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Abstract. In this paper, we study the existence, uniqueness, stability through continuous dependence
on initial conditions and Hyers-Ulam-Rassias stability results for random impulsive fractional pantograph
differential systems by relaxing the linear growth conditions. Finally examples are given to illustrate the
applications of the abstract results.

1. Introduction

Pantograph type equations have been studied extensively owing to the numerous applications in which
these equations arise. The name pantograph originated from the work of Ockendon and Tayler [1] on
the collection of current by the pantograph head of an electric locomotive. The pantograph equations are
appeared in modeling of various problems in engineering and sciences such as biology, economy, control
and electrodynamics. For some applications of this equation we refer [2-5].

Impulsive differential equations are suitable mathematical model to simulate the evolution of large
classes of real processes. These processes are subjected to short temporary perturbations. The duration of
these perturbations are negligible compared to the duration of whole process. These perturbations occurs
in the form of impulses (see the monographs [6, 7]). When the impulses are exists at random it affect the
nature of the differential system. There are few results that have been discussed. Iwankievicz and Nielsen
[8], investigated the dynamic response of non- linear systems to Poisson distributed random impulses. A.
Anguraj and A.Vinodkumar studied the existence, uniqueness and stability results of random impulsive
semilinear differential systems [9]. Sanz - Serna and Stuart [10] first brought dissipative differential equa-
tions with random impulses and used Markov chains to simulate such systems. On further read on random
impulsive type differential equations refer [11-17] and the references therein.

Recently, fractional differential / difference equations (FDEs / FDFEs) and impulsive fractional differential
equations (IFDEs) have proved to be valuable tool in the modeling of many phenomena in various fields of
science and engineering. Similarly, the stabilities like continuous dependence, Hyers-Ulam stability, Hyers-
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Ulam- Rassias stability, local stability and Mittag -Leffler stability for FDEs and IFDEs have attracted the
attention of many mathematicians (see [18-24] and the references therein). In [25], the authors have given
the Ulam’s type stability and data dependence for FDEs. JinRong Wang et al. [26] studied stability of FDEs
using fixed point theorem in a generalized complete metric space. In [27], JinRong Wang et al.studied
Ulam’s stability for the nonlinear IFDEs. Michal Feckan et al. proved on the concept and existence of
solution for IFDEs [28]. For more details on FDE and its stability concepts see [29-40] and for difference
equations and its behaviors see [41-43].

Motivated by the above mentioned works and its importance in many applied fields, it is interesting to
study the fractional model of the pantograph equations with random impulses. We relaxed the Lipschitz
condition on the impulsive term and under our assumption it is enough to be bounded. To best of our
knowledge there is no paper which study the random impulsive fractional pantograph equations.

The paper is organized as follows: In section 2, we recall briefly the notations, definitions, lemmas
and preliminaries which are used throughout this paper. In section 3, we investigate the existence results
and uniqueness of solutions of random impulsive fractional pantograph equations by relaxing the linear
growth condition. In section 4, we study the stability through continuous dependence on initial conditions
of random impulsive fractional pantograph equations. The Hyers Ulam stability and Hyers Ulam-Rassias
stability of the solutions of random impulsive fractional pantograph equations are investigated in section
5 and finally in section 6, examples are given to illustrate our theoretical results.

2. Preliminaries

Let |- || denote Euclidean norm in R". Let R" be the n—dimensional Euclidean space and QO a nonempty

set. Assume that 7; is a random variable defined from Q to Dy % (0,dy) for all k = 1,2,---, where
0 < dy < +oo. Furthermore, assume that 7 follow Erlang distribution, where k = 1,2,... and let 7; and 7;
are independent with each other asi # jfori,j=1,2,---. Let 7,T € R be two constants satisfying 7 < T.
For the sake of simplicity, we denote R = [1, T].

Consider the fractional pantograph differential system with random impulses of the form

‘Dix(t) = f(t,x(t), x(At), t#&, t=1 (1)
x(ék) = bk(’(k)x(ék ), k= 1, 2, ..... (2)
Xy, = Xo, @3)

where °D{ is the Caputo fractional derivative of order a € (0,1); 0 < A < 1; the function f : R xR — R";
by : Dy — R™" is a matrix-valued function foreachk =1,2,---; &y =tgand & = &1 + 1 fork=1,2,---,
here ty € R. is arbitrary real number. Obviously, tp = & < & < & < -+- < & < -+ x(é,:) = ltiTrénx(t)

k
according to their paths with the norm ||x|| = sup |x(s)| for each t satisfying 7 < < T.
T<s<t

Let us denote {B;,t > 0} be the simple counting process generated by {&,,}, that is, {B; > n} = {§, < t},
and denote ¥;, the o-algebra generated by {B;,t > 0}. Then (Q, P, {#;}) is a probability space. E(.) is the
expectation with respect to the measure P. Let 8 be the Banach space with the norm defined for any i € B,

Y1 = (sup Ellp(H)IF),

te[r,T]

where (t), for any given t € 1, T].

Definition 2.1. The fractional order integral of the function h € L'([a, b], R") of order o € R¥is defined by

. o)
50 = g [ o

where I'() is the gamma function.
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Definition 2.2. The Caputo derivative of order « for a function h on the given interval [a, b] is defined by

‘D h(”)(s)
( 1"( a)f t_s)a+1 n S,

here n = [a] + 1 and [«a] denotes the integer part of a.

Theorem 2.3. Let B be a convex subset of a Banach space E and assume 0 € B. Let F : B — B be a completely
continuous operator and let

U(F) = {xeB:x=VFxforsome0 <YV <1}

then either U(F) is unbounded or F has a fixed point.

Definition 2.4. For a given T € (7,+00), a stochastic process {x(t) € B,t < t < T} is called a solution to the
equations (1) — (3) in (Q, P {F4)), if
(i) x(t) € Bis F; - adapted.

(ii)
+00 k 1 k k g,
x(t) = Z[Hb (zi)xo + F_)ZHbj(Tj) (=9 (s, x(), x(A9)ds @
k=0 i=1 j=1 Ci-1

v f (= 9)* £(5,x(5), x(As))ds]I[gksm(t) telgTl.

where H (Y=lasm>n, H bi(1;) = bi(ti)bx—1(Tx-1) - - - bi(7:), and 14(-) is the index function, i.e.,

]m
|1, if teA,
IA(t)‘{ 0, if t¢A

3. Existence Results

In this section, we give the main results on the existence of solutions of the system (1) — (3).

(H1) : There exists a constant g; € (0,) such that real valued function m(t) € L' and there exists a L?
integrable and nondecreasing function W : [0, c0) — (0, o) such that

Ellf(t, 1, )P < mOW(EIS1IP + ElIS: ),

(H,) The condition E(max,-/k { H’;zl ||b]'(’[j)||}) is uniformly bounded if there is a constant C > 0 such that
E(maxi’k{]_[]]‘»:1 Iij(T]-)II}) <Cforallt;€Djj=1,2,...

Theorem 3.1. If the hypotheses (Hi) — (H2) hold, then the system (1) — (3) has a solution x(t), defined on [ty, T]
provided the following inequality satisfies

M, j; m(s)ds fl W(Zs) 5)

_ T— p(a-1)+1 _ 1
where M = 2P1 max{l,C }MW, = 2P71CPE||xo|lP and 2C > 2¥.
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Proof. Let T be an arbitrary number ty < T < +oo satisfying (5). We transform the problem (1) — (3) into a
fixed point problem. We consider the operator S : 8 — 8 defined by

+00 kK k &

(S9) = Z[HW o+ i 2 [ [0 [ €= 3, xas)ds
k=0 i=1 j=1 Ci-1
F( )f(t—s)“ 1f(s x(s), x(/\s))ds]l[gk s@®), telrTL

In order to use the transversality theorem, first we establish the priori estimates for the solutions of the
integral equation and A € (0, 1),

ko _k i
xt)= V Z[Hb(fcl FLZHb]-(Tj) f (t = 5)*" (s, x(s), X(As))ds

i=1 j=1 Gi-1

o f (t =) £(5,x(5), x(As))ds]I[(,kgM])(t) telrTl

Thus by (H;) — (H2), we have

+00 k k k Ei
(ol < [(VZ[”Hbm,-)anon+ﬁZHHb;m)H{ L RECRICE0 x(As»uds}
p
T f (=)'l (s, x(9), x(As))||ds]I[gk(,M>(t)]
< zp-l[ ) [H e[ 1ol .0 0)]
k i
Ay Z ITT bj(rj)"{ﬁ f C(e-9rG, X(S),X(AS))IIdS}
k=0 =1 j=1 Gi-1
) f (t= 915, 9 KA. 0] ]
<

op-1 mkax { H ||bi(’fi)||p}||x0||p + Zp—l[n}ix {1, H ||bi(’[i)||}]p
i=1 ! j=1

1 [ - P
[@ f (€= sF U xCe) x(As»nds]

Noting that the last term of the right hand side of the above inequality increases in ¢ and choose 2C > 2%,
we obtain that

Ellx()IF < 2P7'CPEllxoll”
1 t t
+2' ' max{1,C? —f t—s F’(“_l)dsxfEll s, x(s), x(As))||Pds
00 ) €9 . Ellf(s,x(9), (49)

— (a—1)+1 t
(pg - 3’; D@ J, Ellf(s, x(s), x(As))|Pds

— ryla-1)+1 t
(Pg - 31 D@ J, MEOWEEIRE)Ids

IA

27 LCPE|lxo|P + 2P~ max {1,0?7}

IA

27 1GPE|lxolP + 27" max {1, C”}
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sup Ellx@)Il < 2""'CPEllxoll”

to<vst

_ \pla—1)+1 t
2 max 1O e B J, O sup FIP
to 0<0<s

We consider the function £(t) defined by

{(t) = sup Ellx(@)IF], t € [k, T].

to<v<t
Then, for any t € [t, T] it follows that

(T _ T)p(a—1)+1 t
(pla —1) + DI(a) Jy,

£(t) < 2" 'CPEllxoll? + 2~ max {1, ¢} m(s)W(2£(s))ds 6)

Denoting by u(t) the right hand side of the above inequality (6), we obtain that
f(t) < u(t), te [tOI T]/

uto) = 2" 'CPEllxollP = 1
and
(T — g)Pa-D+1
(pla = 1) + DI'(a)
(T — g)Pa-D+1

W) = 2 max{1,cr m(HWQL(E)

< 27 max(1,¢7) o@D T D@ O, telt Tl
Then
u’(t) _ (T - 7/-)p(uz—l)+1
waup <2 " e o et %

Integrating (7) from £, to t and by making use of the change of variable, we obtain

u(t) dS
u(ty) W(25)

(T _ T)p(a—1)+1 t
(pla—1) + DI(a) Jy,
(T - T)p(a—l)+l T

(pla =1) + DI(a) J;,

te [tO/ T]/ (8)

2P~ max {1, C”} m(s)ds

IN

2P~! max {1, C”} m(s)ds

< ds
u(to) W(ZS),

where the last inequality is obtained by (5). From (8) and by mean value theorem, there is a constant m;

such that u(t) < 171 and hence €(t) < 11. Since sup E|lx(v)|’ = €(t) holds for every t € [ty, T], we have
to<v<t

sup E|lx(@)I < n1, where 11 only depends on T, the functions m and W, and consequently

to<v<T

Ellxlly = sup Ellx@)IP’ < m.

to<ov<T

Step :1 We prove that S is continuous.
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Let {x,} be a convergent sequence of elements of x in B. Then for each t € [y, T], we have

k k &
(Sx)(t) = Z[Hb (tio + %Zﬂb,m f (=97 (s %(5), (A9

i=1 j=1

F( )f(t—s)"‘ 1f(s X (s), xn()\s))ds] e, telr Tl

Thus,

1(Sx)(E) = (SOOI (f - )"

A
—
agh
M-
—
=
?
:1

Lf (s, xn(5), xn /\s)) f(s,x(s), x(As))||ds

1 t o p
T Lk(t = 8)* £ (s, xu(S), xu(A3)) —f(S,X(S),x(/\S))IIdS]I[gk,gm)(t)]

IA

k P
[rr}’%x L H ||bj<r,->||}]

P
(r( ) f (t = 5" NG5, %), %a(A5) = £, x(s»x(As))ndsukekm(t))

(T _ T)p(a—1)+1

EISx)(t) = (S0®IF < 27" max{1,¢")
— 0 asn— oo

Thus S is clearly continuous.
Step 2. We prove that S is completely continuous operator.
Denote

B, = {x e B| x|, < k}

for some k > 0.
Step 2.1 We show that S maps By into an equicontinuous family.

3844

t
TEEES YA f EILf(s, %(5), %,(A5) = f(5, x(5), x(As))IPds

Letx € Byand t1,t, € [to, T]. If to < t; < t, < T, then by using hypotheses (H;) — (H;) and condition (5),

we have

[(Sx)(t2) - (SX)(tl)]

- k i
: _ a1
= Z [F(a) E bj (TJ){ Ll(fz S f(s, X(s),x(/\s))ds}

t

+ﬁ (2= 9" f(5,x(5), x(AS”ds](I[&M(“) g (h)

+00 1 kK k &
Z [F—)Z Hb,m){ f (=9 = (1 —s)]a-l]ﬂs,x(s»x(As))ds}

i=1 j=1

+T)[£ (tz - S)a_lf(s, X(S), x(AS))dS

i=

1
+ f [(t2 =) = (0 = 91| f(5, x(5), x(As))ds]]I[gk,gm)(m
&k
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Then
EI(Sx)(t2) = (Sx)(t)IF < 2P EIILIP + 277 EllL|P

where
por g kK
L= Z [1“_) Z HbJ(T]){f (t2 = 9)* 71 f(s, x(s), x(/\s))ds}
Do
+w : (t2 - 5)0‘—1f(s, x(s), x(AS))dS](I[gk,5k+l)(t2) - I[fk,ékﬂ)(tl))
and
°r 1 &L
b= X[TZHW{ f [(t2 =) = (1 = 91| (s, x(s),x()\s))ds}
=1 j=
t)
r(l )[ (t2 — 8)7 f(s, x(s), x(As))ds
+fg [(tz - s)"‘—l —(t - s)]a—l]f(s, x(s),x(/\S))dS]]I[gk,ng)(tz)
Furthermore,

Bl < 27 max(1,c7) f (t2 — VI f(s, x(5), xA)IPds

T(a)

XE(I[ék,ekH)(tz) - Ilék,ékﬂ)(tl))

IA

1 (™
p—1 pl__— _ q)P(e-1)
2 max{l,C}r(a) fm (t2 — 5)"“ Dim(s)W(2k)ds

XE(Ilék,ékH)(fz) - I[ék,ém)(tl))

IA

1 (™
27" max{1,C? —f ty — s)PO Dy W(2k)ds
{ }r(a) (=9 (2k)

XE(Ilék,em(tz) - I[ék,sm(tl)) —0as Hh—th

where m* = sup{m(t) : t € [ty, T]}, and

and
E|L|IF < 2P~ 1max 1, Cp f (t1 —s)* 1 (t2 —9)]*” 1} Ellf(s, x(s), x(As))|IPds
27 max{1,C7) f (b2 — @ DE| f(s, x(s), x(As))IPds
< 20! max{l,cp}m f (=9 = (tr - s)]“_l} m*W(2k)ds
to

1 ("
p-1 pl_— _ a\pla-1), «
+2 max{l,C }F(a) jt: (tr =) m*W(2k)ds

—0as Hh—oh

3845

©)

(10)

(11)
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The right hand side of (10) and (11) is independent of x € By. It follows that the right hand side of (9)
tends to zero as t, — t;. Thus, S maps By into an equicontinuous family of functions.
Step 2.2 We show that SBy is uniformly bounded.

From (5), ||x|[3, < k and by (H;) — (Hy) it yields that

too r k ko k
SO = ||Z[]"[bi<n>xo FL)ZHWJ) (= 9% (s, x(5), x(As))ds
k=0 L =1 i=1 j=1 &ia
t
+$fg(t—s)"“lf(s,x(s),x()\s))ds][[(gk,gm)(t)l|’7
Thus,

_ ryla=1)+1 t
(pg —3+1>r<a> (s WQEI(EIFds

(T _ T)p(a—1)+2
(p(a = 1) + DI'(a)

This yields that the set {(Sx)(), |lx||% < k} is uniformly bounded, so {SB;} is uniformly bounded. We have
already shown that {SBy} is equicontinuous collection. Now it is sufficient, by the Arzela - Ascoli theorem,
to show that S maps By into a precompact set in 8.

Step 2.3 We show that {SBy} is compact. Let fy < t < T be fixed and € a real number satisfying € € (0, t — fo),
for x € B;. We define

A

EISx(®IF < 2" 'CPE|xollP + 2/~ max{1,C7)

EISx(t)IP < 27'CPEllxoll + 27" max {1,C7) Wl llmllgos

k ko k
(SGX)(t) = [H bz(Tz Xo + I'L Z H b](’[]) (t _ S)Dé 1f(s X(S) X(/\S))ds
=1 i=1 j=1 &in1
1 t=e ]
m fé (t =) f(s, x(s),x()\s))ds]l[gk,gm)(t), t € (to, t —e). (12)
The set

He(t) = {(Sex)(f) : x € By}

is precompact in B for every € € (0, — t).
By using (H;) — (Ha), (5) and E||x|l, < k, we obtain

t
ElI(Sx) = (S < 2”_1max{1,Cp}$ f m W(2k)ds.
t—e

Therefore, there are precompact sets arbitrarily close to the set {(Sx)(t) : x € Bi}. Hence the set {(Sx)(t): x €
By} is precompact in 8. Therefore, S is a completely continuous operator.

Moreover, the set U(S) = {x € 8:x = ASx, for some 0 < A < 1} is bounded. Consequently, by Theorem
2.1, the operator S has a fixed point in 8. Therefore, the system (1) — (3) has a solution. Thus, the proof is
completed. [

Now, we give another existence result for the system (1) — (3) by means of Banach contraction principle.
We make the following assumption:
(H7): The function f satisfies the Lipschitz condition. That is, for 9, SeRm"and v <t < T, there exists a
constant L > 0 such that
ENf(t, 91,92) = f(t, 81, S)IP < L[EIS: =S4 + ENNS, — Sal’]

Theorem 3.2. Let the hypotheses (H;), (H2) be hold. Then there exists a local unique continuous solution to (1) — (3)
for any initial value (t, xo) with ty = 0 and xy € B.
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Proof. Let T be an arbitrary number 7 < T < +00. Define the nonlinear operator S : 8 — 8 as follows.

+00 k k &
<Sx><t>=Z[Hb<T xo + %Zﬂbm f (£ = )" f(5, x(5), X(As))ds
k=0 i=1 j=1 Si-1
) f (£ =9)7" fls, x(5), x(As))ds]I[gkeM(t) terT].

Now we have to show that, § is a contraction mapping.

(Sx)(t) - (Sy)(t)ll”

+oo k 1 Ei
[Z Z Ll fg (=97 (s, x(9), X(A) = (5, y(6), y(As))lds

= i=1 ]:

IA

1 . ¢
T f (E= 9 G 6), x(As) — £s, ), y(Asm|ds]1[gk,gm><t>]
k P
[qu{1,1"[||bj<r,~>||}]
L

1 ' a—1 P
(% ~ft; (£ =) If (5, x(6), ¥(AS) = f(5 y(5), V(AS))||d51[5k,ek+1>(t))

IA

(T _ T)p(a—1)+1
(pla—1) + DI(a)

<t [ E[Ia) = oI + (1) - yasP s
to

E[(Sx)(t) = (Sy)@®)IP < max{l,C”}

Taking supremum over t, we get,
2(T _ T)p(a 1)+2
(pla —1) + DI(a)

16Sx) — (SyIF < max{1,¢?) Ll - yip.

Thus,
lSx — SyllP < A(D)lx - ylP,

a—=1)+2
with A(T) = max 1,C?) 20T
Then we can take a suitable 0 < Ty < T sufficient small such that A(Ty) < 1, and hence S is a contraction
on Br, ( Br, denotes B with T substituted by T). Thus, by the well-known Banach fixed point theorem we
obtain a unique fixed point x € Br, for operator S, and hence Sx = x is a unique solution of (1) — (3). This
procedure can be repeated to extend the solution to the entire interval [7, T] in finitely many similar steps,

thereby completing the proof for the existence and uniqueness of solutions on the whole interval [7, T]. O

4. Stability

In this section, we study the stability of the system (1) — (3) through the continuous dependence of
solutions on initial condition.

Theorem 4.1. Let x(t) and x(t) be solutions of the system (1) — (3) with initial values xo and X, € R" respectively. If
the assumptions of Theorem 3.2 are satisfied, then the solution of the system (1) — (3) is stable in the p" mean.
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Proof. By the assumptions, x and ¥ are the two solutions of the system (1) — (3) for ¢ € [t, T]. Then,

+00 k
x@—ﬂﬂ—{jfﬁnﬂm—m
1 & &
+ — Z Hb](T]) (t —s)*” 1[f(s x(s), x(As) = f(s, X(s), X(As)]ds

+ L f (t- s)“‘l[f(s, x(s), x(As)) = f(s,%(s), X(As)1ds |I1e, .. (),  teE€[T,TI
I'(a) Je,

By using the hypotheses(H), (Hz), we get

sup E|lx(t) — %)l < 2"~'CVEllxo — 5ol
te[t,T]

_ ~\pla-1)+1 £
2T-9 sup Eljx(s) — %(s)|IPds

+2' T max{1,C?
{ }(P(Of 1)+ DIa ) fo sele,T]

Therefore,
2(T _ T)p(a—1)+2

(a1 + i@ A

le—xlP < 2°7'CPE|xo — %oll” + 277 max {1, C7)

llx -l < CEllxo — %ol
Yoy

P AT-rpla-D+1 °
1-2r max{1,CP}7(V(W]M)FW) L

where, C =

Now given € > 0, choose 6 = E such that E||xg — Xo|IP < 6. Then

llx — x|IF <e.
Thus, it is apparent that the difference between the solution x(t) and x(t) in the interval [z, T] is small

provided the change in the initial point (fo,x) as well as in the function f(s,x(s), x(As) do not exceed
prescribed amounts. This completes the proof. [

5. Ulam-Hyers Stability Results

In this section, we study the Ulam- Hyers stability of random impulsive fractional pantograph differen-
tial equation (1) — (3). Lete > 0 and ¢ : [t,T] — R™ be a continuous function. We consider the following
inequalities

E|'Dfx(t) — f(t, x(t), x(ADIP < € t#&, t=7 (13)
Ellx(&x) = bi(te)x(EIP < e k=12,..

E[Dgx(t) — f(t, x(®), xADP < (), t#&, t=T 14)
Ellx(&x) = bi(T)x(EIP < u k=1,2,..

E[Dix(t) — f(t, x(), xADP < €p(t), t#&, t=T 15)
Ellx(&x) = bi(t)x(EIP < ey, k=1,2,..

Definition 5.1. The system (1) — (3) is Ulam- Hyers stable in the p" mean if there exists a real number x > 0 such
that for each € > 0 and for each solution x € B of the inequality (13) there exists a solution y € B of the system
(1) — (3) with

Ellx(t) — y(O)IP < ke, te[r,T]
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Definition 5.2. The system (1) — (3) is generalized Ulam- Hyers stable in the p" mean if there exists a real number
1 € B,1(0) = 0 such that for each solution x € B of the inequality (13) there exists a solution y € B of the system
(1) — (3) with

Ellx(t) — y(OIF < ne), telr, Tl

Definition 5.3. The system (1) — (3) is Ulam- Hyers- Rassias stable in the p™ mean with respect to (¢, ) if there
exists a real number C > 0 such that for each € > 0 and for each solution x € B of the inequality (15) there exists a
solution y € B of the system (1) — (3) with

Ellx(t) = yOIF < Ce(p(t) + ), telr,T].

Definition 5.4. The system (1) — (3) is generalized Ulam- Hyers- Rassias stable in the p™ mean with respect to (¢, 1)
if there exists a real number C > 0 such that for each solution x € B of the inequality (14) there exists a solution y € B
of the system (1) — (3) with
Ellx(t) — y(®IF < C(Pp(t) + ), telrT]

Remark 5.5. It is clear that

1. Definition (5.1) = Definition (5.2)

2. Definition (5.3) = Definition (5.4)

3. Definition (5.3) for ¢(t) = p = 1 = Definition (5.1).
Remark 5.6. A function x € B is a solution of the inequality (15) if and only if there exists a function h € B and the
sequence hi,k =1,2,. .. (which depend on x) such that
(i): E[Jh()IP < e(t),t € [T, Tl and E|lll’ < eu,k=1,2,...;
(i)): ‘Dx(t) = f(t, x(t), x(At)) + h(t), t+&, t=>1,
(iii): x(ék) = bk(’[k)x(éz) +h, k=1,2,...
One can have similar remarks for the inequalities (13) and (14).

Remark 5.7. Let 0 < a < 1, if x € B is a solution of the inequality (15) then x is a solution of the following integral
inequality

+oo r k 1 k k & o
E"x(t)—;[gbi(n)xo F—ZH@@) f (t — )7L £(s, x(5), x(As))ds

i=1 j=1 Gi-1

1 i
+m Lk(t—s) 1f(s,x(s),x()\s))ds]l[gkékﬂ)(t)u

_ r\la-1)+1
< 277—16{pr + max{l,C }(pg 8 T @) f ol s)ds} telr,T]

From the Remark 5.6 we have

‘Dix(t) = f(t, x(t), x(At)) + h(t), t+&, t>1 (16)
x(&) = bk(’fk)x(é;) +h, k=1,2,...
Then
oo 1 &
x(t) = kZ_;[Hbu o + Hb (Tl + r—);gbm,) f (t = )°L£(5, x(s), x(A5))ds
1 1 &
F( ) (t —5)* 1 (s, x(s), x(As))ds + @ ; g bi(t;) "H(t —5)" 1 h(s)ds
1
F( ) (t — )" 1h(s)ds]l[gk s, telr T
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Therefore,

k

k
E”x(t) Z[Hb@ Yo + %an(q (£ = 5" (s, x(s), x(As))ds

k=0 i=1 ]:] &i1

F(l ) (t — )" f(s, x(s), x()\s))ds]l[gk ||
_ 1 : : . a-1
_ EH Z [ H BTl + s Y11 bj(Tj)f (t — )" h(s)ds

i=1 j=1 i

1 a— P
@ L (t=s) 1h(s)d5]1[ék,ak+1>(f)”

k
< 27 max { [ Hbi(mH”}Enhinp
—1 £ b 1 i a-1 !
v [gix{l,gl\bi<fi>\|}] [ [ 6o B0
< Zp_lC”ey+2”_1max{1,C”}[ﬁ f t(t—s)”(“‘l)dsx f tE||h(s)||”ds]
to
<

(T _ T)p(a—1)+1
1€{CPH +max{1,C }(p(a D@ f qb(s)ds}

3850

We have similar remarks for the solutions of the inequalities (13) and (14). Now, we give the main results,

generalized Ulam-Hyers-Rassias results, in this section.

Theorem 5.8. Asssumption (Hy) and (Hy) hold. Suppose there exists A > 0 such that

¢
f P(s)ds < A ¢(t), foreach t € [1,T],

where ¢ : [1,T] = R* is a continuous nondecreasing function. Then the system (1) — (3) is Ulam - Hyers- Rassias

th

stable in the p"" mean square.

Proof. Let x € 8 be a solution of the inequality (15). By Theorem 3.2 there exist a unique solution y of the

random impulsive fractional pantograph differential system

‘Diyt) = fltyt),yA), t#&, t=7
vy = b(w)y(&), k=12, ..
Yy, = Xo.

Then we have

k k
Hba o+ s D [ [ 5o f (t = 9™ £(s,y(5), YA

i=1 j=1 Si-

f(t —5)* 1f(s y(s), y(/\s))ds]l[gk a®), telt Tl

+00

i)=Y

k=0

" Ta)

(17)
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By differential inequality (15), we have

+00

k k k i
de}jf[mMWQ%Z[Dmmfuﬂwww@mw@ﬂmm
i=1

k=0 i=1 j=1 Ei

1 a—
D (t—s) (s, x(s), x()\s))ds]l[gk%+l)(t)||

IA

2P- 1CP€1,[ +or1 max{l C? }[F( ) (t S)P(afl)ds X j; E||h(s)||Pds]
(T _ T)p(a 1)+1 t

(pla— 1)+ DI(@) m¢@“}
(T _ T)p(a—1)+1

(p(a—1) + DI'(a)

IA

Zp‘le{C”y + max {1,C’”}

IA

p‘le{pr + max (1,7 /\gb(t)} telr,T)]

Hence for each t € [1, T], we have

Ellx(t) = y(®IF

< 2”‘1E’|x(t)—g[ﬁbi(ri)xo I;gljbj(’fj) f éi(t‘—S)“‘lj‘(s,x(S)fx(AS))dS
) asfww@mW%m%mH
+”45mz5§:[[1%ﬁ0fﬁ@—sﬁ*b@%@»ﬂmn—f@ywhmmnws
j) Wﬂ“mw@ﬂwkﬂw©MMNM%Nm
o rrefoema o) T )

TRy
(T _ T)p(a 1)+1 t

+2p_1 max {1/ Cp} (p(a 1) + ].)r( )

EIIX(S) y(s)llPds.

Taking supremum over ¢ € 7, T], we get

WD+ i@
(T _ T)p(a 1)+1 t

P11 D@ -, S ElG) = y(s)iPds
(T — T)pa 1)+1

(pa=1) + D) Aqb(t)}

(T _ T)p(a—1)+2
L E - P,
a1+ I@ tiﬁ,% [Ix(t) — y(®)ll

sup Ellx(f) —y@®)IF < 4”_16{(}”;1 + max {1,6’”}

te[t,T]

(T _ ,L.)p(a 1)+1 }

4201 max{l,C”}

IA

4”_16{pr + max {1,0’7}

+2"1 max {1, Cp}
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There exists a constant /i = 1 > 0 independent of A¢(t) such that

1 (T- .!)p(a 1)+2
=27 max{l cr }(n(a @

(T _ T)p(a—1)+1
(pla-1)+ DI(a

Thus, the system (1) — (3) is Ulam - Hyers-Rassias stable in the p" mean. Hence the proof. [J

sup Ellx(f) =yl < f14”_1e{C”p + max{l,C”}
te[1,T]

)/\qb(t)}, telr,T)

Remark 5.9. 1. Under the assumption of Theorem 5.8, we consider the system (1) — (3) and the inequality (13).
One can repeat the same process to verify that the system (1) — (3) is Ulam - Hyers stable in the p™ mean.

2. Under the assumption of Theorem 5.8, we consider the system (1) — (3) and the inequality (14). One can repeat

the same process to verify that the system (1) — (3) is generalized Ulam - Hyers-Rassias stable in the p™ mean.

6. Example

Consider the impulsive fractional pantograph equation of the form

CD?x(t) = le(t) + f(t/ x()\t)), t#&, t=>1 (18)
x(&x) = b(ti)x (&), k=1,2,...
X(O) = Xo,

where xp € R, A € (0,1), « € (0,1) and f : [0,T] x R — R is a scalar continuous function. The integral
representation of equation (18) is

+o0 k k
x(t) = Z [ H bi(t:)xoEa(at®) + Z H bj(t)) (t — )" Eqaa(t — 5)*) £(s, x(As))ds

k=0 i=1 ]:1 Si1

+ f (t—S)a_lEa,a(ﬂ(f—S)a)f(S,X(AS))dS]I[gk,zk+1)(f), telr, Tl (19)

Ek

X k tka

a ay - k(t — S)ka
where E,(at®) = Z m aa(ﬂ - 5)%) Z T((1+ k)a)

Case 6.1. When a = 0 and f(t, x(At)) = cx(At), then the equation (18) becomes,

‘Dix(t) = cx(At), t#&, tz=t (20)
x(&x) = b)Tex(Ey), k=1,2,.....
Xty = X0,

wherexg € R, c#0,A €(0,1).

Let 1y be a random wvariable defined on Dy = (0,dy) for k = 1,2,..., where 0 < dy < +oo. Furthermore, assume
that i follow Erlang distribution, where k = 1,2,... and t; and t; are independent with each other as i # | for
i,j=1,2,..;bisa function of k; Eg = to; Ep = o1 + T fork=1,2,.. ..

We assume the following condition hold:

k
(i) E[mgX{HHb(j)(TJ‘)HZ}] <o
1, J=t
(ii) ENf(t,x(A8) = f(t, yAD)IP < LiEllx(t) = y(OIP, for some Ly > 0 and t & [z, T

Assuming that conditions (i) and (ii) are verified, then the problem (20) can be modeled as the abstract random
impulsive fractional pantograph equation (1) — (3) by defining

ft, x(t), x(At)) = cx(At),  bp(te) = qk)te  and p = 2.
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Proposition 6.2. Assume that the hypotheses (H,)-(Hz) hold, then the system (20) has a unique solution x(t).
Proof. Condition (ii) implies that (H}) holds with Ly > 0 and (H>) follow from conditions (i). [
The next results are consequences of Theorem 4.1 and 5.8 respectively.

Proposition 6.3. Let the hypothesis (H]), (Hz) be hold. Then the trivial solution of (20) is stable in the mean square.

Proof. In the equations (20), integrating, we get

+00 k k k
x(t)_Z[Hbz(Tz)xo %Zﬂbxa) (- 9 ex(Ao)ds

k=0 i=1 ]=1 &i1
1 a-1
* I'(a) L(t ) Cx(AS))dstI[E.k/ékH)(t)l telr,T].

2¢2

1-2max{1, CZ}%M

Then we have, ||x — %||* < CE||xo — %o||? where =
Now given € > 0, choose 6 = 4 € such that E|jxy — %||* < 6.

Then ||x — %||> < €. Thus solutzon of system (20) is mean square stable. [

Proposition 6.4. Let the hypotheses (H}) and (Hz) be hold. Suppose there exists A > 0 such that

ft P(s)ds < A P(t), foreach t €[ty T],

to
where ¢ : [ty, T] — R is a continuous nondecreasing function. Then the system (20) is generalized Ulam - Hyers-
Rassias stable in the mean square.
Remark 6.5. The pure pantograph equation of the form,
x'(t) = cx(At), t > 0,x(0) = xo, (c # 0). (21)
G.R. Morris et al [44] (also [5]) showed that the trivial solution of (21) pantograph equation is unstable.

Remark 6.6. If o = 1, the propositions 6.1, 6.2, 6.3, shows that the random impulsive perturbations can make the
unstable pantograph system (21) as mean square stable.

Case 6.7. Ifa # 0 and f(t, x(At)) = cx(At), the solution of the equation (18) is given as (19). The right hand side of
(19) satisfies the Lipschitz condition of the form

+00

ak Tka

o )
“ = (1 + k) (1+ k)a”x(t) - y@®I.

By choosing a, ¢, and T in such a way that the hypotheses of Theorem 3.2, Theorem 4.1 and Theorem 5.8 are satisfied.
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