictly
(
Φ, ρ

)
-V-pseudo-invex function on X.

Each function fi, i = 1, ..., k, satisfying the relation (3) is said to be strictly
(
Φ, ρi

)
-αi-pseudo-invex at u on X. If

relation (3) is satisfied at each u, then fi is said to be a strictly
(
Φ, ρi

)
-αi-pseudo-invex function on X.

Definition 2.6. If there exist a function Φ : X×X×Rn+1
→ R, where Φ (x,u, ·) is convex on Rn+1, Φ (x,u, (0, a)) = 0

for all x ∈ X and every a ∈ R+, ρ =
(
ρ1, ..., ρk

)
∈ Rk, where ρi, i = 1, ..., k, are real numbers, and real-valued functions

αi : X × X→ R+\{0}, i = 1, ..., k, such that the following relations

fi(x) 5 fi(u) =⇒ Φ
(
x,u, αi (x,u)

(
∇ fi (u) , ρi

))
5 0, i = 1, ..., k (4)

hold for all x ∈ X, then f is said to be a
(
Φ, ρ

)
-V-quasi-invex function at u on X.

If relations (4) are satisfied at each u, then f is said to be a
(
Φ, ρ

)
-V-quasi-invex function on X.

Each function fi, i = 1, ..., k, satisfying the relation (4) is said to be
(
Φ, ρi

)
-αi-quasi-invex at u on X. If relation

(4) is satisfied at each u, then fi is said to be a
(
Φ, ρi

)
-αi-quasi-invex function on X.

3. Semi-Infinite Multiobjective Fractional Programming and Efficiency

In the paper, we consider the following semi-infinite multiobjective fractional programming problem:

V-minimize ϕ (x) =
(
ϕ1 (x) , ...., ϕp (x)

)
=

(
f1(x)
11(x) , ....,

fp(x)
1p(x)

)
s.t. G j (x, t) 5 0 for all t ∈ T j, j ∈ J =

{
1, ..., q

}
,

Hk (x, s) = 0 for all s ∈ Sk, k ∈ K = {1, ..., r} ,

x ∈ X,

(P)

where fi : X→ R, 1i : X→ R, i ∈ I =
{
1, ..., p

}
, are real-valued functions defined on a nonempty open subset

X of Rn such that, for each i ∈ I, 1i(x) > 0 for all x ∈ X, T j, j = 1, ..., q, and Sk, k = 1, ..., r, are compact subsets
of a complete metric space, x → G j(x, t) is a function on X for all t ∈ T j, for each k ∈ K, x → Hk(x, s), is a
function on X for all s ∈ Sk, for each j ∈ J and k ∈ K, t→ G j(x, t) and s→ Hk(x, s) are continuous real-valued
functions defined, respectively, on T j and Sk for all x ∈ X satisfying the constraints of problem (P).

Let
D :=

{
x ∈ X : G j(x, t) 5 0 for all t ∈ T j, j = 1, ..., q, Hk(x, s) = 0 for all s ∈ Sk, k = 1, ..., r

}
be the set of all feasible solutions of (P) and let T̂ j (x) denote T̂ j (x) =

{
t ∈ T j : G j(x, t) = 0

}
.

It is well-known that a feasible solution x is efficient in problem (P) if and only if there exists no x ∈ D
such that

ϕ(x) ≤ ϕ(x).

In this section, for the considered semi-infinite multiobjective fractional programming problem (P),
we establish a set of sufficient optimality conditions for efficient solutions under

(
Φ, ρ

)
-V-invexity and/or

generalized
(
Φ, ρ

)
-V-invexity assumptions.

For the considered semi-infinite multiobjective fractional programming problem (P), we now give the
parametric necessary optimality conditions established by Zalmai and Zhang [35].

Theorem 3.1. Let x ∈ D be an efficient solution in the considered semi-infinite multiobjective fractional programming
problem (P) with the corresponding optimal value equal to v = ϕ (x) and the generalized Guignard constraint
qualification be satisfied at x. Further, assume that, for each i ∈ I, fi and 1i are continuously differentiable at x, for
each j ∈ J, the function z → G j(z, t) is continuously differentiable at x for all t ∈ T j, for each k ∈ K, the function
z→ Hk(z, s) is continuously differentiable at x for all s ∈ Sk. Then, there exist λ ∈ Λ =

{
λ ∈ Rp : λ > 0,

∑p
i=1 λi = 1

}
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and integers w0 and w, with 0 5 w0 5 w 5 n + 1, such that there exist w0 indices jm, with 1 5 jm 5 q, together with
w0 points tm

∈ T̂ jm (x), m = 1, ...,w0, w − w0 indices km, with 1 5 km 5 r, together with w − w0 points sm
∈ Skm ,

m = 1, ...,w − w0 and w real numbers ξm with ξm > 0, m = 1, ...,w0 with the property that

p∑
i=1

λi
[
∇ fi(x) − vi∇1i(x)

]
+

w0∑
m=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm) = 0. (5)

For the considered semi-infinite multiobjective fractional programming problem (P), we define the
vector-valued Lagrange function as follows:

L
(
·, λ, ξ, v,w,w0, t, s

)
:= (L1

(
·, λ, ξ, v,w,w0, t, s

)
, ...,Lp

(
·, λ, ξ, v,w,w0, t, s

)
) : X→ Rp,

where each its component is defined by

Li

(
z, λ, ξ, v,w,w0, t, s

)
= λi

[
fi (z) − vi1i (z)

]
+ 1

p

[∑w0
m=1 ξmG jm (z, tm) +

∑w
m=w0+1 ξmHkm (z, sm)

]
. (6)

Theorem 3.2. Let x ∈ D and v = ϕ (x). Also, let fi and 1i, i ∈ I, z → G j(z, t), j ∈ J, z → Hk(z, s), k ∈ K, be
differentiable at x for all t ∈ T j and for all s ∈ Sk. Further, assume that there exist λ ∈ Λ, integers w0 and w, with
0 5 w0 5 w 5 n + 1, such that there exist w0 indices jm, with 1 5 jm 5 q, together with w0 points tm

∈ T̂ jm (x),
m = 1, ...,w0, w − w0 indices km, with 1 5 km 5 r together with w − w0 points sm

∈ Skm , m = 1, ...,w − w0, and
w real numbers ξm with ξm > 0 for m = 1, ...,w0, with the property that the relation (5) is fulfilled at x. Assume,
furthermore, that any one of the following eight sets of hypotheses is fulfilled:

A) a) fi (·) − vi1i (·), i = 1, ..., p, is a
(
Φ, ρi

)
-αi-invex function at x on D,

b) G jm (·, tm), tm
∈ T̂ jm (x), m = 1, ...,w0, is a

(
Φ, ρG jm

)
-β jm -invex function at x on D,

c) Hkm (·, sm), sm
∈ S+

km
(x) ≡

{
sm
∈ Skm : ξm > 0

}
, m ∈

{
w0 + 1, ...,w

}
, is a

(
Φ, ρ+

Hkm

)
-γ+

km
-invex function at x on

D,
d) −Hkm (·, sm), sm

∈ S−km
(x) ≡

{
sm
∈ Skm : ξm < 0

}
, m ∈

{
w0 + 1, ...,w

}
, is a

(
Φ, ρ−Hkm

)
-γ−km

-invex function at x
on D,
e)

∑p
i=1 λiρi +

∑w0
m=1 ξmρG jm

+
∑

m∈{w0+1,...,w} ξmρ
+
Hkm
−

∑
m∈{w0+1,...,w} ξmρ

−

Hkm
= 0,

B) a) fi (·), i = 1, ..., p, is a
(
Φ, ρi

)
-αi-invex function at x on D,

b) −vi1i (·), i = 1, ..., p, is a
(
Φ, ρi

)
-αi-invex function at x on D,

c) G jm (·, tm), tm
∈ T̂ jm (x), m = 1, ...,w0, is a

(
Φ, ρG jm

)
-β jm -invex function at x on D,

d) Hkm (·, sm), sm
∈ S+

km
(x) ≡

{
sm
∈ Skm : ξm > 0

}
, m ∈

{
w0 + 1, ...,w

}
, is a

(
Φ, ρ+

Hkm

)
-γ+

km
-invex function at x on

D,
e) −Hkm (·, sm), sm

∈ S−km
(x) ≡

{
sm
∈ Skm : ξm < 0

}
, m ∈

{
w0 + 1, ...,w

}
, is a

(
Φ, ρ−Hkm

)
-γ−km

-invex function at x
on D,
f)

∑p
i=1 λiρi +

∑w0
m=1 ξmρG jm

+
∑

m∈{w0+1,...,w} ξmρ
+
Hkm
−

∑
m∈{w0+1,...,w} ξmρ

−

Hkm
= 0,

C) each component of the vector-valued Lagrange function L
(
·, λ, ξ, v,w,w0, t, s

)
, that is, each function z →

Li

(
z, λ, ξ, v,w,w0, t, s

)
, i = 1, ..., p, is

(
Φ, ρi

)
-αi-invex at x on D, where t ≡

(
t1, ..., tw0

)
, s ≡

(
sw0+1, ..., sw

)
and,

moreover,
∑p

i=1 ρi = 0,

D) each function ψi

(
·, ξ, v,w,w0, t, s

)
= fi (·)− vi1i (·) +

∑w0
m=1 ξmG jm (·, tm) +

∑w
m=w0+1 ξmHkm (·, sm), i = 1, ..., p, is(

Φ, ρi
)
-αi-invex at x on D, where t ≡

(
t1, ..., tw0

)
, s ≡

(
sw0+1, ..., sw

)
and, moreover,

∑p
i=1 λiρi = 0,

E) a) fi (·) − vi1i (·), i = 1, ..., p, is a
(
Φ, ρi

)
-αi-invex function at x on D,

b) ξmG jm (·, tm), tm
∈ T̂ jm (x), m = 1, ...,w0, is a

(
Φ, ρG jm

)
-β jm -invex function at x on D,

c) ξmHkm (·, sm), sm
∈ Skm , is a

(
Φ, ρHkm

)
-γkm -invex function at x on D,

e)
∑p

i=1 λiρi +
∑w0

m=1 ρG jm
+

∑w
m=w0+1 ρHkm

= 0,
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F) a) λi
[

fi (·) − vi1i (·)
]
, i = 1, ..., p, is a

(
Φ, ρi

)
-αi-invex function at x on D,

b) ξmG jm (·, tm), tm
∈ T̂ jm (x), m = 1, ...,w0, is a

(
Φ, ρG jm

)
-β jm -invex function at x on D,

c) ξmHkm (·, sm), sm
∈ Skm , is a

(
Φ, ρHkm

)
-γkm -invex function at x on D,

e)
∑p

i=1 ρi +
∑w0

m=1 ρG jm
+

∑w
m=w0+1 ρHkm

= 0,

G) a)
∑p

i=1 λi
[

fi (·) − vi1i (·)
]

is a
(
Φ, ρα

)
-α-invex function at x on D,

b)
∑w0

m=1 ξmG jm (·, tm), tm
∈ T̂ jm (x), is a

(
Φ, ρG

)
-β-invex function at x on D,

c)
∑w

m=w0+1 ξmHkm (·, sm), sm
∈ Skm , is a

(
Φ, ρH

)
-γ-invex function at x on D,

d) ρα + ρG + ρH = 0,

H) a)
∑p

i=1 λi
[

fi (·) − vi1i (·)
]

is a
(
Φ, ρα

)
-α-invex function at x on D,

b)
∑w0

m=1 ξmG jm (·, tm) +
∑w

m=w0+1 ξmHkm (·, sm), tm
∈ T̂ jm (x), sm

∈ Skm , is a
(
Φ, ρβ

)
-β-invex function at x on D,

c) ρα + ρβ = 0.

Then x is efficient in problem (P) with the corresponding optimal objective value equal to v = ϕ (x).

Proof. By assumption, x ∈ D, v = ϕ (x) and, moreover, there exist λ ∈ Λ, integers w0 and w, with 0 5
w0 5 w 5 n + 1, such that there exist w0 indices jm, with 1 5 jm 5 q, together with w0 points tm

∈ T̂ jm (x),
m = 1, ...,w0, w − w0 indices km, with 1 5 km 5 r together with w − w0 points sm

∈ Skm , m = 1, ...,w − w0, and
w real numbers ξm with ξm > 0 for m = 1, ...,w0, with the property that relation (5) is fulfilled at x.

We proceed by contradiction. Suppose, contrary to the result, that x is not an efficient solution in
problem (P). Hence, there exists x̃ ∈ D such that

fi
(
x̃
)
− vi1i

(
x̃
)
5 fi (x) − vi1i (x) for i ∈ I, (7)

fi∗
(
x̃
)
− vi∗1i∗

(
x̃
)
< fi∗ (x) − vi∗1i∗ (x) for at least one i∗ ∈ I. (8)

Proof of the theorem under hypothesis A).
In view of hypotheses a)-e), Definition 2.2 implies that the following inequalities

fi
(
x̃
)
− vi1i

(
x̃
)
−

[
fi (x) − vi1i (x)

]
= Φ

(
x̃, x, αi

(
x̃, x

) (
∇ fi (x) − vi∇1i (x) , ρi

))
, i ∈ I, (9)

G jm (x̃, tm) − G jm (x, tm) = Φ
(
x̃, x, β jm

(
x̃, x

) (
∇G jm (x, tm), ρG jm

))
, tm
∈ T̂ jm (x) , m = 1, ...,w0, (10)

Hkm (x̃, sm) −Hkm (x, sm) = Φ
(
x̃, x, γ+

km

(
x̃, x

) (
∇Hkm (x, sm), ρ+

Hkm

))
, sm
∈ S+

km
(x) , m ∈

{
w0 + 1, ...,w

}
, (11)

−Hkm (x̃, sm) + Hkm (x, sm) = Φ
(
x̃, x, γ−km

(
x̃, x

) (
−∇Hkm (x, sm), ρ−Hkm

))
, sm
∈ S−km

(x) , m ∈
{
w0 + 1, ...,w

}
(12)

hold. Combining (7), (8) and (9), we get, respectively,

Φ
(
x̃, x, αi

(
x̃, x

) (
∇ fi (x) − vi∇1i (x) , ρi

))
5 0, i ∈ I, (13)

Φ
(
x̃, x, αi∗

(
x̃, x

) (
∇ fi∗ (x) − vi∗∇1i∗ (x) , ρi∗

))
< 0 for at least one i∗ ∈ I. (14)

By x̃ ∈ D and x ∈ D, it follows that G jm (x̃, tm) 5 G jm (x, tm), tm
∈ T̂ jm (x) , m = 1, ...,w0, Hkm (x̃, sm) = Hkm (x, sm),

sm
∈ Skm , m ∈

{
w0 + 1, ...,w

}
. Hence, (10)-(12) yield, respectively,

Φ
(
x̃, x, β jm

(
x̃, x

) (
∇G jm (x, tm), ρG jm

))
5 0, tm

∈ T̂ jm (x) , m = 1, ...,w0, (15)

Φ
(
x̃, x, γ+

km

(
x̃, x

) (
∇Hkm (x, sm), ρ+

Hkm

))
5 0, sm

∈ S+
km

(x) ,m ∈
{
w0 + 1, ...,w

}
, (16)

Φ
(
x̃, x, γ−km

(
x̃, x

) (
−∇Hkm (x, sm), ρ−Hkm

))
5 0, sm

∈ S−km
(x) , m ∈

{
w0 + 1, ...,w

}
. (17)
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Multiplying each inequality (13) and (14) by λi

αi(x̃,x) > 0, i ∈ I, (15) by ξm

β jm (x̃,x) > 0, m = 1, ...,w0, (16) by

ξm

γ+
km (x̃,x) > 0, m ∈

{
w0 + 1, ...,w

}
, (17) by −ξm

γ−km (x̃,x) > 0, m ∈
{
w0 + 1, ...,w

}
, and then adding both sides of the

obtained inequalities, we get

p∑
i=1

λi

αi
(
x̃, x

)Φ
(
x̃, x, αi

(
x̃, x

) (
∇ fi (x) − vi∇1i (x) , ρi

))
< 0, (18)

w0∑
m=1

ξm

β jm
(
x̃, x

)Φ
(
x̃, x, β jm

(
x̃, x

) (
∇G jm (x, tm), ρG jm

))
5 0, tm

∈ T̂ jm (x) , (19)

∑
m∈{w0+1,...,w}

ξm

γ+
km

(
x̃, x

)Φ
(
x̃, x, γ+

km

(
x̃, x

) (
∇Hkm (x, sm), ρ+

Hkm

))
5 0, sm

∈ S+
km

(x) , (20)

∑
m∈{w0+1,...,w}

−ξm

γ−km

(
x̃, x

)Φ
(
x̃, x, γ−km

(
x̃, x

) (
−∇Hkm (x, sm), ρ−Hkm

))
5 0, sm

∈ S−km
(x) . (21)

Hence, (18)-(21) yield

p∑
i=1

λi

αi
(
x̃, x

)Φ
(
x̃, x, αi

(
x̃, x

) (
∇ fi (x) − vi∇1i (x) , ρi

))
+

w0∑
m=1

ξm

β jm
(
x̃, x

)Φ
(
x̃, x, β jm

(
x̃, x

) (
∇G jm (x, tm), ρG jm

))

+
∑

m∈{w0+1,...,w}

ξm

γ+
km

(
x̃, x

)Φ
(
x̃, x, γ+

km

(
x̃, x

) (
∇Hkm (x, sm), ρ+

Hkm

))

+
∑

m∈{w0+1,...,w}

−ξm

γ−km

(
x̃, x

)Φ
(
x̃, x, γ−km

(
x̃, x

) (
−∇Hkm (x, sm), ρ−Hkm

))
< 0. (22)

Let us introduce the following notations:

A =

p∑
i=1

λi

αi
(
x̃, x

) +

w0∑
m=1

ξm

β jm
(
x̃, x

) +
∑

m∈{w0+1,...,w}

ξm

β jm
(
x̃, x

) +
∑

m∈{w0+1,...,w}

−ξm

β jm
(
x̃, x

) , (23)

λ̃i =

λi

αi(x̃,x)
A

, i ∈ I, (24)

ξ̃m =

ξm

β jm (x̃,x)
A

, m = 1, ...,w0, (25)

ξ̃+
m =

ξm

γ+
km (x̃,x)

A
, m ∈

{
w0 + 1, ...,w

}
, (26)

ξ̃−m =

−ξm

γ−km (x̃,x)
A

, m ∈
{
w0 + 1, ...,w

}
. (27)
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By (23)-(27), it follows that 0 5 λ̃i 5 1, but λ̃i > 0 for at least one i ∈ I, 0 5 ξ̃m 5 1, m = 1, ...,w0, 0 5 ξ̃+
m 5 1,

sm
∈ S+

km
(x), m ∈

{
w0 + 1, ...,w

}
, 0 5 ξ̃−m 5 1, sm

∈ S−km
(x), m ∈

{
w0 + 1, ...,w

}
and, moreover,

p∑
i=1

λ̃i +

w0∑
m=1

ξ̃m +
∑

m∈{w0+1,...,w}

ξ̃+
m +

∑
m∈{w0+1,...,w}

ξ̃−m = 1. (28)

Combining (22) and (24)-(27), we get

p∑
i=1

λ̃iΦ
(
x̃, x, αi

(
x̃, x

) (
∇ fi (x) − vi∇1i (x) , ρi

))
+

w0∑
m=1

ξ̃mΦ
(
x̃, x, β jm

(
x̃, x

) (
∇G jm (x, tm), ρG jm

))
+

∑
m∈{w0+1,...,w}

ξ̃+
mΦ

(
x̃, x, γ+

km

(
x̃, x

) (
∇Hkm (x, sm), ρ+

Hkm

))
+

∑
m∈{w0+1,...,w}

ξ̃−mΦ
(
x̃, x, γ−km

(
x̃, x

) (
−∇Hkm (x, sm), ρ−Hkm

))
< 0. (29)

By Definition 2.1, it follows that Φ
(
x̃, x, ·

)
is a convex function on Rn+1. Since (28) holds, by the definition of

a convex function, we have

p∑
i=1

λ̃iΦ
(
x̃, x, αi

(
x̃, x

) (
∇ fi (x) − vi∇1i (x) , ρi

))
+

w0∑
m=1

ξ̃mΦ
(
x̃, x, β jm

(
x̃, x

) (
∇G jm (x, tm), ρG jm

))
(30)

+
∑

m∈{w0+1,...,w}

ξ̃+
mΦ

(
x̃, x, γ+

km

(
x̃, x

) (
∇Hkm (x, sm), ρ+

Hkm

))
+

∑
m∈{w0+1,...,w}

ξ̃−mΦ
(
x̃, x, γ−km

(
x̃, x

) (
−∇Hkm (x, sm), ρ−Hkm

))

= Φ

x̃, x,

 p∑
i=1

λ̃iαi
(
x̃, x

) (
∇ fi (x) − vi∇1i (x) , ρi

)
+

w0∑
m=1

ξ̃mβ jm
(
x̃, x

) (
∇G jm (x, tm), ρG jm

)

+
∑

m∈{w0+1,...,w}

ξ̃+
mγ

+
km

(
x̃, x

) (
∇Hkm (x, sm), ρ+

Hkm

)
+

∑
m∈{w0+1,...,w}

ξ̃−mγ
−

km

(
x̃, x

) (
−∇Hkm (x, sm), ρ−Hkm

)
 .

By (29) and (30), it follows that

Φ

x̃, x,

 p∑
i=1

λ̃iαi
(
x̃, x

) (
∇ fi (x) − vi∇1i (x) , ρi

)
+

w0∑
m=1

ξ̃mβ jm
(
x̃, x

) (
∇G jm (x, tm), ρG jm

)
(31)

+
∑

m∈{w0+1,...,w}

ξ̃+
mγ

+
km

(
x̃, x

) (
∇Hkm (x, sm), ρ+

Hkm

)
+

∑
m∈{w0+1,...,w}

ξ̃−mγ
−

km

(
x̃, x

) (
−∇Hkm (x, sm), ρ−Hkm

)
 < 0.

Taking into account (24)-(27) in the inequality above, we obtain

Φ

x̃, x,
1
A

 p∑
i=1

λi
(
∇ fi (x) − vi∇1i (x) , ρi

)
+

w0∑
m=1

ξm

(
∇G jm (x, tm), ρG jm

)
+

∑
m∈{w0+1,...,w}

ξm

(
∇Hkm (x, sm), ρ+

Hkm

)

+
∑

m∈{w0+1,...,w}

(
−ξm

) (
−∇Hkm (x, sm), ρ−Hkm

)
 < 0. (32)
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Thus, (32) gives

Φ

x̃, x,
1
A

 p∑
i=1

λi
(
∇ fi (x) − vi∇1i (x)

)
+

w0∑
m=1

ξm∇G jm (x, tm)+
∑

m∈{w0+1,...,w}

ξm∇Hkm (x, sm)+
∑

m∈{w0+1,...,w}

ξm∇Hkm (x, sm) ,

p∑
i=1

λiρi +

w0∑
m=1

ξmρG jm
+

∑
m∈{w0+1,...,w}

ξmρ
+
Hkm
−

∑
m∈{w0+1,...,w}

ξmρ
−

Hkm


 < 0.

Hence, the necessary optimality condition (5) implies

Φ

x̃, x,
1
A

0 ,
p∑

i=1

λiρi +

w0∑
m=1

ξmρG jm
+

∑
m∈{w0+1,...,w}

ξmρ
+
Hkm
−

∑
m∈{w0+1,...,w}

ξmρ
−

Hkm


 < 0. (33)

By Definition 2.1, we have that Φ
(
x̃, x, (0, a)

)
= 0 for all a ∈ R+. Therefore, by hypothesis d), it follows that

the following inequality

Φ

x̃, x,
1
A

0 ,
p∑

i=1

λiρi +

w0∑
m=1

ξmρG jm
+

∑
m∈{w0+1,...,w}

ξmρ
+
Hkm
−

∑
m∈{w0+1,...,w}

ξmρ
−

Hkm


 = 0

holds, contradicting (33). Hence, x is efficient in problem (P) and this completes the proof of this theorem
under hypothesis A).

Proof under hypothesis B) is similar to the proof under hypothesis A) and, therefore, it has been omitted.

Proof of the theorem under hypothesis C).
By assumption C), each function z → Li

(
z, λ, ξ, v,w,w0, t, s

)
, i = 1, ..., p, is

(
Φ, ρi

)
-αi-invex at x on D,

where t ≡
(
t1, ..., tw0

)
, s ≡

(
sw0+1, ..., sw

)
. Hence, by Definition 2.2, it follows that the inequalities

Li

(
x, λ, ξ, v,w,w0, t, s

)
− Li

(
x, λ, ξ, v,w,w0, t, s

)
= Φ

(
x̃, x, αi

(
x̃, x

) (
∇Li

(
x, λ, ξ, v,w,w0, t, s

)
, ρi

))
, i ∈ I (34)

hold for all x ∈ D. Therefore, they are also satisfied for x = x̃ ∈ D. By definition of the Lagrange function
(see (6)), we have

λi
[

fi
(
x̃
)
− vi1i

(
x̃
)]

+
1
p

 w0∑
i=1

ξmG jm (x̃, tm) +

w∑
m=w0+1

ξmHkm (x̃, sm)

 (35)

−λi
[

fi (x) − vi1i (x)
]
−

1
p

 w0∑
i=1

ξmG jm (x, tm) +

w∑
m=w0+1

ξmHkm (x, sm)


= Φ

x̃, x, αi
(
x̃, x

) λi
[
∇ fi (x) − vi∇1i (x)

]
+

1
p

 w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm)

 , ρi


 , i ∈ I.

Multiplying (35) by
1

αi(x̃,x)∑p
i=1

1
αi(x̃,x)

, i ∈ I, and then adding both sides of the obtained inequalities, we get

p∑
i=1

1
αi(x̃,x)∑p

i=1
1

αi(x̃,x)

λi
[

fi
(
x̃
)
− vi1i

(
x̃
)]

+
1
p

 w0∑
i=1

ξmG jm (x̃, tm) +

w∑
m=w0+1

ξmHkm (x̃, sm)



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−

p∑
i=1

λi

αi
(
x̃, x

) [ fi (x) − vi1i (x)
] 1

p

 w0∑
i=1

ξmG jm (x, tm) +

w∑
m=w0+1

ξmHkm (x, sm)


 =

1
p∑

i=1

1
αi(x̃,x)

p∑
i=1

1
αi

(
x̃, x

)Φ

x̃, x, αi
(
x̃, x

) λi
[
∇ fi (x) − vi∇1i (x)

]
+

1
p

 w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm)

 , ρi


 .

By x̃ ∈ D and x ∈ D, it follows that ξmG jm (x̃, tm) 5 ξmG jm (x, tm), tm
∈ T̂ jm (x) , m = 1, ...,w0, ξmHkm (x̃, sm) =

ξmHkm (x, sm), sm
∈ Skm , m ∈

{
w0 + 1, ...,w

}
. Then, taking into account the above relations together with (7)

and (8), we have

1∑p
i=1

1
αi(x̃,x)

p∑
i=1

1
αi

(
x̃, x

)Φ
(
x̃, x, αi

(
x̃, x

) (
λi

[
∇ fi (x) − vi∇1i (x)

]
(36)

+
1
p

 w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm)

 , ρi


 < 0.

Let us denote

α̃i
(
x̃, x

)
=

1
αi(x̃,x)∑p

i=1
1

αi(x̃,x)
, i ∈ I. (37)

By (36), it follows that
∑p

i=1 α̃i
(
x̃, x

)
= 1. Hence, (36) and (37) yield

p∑
i=1

α̃i
(
x̃, x

)
Φ

x̃, x, αi
(
x̃, x

) λi
[
∇ fi (x) − vi∇1i (x)

]
+

1
p

 w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm)

 , ρi


 < 0.

(38)

By Definition 2.1, we have that Φ
(
x̃, x, ·

)
is a convex function on Rn+1. Since

∑p
i=1 α̃i

(
x̃, x

)
= 1, using the

definition of a convex function, we obtain

p∑
i=1

α̃i
(
x̃, x

)
Φ

x̃, x, αi
(
x̃, x

) λi
[
∇ fi (x) − vi∇1i (x)

]
+

1
p

 w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm)

 ,ρi


 (39)

= Φ

x̃, x,
p∑

i=1

α̃i
(
x̃, x

)
αi

(
x̃, x

) λi
[
∇ fi (x) − vi∇1i (x)

]
+

1
p

 w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm)

 , ρi


 .

Combining (38) and (39), we get

Φ

x̃, x,
p∑

i=1

α̃i
(
x̃, x

)
αi

(
x̃, x

) λi
[
∇ fi (x) − vi∇1i (x)

]
+

1
p

 w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm)

 , ρi


 < 0.

Thus, by (37), it follows that

Φ

x̃, x,
1∑p

i=1
1

αi(x̃,x)

 p∑
i=1

λi
[
∇ fi (x) − vi∇1i (x)

]
+

w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm) ,
p∑

i=1

ρi


 < 0. (40)
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Hence, by the necessary optimality condition (5), the inequality (4) gives

Φ

x̃, x,
1∑p

i=1
1

αi(x̃,x)

0 ,
p∑

i=1

ρi


 < 0. (41)

By Definition 2.1, it follows that Φ
(
x̃, x, (0, a)

)
= 0 for all a ∈ R+. Since

p∑
i=1
ρi = 0, the following inequality

Φ

x̃, x,
1∑p

i=1
1

αi(x̃,x)

0 ,
p∑

i=1

ρi


 = 0

holds, contradicting (41). Hence, x is efficient in problem (P) and this completes the proof of the theorem
under hypothesis C).

Proof of theorem under hypothesis D).
By assumption D), each functionψi

(
·, ξ, v,w,w0, t, s

)
= fi (·)−vi1i (·)+

∑w0
m=1 ξmG jm (·, tm)+

∑w
m=w0+1 ξmHkm (·, sm),

i = 1, ..., p, is
(
Φ, ρi

)
-αi-invex at x on D, where t ≡

(
t1, ..., tw0

)
, s ≡

(
sw0+1, ..., sw

)
. Hence, by Definition 2.1, it

follows that the inequalities

ψi

(
x, ξ, v,w,w0, t, s

)
− ψi

(
x, ξ, v,w,w0, t, s

)
= Φ

(
x̃, x, αi

(
x̃, x

) (
∇ψi

(
x, ξ, v,w,w0, t, s

)
, ρi

))
, i ∈ I (42)

hold for all x ∈ D. Therefore, they are also satisfied for x = x̃ ∈ D. By the definition of ψi, i = 1, ..., p, we have

fi
(
x̃
)
− vi1i

(
x̃
)

+

w0∑
i=1

ξmG jm (x̃, tm) +

w∑
m=w0+1

ξmHkm (x̃, sm)− (43)

[
fi (x) − vi1i (x)

]
−

w0∑
i=1

ξmG jm (x, tm) −
w∑

m=w0+1

ξmHkm (x, sm) =

Φ

x̃, x, αi
(
x̃, x

) ∇ fi (x) − vi∇1i (x) +

w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm) , ρi


 , i ∈ I.

Multiplying (43) by
λi

αi(x̃,x)∑p
i=1

λi
αi(x̃,x)

, i ∈ I, and then adding both sides of the obtained inequalities, we get

1∑p
i=1

λi

αi(x̃,x)

 p∑
i=1

λi

αi
(
x̃, x

) [ fi
(
x̃
)
− vi1i

(
x̃
)]

+

w0∑
i=1

ξmG jm (x̃, tm)+
w∑

m=w0+1

ξmHkm (x̃, sm)

 (44)

−

p∑
i=1

λi

αi
(
x̃, x

) [ fi (x) − vi1i (x)
]
+

w0∑
i=1

ξmG jm (x, tm) +

w∑
m=w0+1

ξmHkm (x, sm)




=
1∑p

i=1
λi

αi(x̃,x)

p∑
i=1

λi

αi
(
x̃, x

)Φ

x̃, x, αi
(
x̃, x

) [∇ fi (x) − vi∇1i (x)
]
+

w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm) , ρi


 .
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By x̃ ∈ D and x ∈ D, it follows that ξmG jm (x̃, tm) 5 ξmG jm (x, tm), tm
∈ T̂ jm (x) , m = 1, ...,w0, ξmHkm (x̃, sm) =

ξmHkm (x, sm), sm
∈ Skm , m ∈

{
w0 + 1, ...,w

}
. Using the relations above together with (7) and (8), we get

1
p∑

i=1

λi

αi(x̃,x)

p∑
i=1

λi

αi
(
x̃, x

)Φ

x̃, x, αi
(
x̃, x

) [∇ fi (x) − vi∇1i (x)
]
+

w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm) , ρi


 < 0.

(45)

Let us denote

α̃λi
(
x̃, x

)
=

λi

αi(x̃,x)∑p
i=1

λi

αi(x̃,x)

, i ∈ I. (46)

By (46), it follows that
∑p

i=1 α̃
λ
i

(
x̃, x

)
= 1. Thus, (45) and (46) yield

p∑
i=1

α̃λi
(
x̃, x

)
Φ

x̃, x, αi
(
x̃, x

) λi
[
∇ fi (x) − vi∇1i (x)

]
+

w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm) , ρi


 < 0. (47)

By Definition 2.1, it follows that Φ
(
x̃, x, ·

)
is a convex function on Rn+1. Since

∑p
i=1 α̃

λ
i

(
x̃, x

)
= 1, by the

definition of a convex function, we have

p∑
i=1

α̃λi
(
x̃, x

)
Φ

x̃, x, αi
(
x̃, x

) [∇ fi (x) − vi∇1i (x)
]
+

w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm) , ρi


 (48)

= Φ

x̃, x,
p∑

i=1

α̃λi
(
x̃, x

)
αi

(
x̃, x

) [∇ fi (x) − vi∇1i (x)
]
+

w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm) , ρi


 .

Combining (47) and (48), we get

Φ

x̃, x,
p∑

i=1

α̃λi
(
x̃, x

)
αi

(
x̃, x

) [∇ fi (x) − vi∇1i (x)
]
+

w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm) , ρi


 < 0.

By (46) and λ ∈ Λ, the inequality above yields

Φ

x̃, x,
1∑p

i=1
λi

αi(x̃,x)

 p∑
i=1

λi
[
∇ fi (x) − vi∇1i (x)

]
+

w0∑
i=1

ξm∇G jm (x, tm) +

w∑
m=w0+1

ξm∇Hkm (x, sm) ,
p∑

i=1

λiρi


 < 0.

The rest of the proof is the same as the proof under hypothesis D).

Proofs of this theorem under hypotheses E)-H) are similar to the one of the above proofs and, therefore,
they have been omitted in the paper.

Now, we give an example of a nonconvex semi-infinite multiobjective fractional programming problem
with

(
Φ, ρ

)
-V-invex functions. It turns out that, to prove efficiency of a feasible point for such a vector

optimization problem, the concept of
(
Φ, ρ

)
-V-invexity may be applied.
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Example 3.3. Consider the following semi-infinite multiobjective fractional programming problem:

V-minimize ϕ (x) =
f (x)
1 (x)

=

 x2
1 + x2

2 + 2

2 + arctan (x1x2)
,

x2
1 + x2

2 + 4

4 + arctan (x1x2)
, ...,

x2
1 + x2

2 + 2p
2p + arctan (x1x2)


s.t. G1 (x, t) = −

t
1 + t

−
x1x2

x2
1 + x2

2 + 1
5 0, t ∈ T1 = [0, 1] , (P1)

where p is a finite positive integer. Note that the set of all feasible solutions

D =

(x1, x2) ∈ R2 : −
t

1 + t
−

x1x2

x2
1 + x2

2 + 1
5 0, t ∈ T1 = [0, 1]

 .
Further, it is not difficult to note that x = (0, 0) is a feasible solution in problem (P1) at which the necessary optimality
condition (5) is satisfied and v = (1, ..., 1) ∈ Rp. By definition, it can be proved that the functions constituting the
semi-infinite multiobjective fractional programming problem (P1) are

(
Φ, ρ

)
-V-invex functions at x on D, where

Φ
(
x, x,

(
ζ, ρ

))
= 1

2 (ζ1 + ζ2)
(
x2

1 − x2
1 + x2

2 − x2
2

)
+ (2ρ − 1)

∣∣∣(x1 − x1) (x2 − x2)
∣∣∣ ,

αi (x, x) = 1, ρ fi = 1, ρ1i = 1, i = 1, ..., p,

β1 (x, x) =
1

x2
1 + x2

2 + 1
, ρG1 = −1

Since all hypotheses of Theorem 3.2 are fulfilled, x = (0, 0) is efficient in problem (P1).

Remark 3.4. Note that, to prove efficiency of x in the considered semi-infinite multiobjective fractional programming
problem (P1) considered in Example 3.3, it is not possible to use the sufficient optimality conditions under invexity [7],
[13], and also under many generalized convexity notions, previously defined in the literature (that is, r-invexity [3],
F-convexity [16],

(
F, ρ

)
-convexity [29], [12], b-invexity [13], B-(p, r)-invexity [2], [5], V-invexity [23], G-invexity

[6]). This is a consequence of the fact that a stationary point of each objective function 1i, i = 1, ..., p, and the stationary
point of the constraint function G1(x, t) are not their global minimizers (see, Ben-Israel and Mond [9]). Then, each
objective function 1i, i = 1, ..., p, and the constraint function G1(x, t) are neither invex [7], [13], nor generalized
convex (for example, r-invex [3], V-invex [23], F-convex [16], B-(p, r)-invex [2], [5], G-invex [6]) with respect to any
function η : D×D→ R2. As it follows even from this example of a nonconvex semi-infinite multiobjective fractional
programming problem, the sufficient optimality conditions for efficiency established under

(
Φ, ρ

)
-V-invexity are useful

for a larger class of such nonconvex vector optimization problems than the sufficient optimality conditions established
under other generalized convexity, even those ones mentioned above.

Now, for the considered semi-infinite multiobjective fractional programming problem (P), we prove
seven sets of the sufficient optimality conditions for efficiency under various generalized

(
Φ, ρ

)
-V-invexity

assumptions.

Theorem 3.5. Let x ∈ D and v = ϕ (x). Also, let fi and 1i, i ∈ I, z → G j(z, t), j ∈ J, z → Hk(z, s), k ∈ K, be
differentiable at x for all t ∈ T j and for all s ∈ Sk. Further, assume that there exist λ ∈ Λ, integers w0 and w, with
0 5 w0 5 w 5 n + 1, such that there exist w0 indices jm, with 1 5 jm 5 q, together with w0 points tm

∈ T̂ jm (x),
m = 1, ...,w0, w − w0 indices km with 1 5 km 5 r together with w − w0 points sm

∈ Skm , m = 1, ...,w − w0, and
w real numbers ξm with ξm > 0 for m = 1, ...,w0, with the property that the relation (5) is fulfilled at x. Assume,
furthermore, that any one of the following seven sets of hypotheses is fulfilled:

A) a) fi (·) − vi1i (·), i = 1, ..., p, is a
(
Φ, ρi

)
-αi-pseudo-invex function at x on D,

b) G jm (·, tm), tm
∈ T̂ jm (x), m = 1, ...,w0, is a

(
Φ, ρG jm

)
-β jm -quasi-invex function at x on D,

c) Hkm (·, sm), sm
∈ S+

km
(x), m ∈

{
w0 + 1, ...,w

}
, is a

(
Φ, ρ+

Hkm

)
-γ+

km
-quasi-invex function at x on D,

d) −Hkm (·, sm), sm
∈ S−km

(x), m ∈
{
w0 + 1, ...,w

}
, is a

(
Φ, ρ−Hkm

)
-γ−km

-quasi-invex function at x on D,

e)
∑p

i=1 λiρi +
∑w0

m=1 ξmρG jm
+

∑
m∈{w0+1,...,w} ξmρ

+
Hkm
−

∑
m∈{w0+1,...,w} ξmρ

−

Hkm
= 0,
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B) each component of the vector-valued Lagrange function L
(
·, λ, ξ, v,w,w0, t, s

)
, that is, each function z →

Li

(
z, λ, ξ, v,w,w0, t, s

)
, i = 1, ..., p, is

(
Φ, ρi

)
-αi-pseudo-invex at x on D, where t ≡

(
t1, ..., tw0

)
, s ≡

(
sw0+1, ..., sw

)
and, moreover,

∑p
i=1 ρi = 0,

C) each function ψi

(
·, ξ, v,w,w0, t, s

)
= fi (·)− vi1i (·) +

∑w0
m=1 ξmG jm (·, tm) +

∑w
m=w0+1 ξmHkm (·, sm), i = 1, ..., p, is(

Φ, ρi
)
-αi-pseudo-invex at x on D, where t ≡

(
t1, ..., tw0

)
, s ≡

(
sw0+1, ..., sw

)
and, moreover,

∑p
i=1 λiρi = 0,

D) a) fi (·) − vi1i (·), i = 1, ..., p, is a
(
Φ, ρi

)
-αi-pseudo-invex function at x on D,

b) ξmG jm (·, tm), tm
∈ T̂ jm (x), m = 1, ...,w0, is a

(
Φ, ρG jm

)
-β jm -quasi-invex function at x on D,

c) ξmHkm (·, sm), sm
∈ Skm , is a

(
Φ, ρHkm

)
-γkm -quasi-invex function at x on D,

e)
∑p

i=1 λiρi +
∑w0

m=1 ρG jm
+

∑w
m=w0+1 ρHkm

= 0,

E) a) λi
[

fi (·) − vi1i (·)
]
, i = 1, ..., p, is a strictly

(
Φ, ρi

)
-αi-pseudo-invex function at x on D,

b) ξmG jm (·, tm), tm
∈ T̂ jm (x), m = 1, ...,w0, is a

(
Φ, ρG jm

)
-β jm -quasi-invex function at x on D,

c) ξmHkm (·, sm), sm
∈ Skm , is a

(
Φ, ρHkm

)
-γkm -quasi-invex function at x on D,

e)
∑p

i=1 ρi +
∑w0

m=1 ρG jm
+

∑w
m=w0+1 ρHkm

= 0,

F) a)
∑p

i=1 λi
[

fi (·) − vi1i (·)
]
, i = 1, ..., p, is a

(
Φ, ρα

)
-α-pseudo-invex function at x on D,

b)
∑w0

m=1 ξmG jm (·, tm), tm
∈ T̂ jm (x), is a

(
Φ, ρG

)
-β-quasi-invex function at x on D,

c)
∑w

m=w0+1 ξmHkm (·, sm), sm
∈ Skm , is a

(
Φ, ρH

)
-γ-quasi-invex function at x on D,

d) ρα + ρG + ρH = 0,
G) a)

∑p
i=1 λi

[
fi (·) − vi1i (·)

]
, i = 1, ..., p, is a

(
Φ, ρα

)
-α-pseudo-invex function at x on D,

b)
∑w0

m=1 ξmG jm (·, tm) +
∑w

m=w0+1 ξmHkm (·, sm), tm
∈ T̂ jm (x), sm

∈ Skm , is a
(
Φ, ρβ

)
-β-quasi-invex function at x

on D,
c) ρα + ρβ = 0.

Then x is efficient in problem (P) with the corresponding optimal objective value equal to v = ϕ (x).

Proof. By assumption, x ∈ D, v = ϕ (x) and, moreover, there exist λ ∈ Λ, integers w0 and w, with 0 5
w0 5 w 5 n + 1, such that there exist w0 indices jm, with 1 5 jm 5 q, together with w0 points tm

∈ T̂ jm (x),
m = 1, ...,w0, w−w0 indices km with 1 5 km 5 r together with w−w0 points sm

∈ Skm , m = 1, ...,w−w0, and w
real numbers ξm with ξm > 0 for m = 1, ...,w0, with the property that the relation (5) is fulfilled at x.

We proceed by contradiction. Suppose, contrary to the result, that x is not efficient in problem (P).
Hence, there exists x̃ ∈ D such that

fi
(
x̃
)
− vi1i

(
x̃
)
5 fi (x) − vi1i (x) for i ∈ I, (49)

fi∗
(
x̃
)
− vi∗1i∗

(
x̃
)
< fi∗ (x) − vi∗1i∗ (x) for at least one i∗ ∈ I. (50)

Proof of the theorem under hypothesis A).
By hypothesis a), Definition 2.4 implies that the following inequalities

Φ
(
x̃, x, αi

(
x̃, x

) (
∇ fi (x) − vi∇1i (x) , ρi

))
5 0, i ∈ I, (51)

Φ
(
x̃, x, αi∗

(
x̃, x

) (
∇ fi∗ (x) − vi∗∇1i∗ (x) , ρi∗

))
5 0 for at least one i∗ ∈ I (52)

hold. By x̃ ∈ D and x ∈ D, it follows that

ξmG jm (x̃, tm) 5 ξmG jm (x, tm), tm
∈ T̂ jm (x) , m = 1, ...,w0, (53)

ξmHkm (x̃, sm) = ξmHkm (x, sm), sm
∈ Skm , m ∈

{
w0 + 1, ...,w

}
. (54)

Hence, by (53) and (54), hypotheses b)-d) yield, respectively,

ξmΦ
(
x̃, x, β jm

(
x̃, x

) (
∇G jm (x, tm), ρG jm

))
5 0, tm

∈ T̂ jm (x) , m = 1, ...,w0, (55)
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ξmΦ
(
x̃, x, γ+

km

(
x̃, x

) (
∇Hkm (x, sm), ρ+

Hkm

))
5 0, sm

∈ S+
km

(x) , m ∈
{
w0 + 1, ...,w

}
, (56)

−ξmΦ
(
x̃, x, γ−km

(
x̃, x

) (
−∇Hkm (x, sm), ρ−Hkm

))
5 0, sm

∈ S−km
(x) , m ∈

{
w0 + 1, ...,w

}
. (57)

Multiplying the inequalities (51)-(52) by λi

αi(x̃,x) > 0, (55) by 1
β jm (x̃,x) > 0, (56) by 1

γ+
km (x̃,x) > 0, (57) by 1

γ−km (x̃,x) > 0,

and then adding both sides of the obtained inequalities, we get

p∑
i=1

λi

αi
(
x̃, x

)Φ
(
x̃, x, αi

(
x̃, x

) (
∇ fi (x) − vi∇1i (x) , ρi

))
+

w0∑
m=1

ξm

β jm
(
x̃, x

)Φ
(
x̃, x, β jm

(
x̃, x

) (
∇G jm (x, tm), ρG jm

))

+
∑

m∈{w0+1,...,w}

ξm

γ+
km

(
x̃, x

)Φ
(
x̃, x, γ+

km

(
x̃, x

) (
∇Hkm (x, sm), ρ+

Hkm

))

+
∑

m∈{w0+1,...,w}

−ξm

γ−km

(
x̃, x

)Φ
(
x̃, x, γ−km

(
x̃, x

) (
−∇Hkm (x, sm), ρ−Hkm

))
< 0.

The last part of proof of this theorem is similar to the proof of Theorem 3.2 under hypothesis A).

Proof of the theorem under hypothesis B).
Using (49) and (50) together with λ ∈ Λ, we get, respectively,

λi
[

fi
(
x̃
)
− vi1i

(
x̃
)]
5 λi

[
fi (x) − vi1i (x)

]
for i ∈ I, (58)

λi∗
[

fi∗
(
x̃
)
− vi∗1i∗

(
x̃
)]
< λi∗

[
fi∗ (x) − vi∗1i∗ (x)

]
for at least one i∗ ∈ I. (59)

By x̃ ∈ D and x ∈ D, it follows that

ξmG jm (x̃, tm) 5 ξmG jm (x, tm), tm
∈ T̂ jm (x) , m = 1, ...,w0, (60)

ξmHkm (x̃, sm) = ξmHkm (x, sm), sm
∈ Skm , m ∈

{
w0 + 1, ...,w

}
. (61)

Adding both sides of (60) and (61), and then combining the inequalities obtained and (58) and (59), we get

λi
[

fi
(
x̃
)
− vi1i

(
x̃
)]

+ 1
p

[∑w0
m=1 ξmG jm (x̃, tm) +

∑w
m=w0+1 ξmHkm (x̃, sm)

]
5 λi

[
fi (x) − vi1i (x)

]
+ 1

p

[∑w0
m=1 ξmG jm (x, tm) +

∑w
m=w0+1 ξmHkm (x, sm)

]
, i ∈ I,

(62)

λi∗
[

fi∗
(
x̃
)
− vi∗1i∗

(
x̃
)]

+ 1
p

[∑w0
m=1 ξmG jm (x̃, tm) +

∑w
m=w0+1 ξmHkm (x̃, sm)

]
< λi∗

[
fi∗ (x) − vi∗1i∗ (x)

]
+ 1

p

[∑w0
m=1 ξmG jm (x, tm) +

∑w
m=w0+1 ξmHkm (x, sm)

]
for at least one i∗ ∈ I.

(63)

By assumption B), each function z→ Li

(
z, λ, ξ, v,w,w0, t, s

)
, i = 1, ..., p, is

(
Φ, ρi

)
-αi-pseudo-invex at x on D,

where t ≡
(
t1, ..., tw0

)
, s ≡

(
sw0+1, ..., sw

)
. Hence, by Definition 2.4, (62) and (63) imply that, for every i = 1, ..., p,

Φ
(
x̃, x, αi

(
x̃, x

) (
λi

[
∇ fi (x) − vi∇1i (x)

]
+ 1

p

[∑w0
i=1 ξm∇G jm (x, tm) +

∑w
m=w0+1 ξm∇Hkm (x, sm)

]
, ρi

))
< 0.

The last part of proof is similar to the proof of Theorem 3.2 under hypothesis B).
Proofs of this theorem under hypotheses C)-G) are similar to the one of the proofs above and, therefore,

they have been omitted in the paper.
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4. Concluding Remarks

In the paper, a fairly large number of sets of global parametric sufficient optimality conditions for
efficiency has been established for a new class of nonconvex smooth semi-infinite multiobjective fractional
programming problems under various

(
Φ, ρ

)
-V-invexity and/or generalized

(
Φ, ρ

)
-V-invexity assumptions.

It appears that all these results are new for semi-infinite programming problems. Indeed, it turns out
that the sufficient optimality conditions are applicable also for such semi-infinite multiobjective fractional
programming problems in which not all functions constituting them have the fundamental property of
convex, invex and the most concept of generalized convex functions - namely, that a stationary point of a
function belonging to such a class of functions is also its global minimizer. This result was illustrated in the
paper by the example of a nonconvex smooth semi-infinite multiobjective fractional programming problem
in which the involved functions belong to the class of

(
Φ, ρ

)
-V-invex functions.

Further, it is also easy to see that all results obtained here can be modified and restarted in a straight-
forward manner for various types of optimization problems. Thus, the results established in this paper
collectively provide a truly vast number of new optimality results for several classes of semi-infinite and
classical (finite) programming problems.

However, some interesting topics for further research remain. It would be of interest to investigate
whether these results are true also for various classes of nonsmooth semi-infinite programming problems.
We shall investigate these questions in subsequent papers.
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