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Abstract. The paper is devoted to the study of the Drazin inverse of some structured matrices that appear
in applications. We focus mainly on deriving formulas for the Drazin inverse of an anti-triangular block
matrix M in terms of its blocks. New representations for the Drazin inverse of M are given under some
conditions, that extend recent results in the literature. Additionally, these results are applied to investigate
the Drazin inverse of certain structured matrices, in particular the group inverse for Hermitian matrices,
and to study additive properties of the Drazin inverse.

1. Introduction

The concept of Drazin inverse plays an important role in various fields like Markov chains, singular
differential and difference equations, iterative methods, etc. (see [1, 8]). The Drazin inverse of a matrix
A ∈ Cn×n is the unique complex matrix AD satisfying the relations:

ADAAD = AD, AAD = ADA, Ak+1AD = Ak,

where k = ind(A), called the index of A, is the smallest nonnegative integer such that rank(Ak+1)=rank(Ak).
We will denote by Aπ = I − AAD. In the case ind(A) = 1, AD reduces to the group inverse of A, denoted
by A#. Further, the Moore-Penrose inverse of A ∈ Cn×m, denoted by A†, is the unique solution of equations
AA†A = A, A†AA† = A†, (AA†)∗ = AA†, and (A†A)∗ = A†A, where A? indicates the conjugate transpose of A.
For a Hermitian matrix A, A# exists and A# = A† ([1, 8]).

A problem of great interest in this field is concerned with the Drazin inverse of matrices partitioned as

M =

(
A B
C D

)
, where A and D are square matrices, in terms of the Drazin inverse of smaller size matrices

A and D. It was posed as an open problem by Campbell and Meyer [8] in 1979, and it has received great
attention. The most relevant case is concerned with block triangular matrices (either B = 0 or C = 0), solved
by Meyer and Rose [21]. They proved the following expression, for the case C = 0,

MD =

(
AD X
0 DD

)
, (1)
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where X = (AD)2

 t−1∑
i=0

(AD)iBDi

 Dπ + Aπ

 r−1∑
i=0

AiB(DD)i

 (DD)2
− ADBDD, r = ind(A), and t = ind(D).

Otherwise, the representation of the Drazin inverse of an anti-triangular matrix M, where D = 0, was
posed as an open problem by Campbell [7] in 1983, in relation with the solution of singular second-order
differential equations. Furthermore, these structured matrices appear in applications like graph theory,
saddle-point problems, and optimization problems [2, 12, 15]. Additionally, it has been proved that any real
symmetric indefinite matrix can be transformed into a block anti-triangular form by orthogonal similarity
transformations [20]. In recent years, the problem has become an important issue and some results have
been given under some conditions [3–6, 9, 10, 12–16], but it still remains open.

In this paper, we focus on deriving formulas for the Drazin inverse of an anti-triangular matrix M, in
terms of the Drazin inverses of smaller order size matrices than M. The new expressions are given under
more general settings than those given in the literature [12, 13, 15, 17, 19], in the matrix context. Additionally,
these results are applied to investigate the Drazin inverse of certain structured matrices, in particular the
group inverse for Hermitian matrices, and to study additive properties of the Drazin inverse.

Throughout the paper we concern with the upper anti-triangular block matrix

M =

(
A B
C 0

)
, (2)

where A ∈ Cn×n, B ∈ Cn×m, and C ∈ Cm×n. Since Drazin inverse is preserved by similarity, analogous results
may be obtained for the Drazin inverse of lower anti-triangular matrices, by noting(

0 B
C D

)D

=

(
0 I
I 0

) (
D C
B 0

)D (
0 I
I 0

)
.

The paper is organized as follows. Section 2 is devoted to derive new formulas for the Drazin inverse
of M in terms of the Drazin inverses of smaller size matrices than M. These results are applied to some
structured matrices in Section 3. Finally, some additive properties of the Drazin inverse are obtained in
Section 4.

2. Main Results

This section addresses the problem of expressing the Drazin inverse of an upper anti-triangular block
matrix M in terms of Drazin inverses of smaller size matrices. The section is organized in three parts. First
we present some expressions for MD in terms of AD and (BC)D. Second, explicit formulas for MD in terms
of the Drazin inverse of the diagonal block A are given. Finally, we derive some formulas that extend a
known expression for the ordinary inverse, to deal with the Drazin inverse. The results we provide recover
some cases studied in the literature.

Theorem 2.1. Let M be a matrix of the form (2). If ABCAπ = 0 and AADBC = 0, then(
A B
C 0

)D

=

(
ΨA ΨB
CΨ CΨADB

)
+

(
(BC)DΦABC 0

0 C(BC)DΦ
(
A − BCAD

)
B

)
, (3)

where

Ψ = (AD)2 +
s−1∑
j=0

(BC) j(BC)πΓ(AD)2 j+2 + Φ(I − Γ) − (BC)DΦABCAD,

Γ =
r−1∑
n=0

AnBC(AD)n+2, Φ =
b

r
2 c∑

k=0

(
(BC)D

)k+1
A2kAπ,

(4)

r = ind(A), s = ind(BC), and b r
2 c denotes the integer part of r

2 .
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Proof. We consider the following splitting of matrix M(
A B
C 0

)
=

(
A B

CAAD 0

)
+

(
0 0

CAπ 0

)
:= P + Q.

We have Q2 = 0, and since ABCAπ = 0 we get P2Q = 0. Hence matrices P and Q satisfy the conditions of
Theorem 2.2 in [19], then we can write

(P + Q)D =

ν1−1∑
j=0

(
(PQ) j(PQ)π + Q(PQ) j(PQ)πPD

)
(PD)2 j+1

+

ν2−1∑
k=0

(
((PQ)D)k+1P + Q((PQ)D)k+1

)
P2kPπ

= (X1 + X2)P + Q(X1 + X2),

(5)

where

X1 =

ν1−1∑
j=0

(PQ) j(PQ)π(PD)2 j+2, X2 =

ν2−1∑
k=0

(
(PQ)D

)k+1
P2kPπ, (6)

and ν1 = ind(PQ), ν2 = ind(P2). Through the proof we will use the following relations derived directly from
the condition AADBC = 0:

ADBC = 0, AD(BC)D = 0, AπBC = BC, Aπ(BC)D = (BC)D.

Clearly PQ is the diagonal block matrix PQ =

(
BCAπ 0

0 0

)
. Using Cline’s formula, (BCAπ)D = BC

(
(AπBC)2

)D
Aπ

= BC
(
(BC)2

)D
Aπ = (BC)DAπ, thus we have

((PQ)D)k =

(
((BC)D)kAπ 0

0 0

)
, k ≥ 1. (7)

Furthermore, (BCAπ)π = I − BC(BC)DAπ, hence we compute

(PQ)π =

(
I − BC(BC)DAπ 0

0 I

)
, (PQ) j(PQ)π =

(
(BC) j(BC)πAπ 0

0 0

)
, j ≥ 1. (8)

Next, we focus on obtaining PD. We notice P is an anti-triangular matrix. Since BC̃Aπ = 0 and
AADBC̃ = 0, where C̃ = CAAD, P satisfies the conditions of Theorem 3.6 in [15] and

PD =

(
(I + Γ)AD (I + Γ)(AD)2B
C(AD)2 C(AD)3B

)
,

where Γ is defined as in (4). Furthermore, we prove by induction

(PD) j =

(
(I + Γ)(AD) j (I + Γ)(AD) j+1B

C(AD) j+1 C(AD) j+2B

)
, j ≥ 1. (9)
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After some computations, we have

Pπ =

(
Aπ
− Γ −(I + Γ)ADB

−CAD I − C(AD)2B

)
,

P2kPπ =

(
A2k−1(AAπ

− ΓA) A2k−2(AAπ
− ΓA)B

0 0

)
, k ≥ 1.

(10)

Now substituting (8) and (9) in the expression of X1 in (6), we get

X1 =

(
(I + Λ) (AD)2 (I + Λ) (AD)3B

C(AD)3 C(AD)4B

)
, (11)

where Λ =

s−1∑
j=0

(BC) j(BC)πΓ(AD)2 j and s = ind(BC).

Next, taking into account (7), (10), and ΓA = BCAD + AΓ, we can rewrite X2 in (6) in the form

X2 =

(
Φ(I − Γ) − (BC)DΦABCAD

(
(BC)DΦ

(
A − (BC + ABCAD)AD

)
−ΦΓAD

)
B

0 0

)
, (12)

where Γ and Φ defined as in (4).
Additionally, from (11) and (12), since ΦAD = 0, we have

X1 + X2 =

(
Ψ (Ψ − (BC)DΦBC)ADB + (BC)DΦAB

C(AD)3 C(AD)4B

)
, (13)

where Ψ as in (4). Finally, using expression (13) in (5) and (AD)2 + AπΨ = Ψ, we get the formula (3) of the
theorem.

An explicit representation for the Drazin inverse of M, under the condition BC = 0, was given in [9]. This
result was extended to the case ABC = 0 ([15, Theorem 3.3], [19, Corollary 3.9]), and to the case BCAπ = 0,
AADBC = 0 ([15, Theorem 3.6]). These results can be obtained easily as corollaries of the previous theorem.

Corollary 2.2. Let M be a matrix defined as in (2).

(i) If ABC = 0, then(
A B
C 0

)D

=

(
ΨA ΨB
CΨ CΨ2AB

)
,

where Ψ =

s−1∑
j=0

(BC) j(BC)π(AD)2 j+2 + Φ, and s, Φ are defined as in (4).

In particular if BC = 0, Ψ adopts the expression Ψ = (AD)2.
(ii) If BCAπ nilpotent, ABCAπ = 0, and AADBC = 0, then(

A B
C 0

)D

=

(
ΨA ΨB
CΨ CΨADB

)
, (14)

where Ψ = (AD)2 +

s−1∑
j=0

(BC) jΓ(AD)2 j+2, and s, Γ are defined as in (4).
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(iii) If BCAπ = 0 and AADBC = 0, then MD adopts the expression (14), where Ψ = (I + Γ)(AD)2 and Γ is defined
as in (4).

Parallel results can be obtained following similar steps that in the preceding theorem and corollaries.
The proof of the next theorem is omitted.

Theorem 2.3. Let M be a matrix of the form (2). If AπBCA = 0 and BCAAD = 0, then(
A B
C 0

)D

=

(
AΨ̂ Ψ̂B
CΨ̂ CADΨ̂B

)
+

(
BCAΦ̂(BC)D 0

0 C(A − ADBC)Φ̂(BC)DB

)
,

where r = ind(A), s = ind(BC),

Ψ̂ = (AD)2 +
s−1∑
j=0

(AD)2 j+2Γ̂(BC) j(BC)π + (I − Γ̂)Φ̂ − ADBCAΦ̂(BC)D,

Γ̂ =
r−1∑
n=0

(AD)n+2BCAn, Φ̂ =
b

r
2 c∑

k=0
A2kAπ

(
(BC)D

)k+1
.

We notice that analogous results to those above stated may be given for lower anti-triangular matrices.
They recover the cases studied in [17].

Now we focus on deriving explicit expressions of MD in terms of the Drazin inverse of the diagonal
block A, and blocks B and C.

Theorem 2.4. Let M be defined as in (2). If BCAAπ = 0, BCAπB = 0 and ADBCA = 0, then(
A B
C 0

)D

=

ΨA
(
I + (AD)2BC

)
ΨB

CΨ
(
I + (AD)2BC

)
CΨADB

 , (15)

where r = ind(A) and

Ψ = (AD)2 +

r−1∑
n=0

AnBC(AD)n+4. (16)

Proof. We split matrix M as follows(
A B
C 0

)
=

(
A B

CAAD 0

)
+

(
0 0

CAπ 0

)
:= P + Q.

We notice Q2 = 0. Since BCAAπ = 0 and BCAπB = 0, we have PQP = 0. Therefore matrices P and Q satisfy
the conditions of Theorem 2.1 in [23]. Then, for the particular case where Q is a nilpotent matrix, we get

MD = PD + Q(PD)2 + (PD)2Q + Q(PD)3Q. (17)

Next, we focus on computing PD. We notice that matrix P is in the conditions of Theorem 3.6 in [15]
(BC̃Aπ = 0, AADBC̃ = 0, where C̃ = CAAD). Hence, we obtain

PD =

(
ΨA ΨB

C(AD)2 C(AD)3B

)
,

where Ψ = (AD)2 +

r−1∑
n=0

AnBC(AD)n+4 and ind(A) = r. Moreover, we have

(PD) j =

(
ΨA(AD) j−1 Ψ(AD) j−1B
C(AD) j+1 C(AD) j+2B

)
, j ≥ 1.
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After computing, we get

Q(PD)2 =

(
0 0

CAπΨ CAπΨADB

)
, (PD)2Q =

(
ΨADBC 0

C(AD)4BC 0

)
,

Q(PD)3Q =

(
0 0

CAπΨ(AD)2BC 0

)
.

Finally, substituting the above expressions into (17), we conclude the statement of the theorem.

We notice that the previous result extends Theorem 3.6 in [15]. As direct consequence of Theorem 2.4,
we get the following corollaries.

Corollary 2.5. Let M be defined as in (2).
(i) If CAAπ = 0, CAπB = 0 and ADBCA = 0, then(

A B
C 0

)D

=

 ΨA
(
I + (AD)2BC

)
ΨB

C(AD)2
(
I + (AD)2BC

)
C(AD)3B

 ,
where Ψ is defined by (16).

(ii) If CAAπ = 0, CAπB = 0 and ADBC = 0 (see [13]), then(
A B
C 0

)D

=

(
ΨA ΨB

C(AD)2 C(AD)3B

)
,

where Ψ is defined by (16).
(iii) If CAπ = 0 and AADB = 0, then(

A B
C 0

)D

=

AD +
r−1∑
n=0

AnBC(AD)n+3 0

C(AD)2 0

 , r = ind(A).

Dually, using similar techniques that in Theorem 2.4 we obtain the following analogous result.

Theorem 2.6. Let M be defined as in (2). If AAπBC = 0, CAπBC = 0 and ABCAD = 0, then(
A B
C 0

)D

=


(
I + BC(AD)2

)
AΨ̂

(
I + BC(AD)2

)
Ψ̂B

CΨ̂ CADΨ̂B

 ,
where r = ind(A) and Ψ̂ = (AD)2 +

∑r−1
n=0(AD)n+4BCAn.

Our next purpose is to explore under which conditions the known formula [18] of the inverse of an
anti-triangular matrix(

A B
C 0

)−1

=

(
0 C−1

B−1
−B−1AC−1

)
, (18)

can be extended to the Drazin inverse of the singular anti-triangular matrix with blocks B and C not
necessarily square. First, we take into account the case of an anti-diagonal matrix, where A = 0. It was
solved by Catral et al. [12] in the context of bipartite digraphs. They proved(

0 B
C 0

)D

=

(
0 (BC)DB

C(BC)D 0

)
, (19)

where B and C are not assumed nonsingular, neither square matrices. We focus on extending the represen-
tation (19) to the general case where A is nonzero. We establish necessary and sufficient conditions under
which the natural generalization of (18), in light of (19), holds.
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Theorem 2.7. Let M be a matrix of the form (2). Then(
A B
C 0

)D

=

(
0 (BC)DB

C(BC)D
−C(BC)DA(BC)DB

)
=

(
0 B(CB)D

(CB)DC −(CB)DCAB(CB)D

)
(20)

if and only if

(BC)πA(BC)DB = 0, C(BC)DA(BC)π = 0, (21)

and
(
A(BC)π (BC)πB
C(BC)π 0

)
is a nilpotent matrix.

Proof. Let X =

(
0 (BC)DB

C(BC)D
−C(BC)DA(BC)DB

)
. We will prove that matrix X verifies the conditions of the

Drazin inverse of M. First, we compute

MX =

(
BC(BC)D (BC)πA(BC)DB

0 C(BC)DB

)
, XM =

(
BC(BC)D 0

C(BC)DA(BC)π C(BC)DB

)
.

Then, MX = XM if and only if conditions in (21) hold. In this case, MX =

(
BC(BC)D 0

0 C(BC)DB

)
. From the

above expression, a simple computation shows that XMX = X.
Finally, under conditions in (21), we have

M −M2X =

(
A(BC)π (BC)πB
C(BC)π 0

)
. (22)

Therefore, M −M2X is a nilpotent matrix if and only if the matrix on the right side of (22) is nilpotent. So
we conclude X = MD.

Now, from expression X and attending to (BC)DB = B(CB)D and C(BC)D = (CB)DC (Cline’s formula), we
can derive the expression of MD given in (20), in terms of (CB)D. This completes the proof.

As consequence of the Theorem 2.7, we can deduce the following result.

Corollary 2.8. Let M be a matrix of the form (2). If (BC)πA = 0 and A(BC)π = 0, then MD adopts the form (20).

We notice that expression (19) can be obtained as direct application of Theorem 2.7 to the case A = 0. In
addition, formula (18) is derived for the case of nonsingular square blocks B and C.

3. Applications to Special Structured Matrices

This section is devoted to study the Drazin inverse of several special structured matrices of interest in
applications and in the literature.

First, we consider the class of Hermitian matrices. They arise in partial differential equations, opti-
mization problems and variational problems, where they are linked for instance to a so-called saddle point
problems. In many of these applications, the matrix is anti-triangular [2], and it is needed to calculate the
generalized inverse. We recall that the group inverse of a Hermitian matrix exists and coincides with its
Moore-Penrose inverse [8]. Furthermore, in [20] it has been proved that a real symmetric indefinite matrix
can be reduced to a block anti-triangular form M, by orthogonal similarity transformations. Next we focus
on deriving representations for the group inverse of Hermitian matrices in the form

M =

(
A B
B∗ 0

)
, (23)

where A is a Hermitian matrix.
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Proposition 3.1. Let M be a matrix of the form (23). If ABB∗ = 0 then

M# =

(
(BB∗)πA# ((BB∗)π(A#)2 + (BB∗)#Aπ)B

B†Aπ
−B†A#B

)
.

Proof. M is a Hermitian matrix, then M# exists and M# = M†. Because conditions of Theorem 2.1 are
satisfied, M# adopts the expression (3), where C = B∗. Now, since A is a Hermitian matrix, AAπ = 0, and Γ
and Φ in (4) get reduced to

Γ = BB∗(A#)2, Φ = (BB∗)#Aπ.

Now using that ΦA = 0 and (BB∗)πΓ = 0, after some computations, Ψ in (4) adopts the expression

Ψ = (BB∗)π(A#)2 + (BB∗)#Aπ.

Therefore, substituting the above expressions of Γ,Φ, and Ψ in formula in (4), and taking into account
the relations B∗(BB∗)# = B∗(BB∗)† = B† and B∗(BB∗)π = 0, we get the statement of the theorem.

A particular case of interest in applications is where B is a full row rank matrix.

Corollary 3.2. Let M be a matrix of the form (23), where B is full row rank, then

M# =

(
0 (B∗)†

B† −B†A(B∗)†

)
.

Proof. Since M is a Hermitian matrix, M# exists. B is full row rank matrix, then BB∗ is nonsingular and
conditions of Theorem 2.7 are verified. Hence, applying this theorem, we obtain the representation (20)
of M#, where C = B∗. Substituting in this expression B∗(BB∗)−1 = B† and (BB∗)−1B = (B∗)†, we get the final
formula.

Next, we examine the special case of the anti-triangular matrix M, where C = −I, and matrices A and B
are square. Campbell [7] showed how the Drazin inverse of this matrix can be used to express the solution of
certain second-order differential equations. It has been studied in [5] and [22] under assumption AB = BA.
As direct application of Theorem 2.1, we get the following explicit representation of MD in terms of AD and
BD.

Corollary 3.3. Let A and B be square complex matrices. If ABAπ = 0 and AADB = 0, then(
A B
−I 0

)D

=

(
ΨA + BDΦAB ΦB

−Ψ BDΦAB

)
,

where r = ind(A), s = ind(B),

Ψ = (AD)2 +
s−1∑
j=0

(−1) j+1B jBπΓ(AD)2 j+2 + Φ(I + Γ) − BDΦABAD,

Γ =
r−1∑
n=0

AnB(AD)n+2, Φ =
b

r
2 c∑

k=0
(−1)k+1

(
BD

)k+1
A2kAπ.

Now, we are concerned with the special case of an anti-triangular matrix M, where A = A2, widely
studied in the literature [6, 15, 16]. Applying Theorem 2.4 and noting that AD = A# = A and Aπ = I −A, we
get the following reduced expression of MD.

Corollary 3.4. Let M be defined as in (2), where A = A2. If BCAπB = 0 and ABCA = 0, then(
A B
C 0

)D

=

(
(A + BC)2 (A + BC)B

C(A + BC)2 C(A + BC)B

)
.
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4. Application to Additive Properties of the Drazin Inverse

A topic closely related to the representation of the Drazin inverse of block matrices, is to express the
Drazin inverse of the sum of two matrices P and Q in terms of PD, QD, and (PQ)D. It is useful for analyzing
perturbation properties, in iterative methods and for computing the Drazin inverse for block matrices. This
topic has been largely studied and some results have been obtained in some special cases (see, e.g., [10, 23]
and references given there). In this section, we apply our main results to investigate the additive problem
for the Drazin inverse of matrices. The following result extends Theorem 2.1 in [23] and Corollary 4.3 in
[11].

Theorem 4.1. Let P,Q ∈ Cn×n such that PQ2 = 0. Then

(P + Q)D =
(
I Q

) t−1∑
n=0

(
0 0
0 QnQπ

)((
P PQ
I 0

)D)n+1

+

v−1∑
n=0

(
0 0
0 (QD)n+1

)(
P PQ
I 0

)n (
P PQ
I 0

)π
2(

P
I

)
,

where t = ind(Q) and v = ind(
(
P PQ
I 0

)
). Moreover,

(i) If P2QPπ = 0, PDQ = 0, then

(
P PQ
I 0

)D

=

(
Ψ̃P ΦPQ

Ψ̃ − (PQ)DΦP2QPD (PQ)DΦP2Q

)
, (24)

where r = ind(P), s = ind(PQ),

Ψ̃ = (PD)2 +
s−1∑
j=0

(PQ) j(PQ)πΓ(PD)2 j+2 + Φ(I − Γ),

Γ =
r−2∑
n=0

Pn+1Q(PD)n+2, Φ =
b

r
2 c∑

k=0

(
(PQ)D

)k+1
P2kPπ.

(ii) If PQPPπ = 0, PDQP = 0, then(
P PQ
I 0

)D

=

(
Ψ(P + Q) ΨPQ

Ψ(I + PDQ) ΨQ

)
, (25)

where Ψ = (PD)2 +

r−2∑
n=0

Pn+1Q(PD)n+4 and r = ind(P).

Proof. Using the Cline’s formula,

(P + Q)D =

((
I Q

) (P
I

))D

=
(
I Q

) (P PQ
I Q

)D2 (
P
I

)
.

Then, we notice it is sufficient to calculate
(
P PQ
I Q

)D

. To do this, we consider the following splitting

(
P PQ
I Q

)
=

(
P PQ
I 0

)
+

(
0 0
0 Q

)
:= E + F.
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Since PQ2 = 0, we get EF = 0, hence we apply the well-known formula

(E + F)D =

t−1∑
n=0

FnFπ(ED)n+1 +

v−1∑
n=0

(FD)n+1EnEπ,

where v = ind(E) and t = ind(F) = ind(Q).

Attending F is a diagonal matrix, FD =

(
0 0
0 QD

)
. Then, substituting in the above expression, we get

(
P PQ
I Q

)D

=

t−1∑
n=0

(
0 0
0 QnQπ

) (P PQ
I 0

)Dn+1

+

v−1∑
n=0

(
0 0
0 (QD)n+1

) (
P PQ
I 0

)n (
P PQ
I 0

)π
.

Now, we focus on obtaining the Drazin inverse of the anti-triangular matrix E. If conditions in (i)
are verified, matrix E satisfies conditions of Theorem 2.1. Applying conveniently this result, we get the
expression (24) for ED. Otherwise, if we assume conditions in (ii), matrix E satisfies the conditions of
Theorem 2.4, that yields the formula (25) for ED. This completes the proof.
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