
Filomat 30:14 (2016), 3771–3778
DOI 10.2298/FIL1614771D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. This paper is concerned with the existence and uniqueness of extremal solution for a nonlinear
boundary value problems of fractional differential equation involving Riemann-Liouville derivative and
p-Laplacian operator. By applying monotone iterative technique and lower and upper solutions method,
we obtain sufficient conditions for the existence and uniqueness of extremal solution and construct the
sequences of iteration to approximate it. The paper extends the applications of lower and upper solutions
method and obtains some new results.

1. Introduction

This paper investigates the following nonlinear boundary value problem of a fractional differential
equation with p-Laplacian operator:

Dβ
0+ (φp(Dα

0+ u(t))) = f (t,u(t),Dα
0+ u(t)), t ∈ (0, 1]

t
1−β
p−1 Dα

0+ u(t)|t=0 = δ, 1(ũ(0), ũ(1)) = 0,
(1)

where 0 < α, β ≤ 1, 1 < α + β ≤ 2, δ ≥ 0, Dα
0+ is the Riemann-Liouville fractional derivative of order

α, φp(t) = |t|p−2t, p > 1 is the p -Laplacian operator and (φp)−1 = φq, 1
p + 1

q = 1. The nonlinear term
f ∈ C([0, 1] ×R ×R,R), 1 ∈ C(R ×R,R), ũ(0) = t1−αu(t)|t=0 and ũ(1) = t1−αu(t)|t=1.

The existence of solutions for fractional boundary value problems with p-Laplacian have been considered
by some authors via classic fixed-point theorems and coincidence degree theory [1–4]. The monotone
iterative technique, combined with the method of lower and upper solutions, is also a powerful tool to
prove the existence of solutions for boundary value problems of nonlinear differential equations. Recently,
some authors used the methods to investigate some nonlinear boundary value problems of nonlinear
fractional equations [7–11]. Others also applied the methods to show the existence of solutions for some
integer-order p-Laplacian boundary value problems, see [12–15]. However, to the best of our knowledge,
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there are few results on fractional order p-Laplacian boundary value problems by the way of the upper and
lower method and the monotone iteration, only see [16].

It is worth mentioning that the p-Laplacian operator brings some difficulty in constructing monotone
sequences. All known results require the nonlinear terms satisfying monotonicity on unknown function
u or its derivatives, which make it easy to iterate. The unnecessary condition is removed in this paper.
Furthermore, the nonlinear boundary value condition is considered in the paper which means that our
method and main results here are different from those in [2, 3, 13–16].

2. Linear Problems and Comparison Principles

We firstly introduce some spaces. Let the Banach space C[0, 1] = {u : [0, 1]→ R|u(t) is continuous on [0, 1]}
with the norm ‖u‖C = maxt∈[0,1] |u(t)|. Denote C1−α[0, 1] by

C1−α[0, 1] = {u ∈ C(0, 1] : t1−αu ∈ C[0, 1]}, α ∈ (0, 1].

Then C1−α[0, 1] is a Banach space with the norm ‖u‖C1−α = ‖t1−αu(t)‖C. It is clear that C[0, 1] := C0[0, 1] ⊂
C1−α[0, 1] ⊂ C1−β[0, 1] with ‖u‖C1−β ≤ ‖u‖C1−α ≤ ‖u‖C for 1 ≥ α ≥ β > 0.

Denote the space X by

X = {u(t) ∈ C1−α[0, 1] : (Dαu)(t) ∈ Cr[0, 1] and trDα
0+ u(t)|t=0 = δ},

where r =
1−β
p−1 , 0 < α, β ≤ 1, p > 1. It is easy to know that the space X is a Banach space with the norm

‖u‖ = ‖u‖C1−α + ‖Dαu(t)‖Cr .

Definition 2.1. [6] The Riemann-Liouville fractional integral Iα0+ and fractional derivative Dα
0+ are defined by

Iα0+ f (t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds

and

Dα
0+ f (t) =

1
Γ(n − α)

(
d
dt

)n ∫ t

0
(t − s)n−α−1 f (s)ds =

(
d
dt

)n

(In−α
0+ f )(t),

where n − 1 < α ≤ n, n ∈N, provided the integrals exist.

Lemma 2.2. [6] Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0 that belongs to
C(0, 1) ∩ L(0, 1). Then

Iα0+Dα
0+u(t) = u(t) − ctα−1 for some c ∈ R.

We first show the existence results for the following fractional equation with initial conditions
Dβ

0+ (φp(Dα
0+ u(t))) = f (t,u(t),Dα

0+ u(t)), t ∈ (0, 1],

t
1−β
p−1 Dα

0+ u(t)|t=0 = φp(δ), ũ(0) = k.
(2)

Let v(t) := φp(Dα
0+ u(t)). Since ũ(0) = k, by Lemma 2.2, we have

u(t) = ktα−1 + Iα0+φq(v(t)) = ktα−1 +
1

Γ(α)

∫ t

0
(t − s)α−1φq(v(s))ds =: (Tv)(t), (3)

and φp(t
1−β
p−1 Dα

0+ u(t)) = t1−βφp(Dα
0+ u(t)) = t1−βv(t) for 0 < t ≤ 1.
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Substituting the above u(t) and v(t) into the nonlinear term f (t,u(t),Dα
0+ u(t)) of problem (2), we get thatDβ

0+ v(t) = f (t, (Tv)(t), v(t)), t ∈ (0, 1],

t1−βv(t)|t=0 = φp(δ).
(4)

If the problem (4) has a solution v(t), then substituting it into (3), we can get a solution u of the problem (2).
So, we shall show that the problem (4) has at least one solutions under a proper condition.

Lemma 2.3. Assume that f ∈ C([0, 1] ×R ×R,R) and there exists nonnegative constant M such that

| f (t,u1(t),u2(t)) − f (t, v1(t), v2(t))| ≤M|v2(t) − u2(t)|, t ∈ (0, 1], (5)

then the problem (4) has a unique solution x(t) ∈ C1−β[0, 1].

Proof. By Lemma 2.2, in accordance with t1−βv(t)|t=0 = φp(δ), the problem (4) is equivalent to the integral
equation

v(t) = φp(δ)tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, (Tv)(s), v(s))ds. (6)

It can be written in the form v = Bv, where the operator B is defined by

Bv(t) := φp(δ)tβ−1 +
1

Γ(β)

∫ t

0
(t − s)β−1 f (s, (Tv)(s), v(s))ds.

It is clear that φp(δ)tβ−1
∈ C1−β[0, 1]. Since f ∈ C([0, 1] ×R ×R,R) and

‖Iβ0+ f (s, (Tv)(s), v(s))‖C1−β ≤
Γ(β)
Γ(2β)

‖ f ‖C1−β ,

we get that the operator B : C1−β[0, 1]→ C1−β[0, 1].
To prove B is a contraction operator, we use the way that is derived from [7, Theorme 1]. Let us choose

constants m,n such that 1 < m < 1
1−β and 1

m + 1
n = 1. We use the following norm

‖v‖∗ = max
t∈[0,1]

t1−βeκt
|v(t)|,

with a positive κ such that

(κn)
1
n >

M
Γ(β)

eκ[
Γ2(m(β − 1) + 1)
Γ(2m(β − 1) + 2)

]
1
m ≡ %.

Note that ∫ t

0
((t − s)β−1sβ−1)mds =

Γ2(m(β − 1) + 1)
Γ(2m(β − 1) + 2)

t2m(β−1)+1.

For any u, v ∈ C1−β[0, 1], using the Hölder inequality for integrals

∫ t

0
|a(t)||b(t)|dt ≤

(∫ t

0
|a(t)|mdt

) 1
m
(∫ t

0
|b(t)|ndt

) 1
n

,
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and the inequality (5), we obtain

‖Bu(t) − Bv(t)‖∗ ≤ max
t∈[0,1]

t1−βeκt 1
Γ(β)

∫ t

0
(t − s)β−1

| f (s, (Tu)(s),u(s)) − f (s, (Tv)(s), v(s))|ds

≤ max
t∈[0,1]

t1−βeκt

Γ(β)

∫ t

0
(t − s)β−1

|Mu(s) −Mv(s)|ds

= max
t∈[0,1]

t1−βeκt

Γ(β)

∫ t

0
(t − s)β−1sβ−1e−κss1−βeκs

|Mu(s) −Mv(s)|ds

≤
M

Γ(β)
‖u − v‖∗ max

t∈[0,1]
t1−βeκt

∫ t

0
(t − s)β−1sβ−1e−κsds

≤
M

Γ(β)
‖u − v‖∗ max

t∈[0,1]
t1−βeκt

(∫ t

0
|(t − s)β−1sβ−1

|
mds

) 1
m
(∫ t

0
|e−κs
|
nds

) 1
n

≤
M

Γ(β)
‖u − v‖∗ max

t∈[0,1]
tβ−1+ 1

m eκt[
Γ2(m(β − 1) + 1)
Γ(2m(β − 1) + 2)

]
1
m (

1
κn

)
1
n

≤
M

Γ(β)
‖u − v‖∗eκ[

Γ2(m(β − 1) + 1)
Γ(2m(β − 1) + 2)

]
1
m (

1
κn

)
1
n

≤
%

(κn)
1
n

‖u − v‖∗ < ‖u − v‖∗.

So the operator B has a unique fixed point by the Banach fixed point theorem, and then the problem (4) has
a unique solution.

Lemma 2.4. Assume that 0 < α, β ≤ 1,M(t) ∈ C[0, 1] and η(t) ∈ C1−β[0, 1]. Then the linear fractional initial
problem

Dβ
0+ (φp(Dα

0+ u(t))) + M(t)φp(Dα
0+ u(t)) = η(t), t ∈ (0, 1]

t
1−β
p−1 Dα

0+ u(t)|t=0 = δ, ũ(0) = k,
(7)

has a unique solution u ∈ X.

Proof. Let v(t) := φp(Dα
0+ u(t)). The problem (7) is transformed into the following fractional initial value

problemsDα
0+ u(t) = φq(v(t)), t ∈ (0, 1],

ũ(0) = k,
(8)

and Dβ
0+ v(t) + M(t)v(t) = η(t), t ∈ (0, 1],

t1−βv(t)|t=0 = φp(δ).
(9)

Let f (t,Tv, v) := η −M(t)v. Since M(t) ∈ C[0, 1], M(t) is a bounded function with |M(t)| ≤ ‖M‖C < ∞. For
v1, v2 ∈ C1−β[0, 1], we get

| f (t,Tv1, v1) − f (t,Tv2, v2)| = |M(t)||v2 − v1| ≤ ‖M‖C|v2 − v1|.

Therefore, the above problem (9) has a unique solution v(t) ∈ C1−β[0, 1] by Lemma 2.3. So Dα
0+ u(t) ∈ C 1−β

p−1
[0, 1].

In addition, the problem (8) has a solution u(t) ∈ C1−α[0, 1] in the form as (3) by Lemma 2.2. Substituting
the solution v(t) of (9) into the solution u(t) of (8), we get a unique solution u(t) ∈ X of the problem (7).
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Corollary 2.5. Assume that 0 < α, β ≤ 1, λ ∈ R and η(t) ∈ C1−β[0, 1]. Then the linear fractional initial problem
Dβ

0+ (φp(Dα
0+ u(t))) + λφp(Dα

0+ u(t)) = η(t), t ∈ (0, 1]

t
1−β
p−1 Dα

0+ u(t)|t=0 = δ, ũ(0) = k,
(10)

has a unique solution x ∈ X.

The next lemma gives two comparison results which play very important roles in our main results.

Lemma 2.6. (Comparison results)
(i) If x(t) ∈ C1−β[0, 1] satisfiesDβ

0+ x(t) + M(t)x(t) ≥ 0, t ∈ (0, 1],

t1−βx(t)|t=0 ≥ 0,
where M(t) ∈ C([0, 1], [0,∞)). Then x(t) ≥ 0 for t ∈ (0, 1].
(ii) If y(t) ∈ C1−α[0, 1] satisfiesDα

0+ y(t) ≥ 0, t ∈ (0, 1],
ỹ(0) = k ≥ 0.

Then y(t) ≥ 0 for t ∈ (0, 1].

Proof. Assume that (i) is not true. It means that there exist points a, b ∈ (0, 1] such x(a) = 0, x(b) < 0 and
x(t) ≥ 0, t ∈ (0, a], x(t) < 0, t ∈ (a, b]. Let c be the first minimal point of x(t) on [a, b], then x(t) < 0, t ∈ (a, c].
Then, since M(t) ≥ 0, Dβ

0+ x(t) ≥ 0, x ∈ [a, c]. So
∫ c

a Dβ
0+ x(t)dt ≥ 0, that is,

D :=
∫ c

a

d
dt

I1−βx(t)dt = I1−βx(c) − I1−βx(a) ≥ 0. (11)

On the other hand, we have

D =
1

Γ(1 − β)

[∫ c

0
(c − s)−βx(s)ds −

∫ a

0
(a − s)−βx(s)ds

]
=

1
Γ(1 − β)

[∫ a

0
((c − s)−β − (a − s)−β)x(s)ds +

∫ c

a
(c − s)−βx(s)ds

]
< 0.

It contradicts (11), so the assertion holds. This completes the proof of result (1).
The result (ii) is obvious by (3).

3. Main Results

In this section, we show the existence and uniqueness of extremal solution of the problem (1) by
monotone iterative technique and the method of upper and lower solutions. First of all, we give the
definitions of a couple of lower and upper solutions.

Definition 3.1. A function u(t) ∈ X is called a lower solution of the problem (1) if it satisfies
Dβ

0+ (φp(Dα
0+ u(t))) ≤ f (t,u(t),Dα

0+ u(t)), t ∈ (0, 1]

t
1−β
p−1 Dα

0+ u(t)|t=0 = δ, 1(ũ(0), ũ(1)) ≥ 0.
(12)

Likewise, a function v(t) ∈ X is called an upper solution of the problem (1) if it satisfies
Dβ

0+ (φp(Dα
0+ v(t))) ≥ f (t, v(t),Dα

0+ v(t)), t ∈ (0, 1]

t
1−β
p−1 Dα

0+ v(t)|t=0 = δ, 1(ṽ(0), ṽ(1)) ≤ 0.
(13)
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We need the following assumptions in our main results.
(H1)Assume that f ∈ C([0, 1] ×R ×R,R), 1 ∈ C(R ×R,R).
(H2) There exists a function M(t) ≥ 0, t ∈ [0, 1] such that

f (t,u(t),Dα
0+ u(t)) − f (t, v(t),Dα

0+ v(t)) ≤M(t)[φp(Dα
0+ v(t)) − φp(Dα

0+ u(t))]

for u0(t) ≤ u(t) ≤ v(t) ≤ v0(t), t ∈ (0, 1].
(H3) There exist constants λ > 0, µ ≥ 0 such that

1(x1, y1) − 1(x2, y2) ≤ λ(x2 − x1) − µ(y2 − y1)

for ũ0(0) ≤ x1 ≤ x2 ≤ ṽ0(0) and ũ0(1) ≤ y1 ≤ y2 ≤ ṽ0(1).
Now we give main results

Theorem 3.2. Assume that u0, v0 ∈ X are lower and upper solutions of the problem (1), respectively and u0(t) ≤
v0(t), t ∈ (0, 1]. In addition, assume that (H1), (H2), (H3) hold. Then there exist sequences {un(t)}, {vn(t)} ⊂ X such
that the problem (1) has extremal solutions in the sector

[u0, v0] = {u ∈ X : u0(t) ≤ u(t) ≤ v0(t), t ∈ (0, 1], ũ0(0) ≤ ũ(0) ≤ ṽ0(0)}.

Proof. Let F(u(t)) := f (t,u(t),Dα
0+ u(t)). For n = 1, 2, ..., we define

Dβ
0+ (φp(Dα

0+ un(t))) + M(t)φp(Dα
0+ un(t)) = F(un−1(t)) + M(t)φp(Dα

0+ un−1(t)), t ∈ (0, 1],

t
1−β
p−1 Dα

0+ un(t)|t=0 = δ, ũn(0) = ũn−1(0) + 1
λ1(ũn−1(0), ũn−1(1)),

and
Dβ

0+ (φp(Dα
0+ vn(t))) + M(t)φp(Dα

0+ vn(t)) = F(vn−1(t)) + M(t)φp(Dα
0+ vn−1(t)), t ∈ (0, 1],

t
1−β
p−1 Dα

0+ vn(t)|t=0 = δ, ṽn(0) = ṽn−1(0) + 1
λ1(ṽn−1(0), ṽn−1(1)).

In view of Lemma 2.4, functions u1, v1 are well defined in the space X.
First, we show that u0(t) ≤ u1(t) ≤ v1(t) ≤ v0(t), t ∈ (0, 1] and ũ0(0) ≤ ũ1(0) ≤ ṽ1(0) ≤ ṽ0(0).
Let δ(t) := φp(Dα

0+ u1(t)) − φp(Dα
0+ u0(t)). By the definition of u1 and the assumption that u0 is a lower

solution, we obtain that

Dβ
0+δ(t) + M(t)δ(t) = F(u0(t)) −Dβ

0+ (φp(Dα
0+ u0(t)) ≥ 0,

and t1−βδ(t)|t=0 = φp(t
1−β
p−1 Dα

0+ u1(t))|t=0 − φp(t
1−β
p−1 Dα

0+ u0(t))|t=0 = 0.
Then, we get φp(Dα

0+ u0(t)) ≤ φp(Dα
0+ u1(t)) for t ∈ (0, 1] by (i) of Lemma 2.6. Since φp(x) is monotonous,

Dα
0+ u0(t) ≤ Dα

0+ u1(t), that is, Dα
0+ (u1(t) − u0(t)) ≥ 0. In view of ũ1(0) = ũ0(0) + 1

λ1(ũ0(0), ũ0(1)) ≥ 0, we have
u1(t) ≥ u0(t), t ∈ (0, 1] by (ii) of Lemma 2.6 and ũ0(0) ≤ ũ1(0).

By a similar way, we can show that v1(t) ≤ v0(t), t ∈ (0, 1] and ṽ1(0) ≤ ṽ0(0).
Now, we put ξ(t) = φp(Dα

0+ v1(t)) − φp(Dα
0+ u1(t)). By the definitions of u1, v1 and (H2), we have

Dβ
0+ξ(t) + M(t)ξ(t) = F(v0(t)) − F(u0(t)) + M(t)[φp(Dα

0+ v0) − φp(Dα
0+ u0)] ≥ 0,

and t1−βξ(t)|t=0 = 0.
Hence, ξ(t) ≥ 0 by Lemma 2.6, that is, φp(Dα

0+ v1(t)) ≥ φp(Dα
0+ u1(t)), and then Dα

0+ v1(t) ≥ Dα
0+ u1(t). In

addition, we have, by (H3) and (H1),

ṽ1(0) − ũ1(0) = ṽ0(0) +
1
λ
1(ṽ0(0), ṽ0(1)) − [ũ0(0) +

1
λ
1(ũ0(0), ũ0(1))]

=
1
λ

[λ(ṽ0(0) − ũ0(0)) − (1(ũ0(0), ũ0(1)) − 1(ṽ0(0), ṽ0(1)))]

≥
1
λ

[λ(ṽ0(0) − ũ0(0)) − λ(ṽ0(0) − ũ0(0)) + µ(ṽ0(1) − ũ0(1))]

=
µ

λ
(ṽ0(1) − ũ0(1)) ≥ 0.

(14)



Y. Ding, Z. Wei / Filomat 30:14 (2016), 3771–3778 3777

The inequality (14) and Lemma 2.6 imply that v1(t) ≥ u1(t), t ∈ (0, 1] and ũ1(0) ≤ ṽ1(0).
In the following, we show that u1, v1 are lower and upper solutions of the problem (1), respectively.

Dβ
0+ (φp(Dα

0+ u1(t))) = F(u0(t)) − F(u1(t)) + F(u1(t)) −M(t)[φp(Dα
0+ u1(t)) − φp(Dα

0+ u0(t))]

≤M[φp(Dα
0+ u1(t)) − φp(Dα

0+ u0(t))] −M[φp(Dα
0+ u1(t)) − φp(Dα

0+ u0(t))] + F(u1(t))
= F(u1(t)),

and

0 = 1(ũ0(0), ũ0(1)) − 1(ũ1(0), ũ1(1)) + 1(ũ1(0), ũ1(1)) − λ[ũ1(0) − ũ0(0)]
≤ 1(ũ1(0), ũ1(1)) − µ(ũ1(1) − ũ0(1))

by assumptions (H2) and (H3). Since ũ1(1) ≥ ũ0(1), 1(ũ1(0), ũ1(1)) ≥ 0. Thus we prove that u1 is a lower
solution of the problem (1). Similarly, we can prove that v1 is an upper solution of the problem (1).

Using the mathematical induction, we can obtain that

u0(t) ≤ u1(t) ≤ ... ≤ un(t) ≤ un+1(t) ≤ vn+1(t) ≤ vn(t) ≤ ... ≤ v1(t) ≤ v0(t), (15)

Dα
0+ u0 ≤ Dα

0+ u1 ≤ ... ≤ Dα
0+ un ≤ Dα

0+ un+1 ≤ Dα
0+ vn+1 ≤ Dα

0+ vn ≤ ... ≤ Dα
0+ v1 ≤ Dα

0+ v0
and

ũ0(0) ≤ ũ1(0) ≤ ... ≤ ũn(0) ≤ ũn+1(0) ≤ ṽn+1(0) ≤ ṽn(0) ≤ ... ≤ ṽ1(0) ≤ ṽ0(0), (16)

for t ∈ (0, 1] and n = 1, 2, 3, ....
Similar to [18], we know that the sequences {t1−αun} and {t1−αvn} are uniformly bounded and equi-

continuous. So the Arzela-Ascoli theorem educes that they are relatively compact sets of the space X.
Therefore, {t1−αun} and {t1−αvn} converge to t1−αx(t) and t1−αy(t) uniformly on [0, 1], respectively. That is

lim
n→∞

un(t) = x(t), lim
n→∞

vn(t) = y(t), t ∈ (0, 1].

lim
n→∞

Dα
0+ un(t) = Dα

0+ x(t), lim
n→∞

Dα
0+ vn(t) = Dα

0+ y(t), t ∈ (0, 1].

Moreover, x(t) and y(t) are the solutions of the problem (1) and u0(t) ≤ x(t) ≤ y(t) ≤ v0(t) on (0, 1].
To prove that x(t), y(t) are extremal solutions of (1), let u ∈ [u0, v0] be any solution of the problem (1). We

suppose that un(t) ≤ u(t) ≤ vn(t), t ∈ (0, 1] for some n. Let

q(t) = φp(Dα
0+ u(t)) − φp(Dα

0+ un+1(t)), p(t) = φp(Dα
0+ vn+1(t)) − φp(Dα

0+ u(t)).

Then, by assumptions (H2), we can prove that
Dβ

0+ q(t) + M(t)q(t)(t) = F(u(t)) − F(un(t)) + M(t)[φp(Dα
0+ u(t)) − φp(Dα

0+ un(t))] ≥ 0,
t1−βq(t)|t=0 = 0,
and
Dβ

0+ p(t) + M(t)p(t) = F(vn(t)) − F(u(t)) + M(t)[φp(Dα
0+ vn(t)) − φp(Dα

0+ v(t))] ≥ 0,
t1−βp(t)|t=0 = 0.

Hence, q(t) ≥ 0, p(t) ≥ 0 by Lemma 2.6, that is, φp(Dα
0+ u(t)) ≥ φp(Dα

0+ un+1(t)), φp(Dα
0+ (u)) ≤ φp(Dα

0+ vn+1(t)).
Thus, Dα

0+ (u(t) − un+1(t)) ≥ 0, Dα
0+ (vn+1(t) − u(t)) ≥ 0. Besides, by (H3), we have

ũ(0) − ũn+1(0) = ũ(0) +
1
λ
1(ũ(0), ũ(1)) − [ũn(0) +

1
λ
1(ũn(0), ũn(1))]

=
1
λ

[λũ(0) + 1(ũ(0), ũ(1)) − (λũn(0) + 1(ũn(0), ũn(1))]

≥
µ

λ
(ũ(1) − ũn(1)) ≥ 0.
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ṽn+1(0) − ũ(0) = ṽn(0) +
1
λ
1(ṽn(0), ṽn(1)) − [ũ(0) +

1
λ
1(ũ(0), ũ(1))]

=
1
λ

[λṽn + 1(ũ(0), ũ(1)) − (λũ + 1(ũn(0), ũn+1(1))]

≥
µ

λ
(ṽn+1(1) − ũ(1)) ≥ 0.

These and Lemma 2.6 derive that un+1(t) ≤ u(t) ≤ vn+1(t), t ∈ (0, 1]. So, by induction, x(t) ≤ u(t) ≤ y(t) on
(0, 1] by taking n→∞. The proof is completed.

Theorem 3.3. The assumptions of Theorem 3.2 hold and there exists a function N(t) ≥ 0, t ∈ [0, 1] such that

N(t)[φp(Dα
0+ v(t)) − φp(Dα

0+ u(t))] ≤ f (t,u(t),Dα
0+ u(t)) − f (t, v(t),Dα

0+ v(t)) (17)

for u0(t) ≤ u(t) ≤ v(t) ≤ v0(t), t ∈ (0, 1] and ũ0(0) = ṽ0(0). Then the problem (1) has one unique solution in the
order interval [u0, v0].

Proof. From the Theorem 3.2, we know x(t) and y(t) are extremal solutions and x(t) ≤ y(t), t ∈ (0, 1]. It is
sufficient to prove x(t) ≥ y(t), t ∈ (0, 1]. In fact, let w(t) = φp(Dα

0+ x(t))−φp(Dα
0+ y(t)), t ∈ (0, 1], we have, by (17),Dβ

0+ w(t) = F(x(t)) − F(y(t)) ≥ N(t)[φp(Dα
0+ y(t)) − φp(Dα

0+ x(t))] = −N(t)w(t),

t1−βw(t)|t=0 = φp(t
1−β
p−1 Dα

0+ x(t))|t=0 − φp(t
1−β
p−1 Dα

0+ y(t))|t=0 = 0.

Then, w(t) ≥ 0, t ∈ (0, 1] by (i) of Lemma 2.6 Thus, Dα
0+ x(t) ≥ Dα

0+ y(t), t ∈ (0, 1] since φp(x) is monotonic
function. In addition, by (16) and ũ0(0) = ṽ0(0), we have x̃(0) = ỹ(0). So x(t) ≥ y(t), t ∈ (0, 1] by (ii) of Lemma
2.6. Therefore, we get x = y is a unique solution of the problem (1). The proof is completed.
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