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Abstract. In this paper, we introduce the concepts of weakly and partially weakly a-admissible pair
of mappings and obtain certain coincidence and fixed point theorems for classes of weakly a-admissible
contractive mappings in a b-metric space. As an application, we derive some new coincidence and common
fixed point results in a b-metric space endowed with a binary relation or a graph. Moreover, an example is
provided here to illustrate the usability of the obtained results.

1. Introduction and Preliminaries

The concept of a weakly contractive mapping (d(fx, fy) < d(x,y) — @(d(x,y)) for all x, y € X, where ¢
is an altering distance function) was introduced by Alber and Guerre-Delabrere [5] in the setup of Hilbert

spaces. Rhoades [34] proved that every weakly contractive mapping defined on a complete metric space
has a unique fixed point.

Self mappings f and g on a metric space X are called generalized weakly contractions, if there exists a
lower semicontinuous function ¢ : [0, c0) — [0, c0) with ¢(0) = 0 and ¢(¢) > 0 for all ¢ > 0 such that

d(fx,gy) < N(x,y) — p(N(x, y)),

where,

NG, ) = maxld(s, ), (s, £x), d(y, ), 51405, 99) + d(y, FOl),
for all x, y € X ([33]).

Theorem 1.1. [33] Let (X, d) be a complete metric space. If f, g : X — X are generalized weakly contractions, then
there exists a unique point u € X such that u = fu = gu.

For more results in this direction we refer the reader to [8, 15].
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Many researchers have obtained fixed point results in complete metric spaces endowed with a partial
order (See, e.g., [1, 3,9, 11, 23-27, 30]).

In 2012, Samet et al. [32] introduced the concepts of a-i-contractive and a-admissible mappings and
established various fixed point theorems for such mappings defined on complete metric spaces. Afterwards,
Salimi et al. [31] and Hussain et al. [16-18] modified the notion of a-admissible mapping and established
certain (common) fixed point theorems.

Definition 1.2. [32] Let T be a self-mapping on X and let & : X X X — [0, +00) be a function. We say that T is an
a-admissible mapping if
xyeX, akxy)=1 = aTx,Ty)>1.

Definition 1.3. Let f and g be two self-maps on a set X and let o : X X X — [0, o0) be a function. A pair (f, g) is
said to be,

(i) weakly a-admissible if a(fx, gfx) > 1 and a(gx, fgx) > 1 forall x € X,

(ii) partially weakly a-admissible if a(fx, gfx) > 1 forall x € X.

Let Xbeanon-emptysetand f : X — Xbea given mapping. Foreveryx € X,let f}(x) = {u € X : fu = x}.

Definition 1.4. Let X be a set, f,g9,h : X — X are mappings such that fX U gX C hX and let o : X X X — [0, o0)
be a function. The ordered pair (f, g) is said to be:

(a) weakly a-admissible with respect to hifand only if forall x € X, a(fx, gy) > 1forally € h™'(fx) and a(gx, fy) > 1
forall y € h™(gx),

(b) partially weakly a-admissible with respect to hif a(fx, gy) > 1 for all y € h™(fx).

Remark 1.5. In the above definition: (i) if g = f, we say that f is weakly a-admissible (partially weakly a-admissible)
with respect to h, (i) if h = Ix (the identity mapping on X), then the above definition reduces to the concepts of weakly
a-admissible (partially weakly a-admissible) mapping.

Definition 1.6. Let f and g be two self-maps on a set X and let a : X x X — [0, 00) be a function. The weakly a-
admissible (partially weakly a-admissible) pair (f, g) is said to be triangular weakly a-admissible (triangular partially
weakly a-admissible) if a(x,z) > 1 and a(z,y) > 1 implies a(x, y) > 1 forall x,y,z € X.

Definition 1.7. Let X beaset, f,g,h : X — X are mappings such that fXUgX C hX andlet a : XXX — [0, 00) bea
function. The ordered pair (f, g) is said to be triangular weakly a-admissible (triangular partially weakly a-admissible)
with respect to h if it is weakly a-admissible (partially weakly a-admissible) with respect to h and if a(x,z) > 1 and
a(z,y) =2 Limply a(x,y) > 1 forall x,y,z € X.

Example 1.8. Let X = [0, 00),
, 0<x<1, , 0<x<1,
fo={7 VEiEh ww={ Vv 9E2

1, 1<x<oo, 1, 1<x< oo,

¥, 0<x<1, [ ¥, 0<x<1,
R(x):{l, 1<x< oo, S(x)_{l, 1<x<o00,

and let a(x, y) = eV for all x, y € [0, 00). Then (f, g) is triangular weakly a-admissible with respect to R, and, (g, f)

a(x,z) > 1 x—2<0, .
azy) =1 7 then { Z—y<0, that is,

is a triangular weakly a-admissible pair with respect to S. Indeed, if {
x—y<0andso, a(x,y) =" > 1.

To prove that (f, g) is partially weakly a-admissible with respect to R, let x,y € X be such that y € R™! fx, that
is, Ry = fx. So, we have x = y* and hence, y = Vx. As gy = g(¥x) = JVx = V¥x > x = fx, forall x € [0,1],

therefore, a(fx, gy) = e?V~f* = %"= > 1. Hence, (f, 9) is partially weakly a-admissible with respect to R.

Also, (g, f) is partially weakly a-admissible with respect to S. Indeed, let x,y € X be such that y € S™'gx,
that is, Sy = gx. Hence, we have y* = /x. As fy = f(x) = Vx > x = gx, for all x € [0,1], therefore,
a(gx, fy) = eV = e¥=V¥ > 1. Hence, (g, f) is partially weakly a-admissible with respect to S.
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Recently, Hussain et al. [16] introduced the concept of a-completeness for a metric space which is weaker
than the concept of completeness.

Definition 1.9. [16] Let (X, d) be a metric space and let a : X X X — [0, 00) be a mapping. The metric space X is
said to be a-complete if and only if every Cauchy sequence {x,} in X with a(x,, x,+1) = 1 for all n € IN, converges in
X.

Remark 1.10. If X is a complete metric space, then X is also an a-complete metric space. But, the converse is not
true(see, Example 1.17 of [37]).

Definition 1.11. [16] Let (X, d) be a metric space and let o : X X X — [0,00) and T : X — X be mappings. We say
that T is an a-continuous mapping on (X, d), if, for given x € X and sequence {x,},

Xy = xasn — oo and a(xy, Xy41) 2 1 foralln e N = Tx, — Tx.

Example 1.12. [16] Let X = [0,00) and d(x,y) = |x — y| be a metric on X. Assume that T : X — X and
a: X x X — [0, +00) be defined by

X0, if x€[0,1], +y2+1, ifx,yel0,1],
Tx = and a(x,y) =
sinix + 2, if (1,0), 0, otherwise.

Clearly, T is not continuous, but T is a-continuous on (X, d).

Motivated by [19] we introduce the following concept.

Definition 1.13. [19] Let (X, d) be a metric space and f,g : X — X. The pair (f, g) is said to be a-compatible if
lim d(fgx,, gfx,) = 0, whenever {x,} is a sequence in X such that a(x,,xn+1) = 1 for all n € N and lim fx, =

lim gx, =t for some t € X.
Remark 1.14. If (f, g) is a compatible pair, then (f, g) is also an a-compatible pair. But, the converse is not true. The
following example which is adapted from example 1.2 of [7] illustrates this fact.

Example 1.15. Let X = [1,00) and d(x,y) = |x — y|. Assume that f,g: X — Xand a : X X X — [0, +00) be defined
by

2, ifxell,2], 6-2x, ifxell,2], 1, ifx=y=2,
fr= gx = and  a(x,y) =
6, if (2,0), 7, if (2, 00), 0, otherwise.

Clearly, (f, g) is not compatible, but it is an a-compatible pair. Indeed, let {x,} be a sequence such that a(x,, Xp+1) = 1
forall n € N and lim fx, = lim gx,. Then, x, = 2 for all n € IN. Then lim fx, = lim gx, = 2 and

n—oo

lim gfx, = lim fgx, = 2. Again, if we consider the sequence y, = 2 — 1, then lim fy, = lim gy, = 2,
n—00 n—o0 n—o0

n—oo

lim gfy, = 2and lim fgy, = 6. Thus, f and g are a-compatible but not compatible.
Definition 1.16. [20] Let f, g : X — X be given self-mappings on X. The pair (f, g) is said to be weakly compatible
if f and g commute at their coincidence points (i.e., fgx = gfx, whenever fx = gx).

Definition 1.17. Let (X, d) be a metric space and let & : XX X — [0, o) be a function. We say that (X, d) is a-regqular
if the following conditions hold:
if x, — x, where a(xy, xy1+1) = 1 for all n € IN, then a(x,,x) > 1 for all n € IN.
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The concept of b-metric space was introduced by Czerwik in [10]. Since then, several papers have been
published on the fixed point theory of various classes of operators in b-metric spaces (see, also, [4, 6, 12—
14, 21, 28, 29]).

Definition 1.18. [10] Let X be a (nonempty) set and s > 1 be a given real number. A functiond : X X X — R*isa
b-metric iff, for all x,y,z € X, the following conditions are satisfied:

bi.dx,y)=0iffx=y,

by.d(x,y) =d(y, x),

bs. d(x,z) < s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

Definition 1.19. Let X be a nonempty set. Then (X, d, <) is called a partially ordered b-metric space if and only if d
is a b-metric on a partially ordered set (X, <).

Recently, Hussain et al. have presented an example of a b-metric which is not continuous (see, example 3
in [12]).

Since in general a b-metric is not continuous, we need the following simple lemma about the b-convergent
sequences in the proof of our main result.

Lemma 1.20. [2] Let (X, d) be a b-metric space with s > 1 and suppose that {x,} and {y,} are b-convergent to x and
y, respectively. Then we have,

Slzd(x, y) < liminfd(x,, y,) < lim supd(x,, y,) < s2d(x, Y).
n—oo N—s0c0

In particular, if x = y, then we have lim d(x,, y,) = 0. Moreover, for each z € X, we have,
n—o0

%d(x, z) < liminfd(x,, z) < lim supd(x,, z) < sd(x, z).

n—oo

Motivated by the works in [11, 17, 18, 23, 24], we prove some coincidence point results for weakly a-
admissible (1, p)-contractive mappings in b-metric and partially ordered b-metric spaces. Our results extend
and generalize certain recent results in the literature and provide main results in [23, 24] as corollaries.

2. Main Results

Let (X,d) be a b-metric space and let f,g,R,S : X — X be four self mappings. Throughout this paper,
unless otherwise stated, for all x, y € X, let

d(Sx, fx) + d(Ry, gy) d(Sx,gy) +d(Ry, fx)}
2s ! 2s

M(x, y) € {d(Sx, Ry),
and

N(x, y) = min{d(Sx, fx),d(Sx, gy), d(Ry, fx), d(Ry, gy)}-

Throughout this paper, ¢, ¢ : [0,00) — [0, o0) are altering distance functions and ¢ : [0, 00) — [0, 0) is a
bounded function. Recall that a function ¢ : [0, c0) — [0, o) is called an altering distance function, if ¢ is
continuous and nondecreasing and ¢(t) = 0 if and only if t = 0 [22].

Theorem 2.1. Let (X,d) be an a-complete b-metric space and let f,9,R,S : X — X be four mappings such that
f(X) € R(X), 9(X) € S(X)and o : Xx X — [0, 00) be a function. Suppose that for every x, y € X with a(Sx,Ry) > 1,
Y(sd(fx, gy)) < $(M(x, ) — 9(M(x, ) + NG, )N(x, y). (1)

Assume that f, g, R and S are a-continuous, the pairs (f, S) and (g, R) are a-compatible and the pairs (f, g) and (g, f)
are triangular partially weakly a-admissible with respect to R and S, respectively. Then, the pairs (f,S) and (g, R)
have a coincidence point z in X. Moreover, if a(Sz, Rz) > 1, then z is a coincidence point of f, g, R and S.
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Proof. Let xj be an arbitrary point of X. Choose x; € X such that fxo = Rx; and x, € X such that gx; = Sx,.
Continuing this way, construct a sequence {z,} defined by:

Zon+1 = RXope1 = fXop

and

Zon+2 = SXop+2 = GXon41

foralln > 0.
As x1 € R™Y(fxp) and x, € S™!(gx1) and the pairs (f, g) and (g, f) are partially weakly a-admissible with
respect to R and S, respectively, we have,

a(Rx1 = fxp, gx1 = Sx3) > 1
and
a(gxy = Sx, fxo = Rxz) > 1.

Repeating this process, we obtain a(Rx2u+1, SX2142) = (22441, Zons2) = 1 forall n > 0.

We will complete the proof in three steps.

Step 1. We will prove that ]}im d(zx, zk41) = 0.

Define di = d(zx, zx+1). Suppose that di, = 0 for some k. Then, zx, = zi,+1. If ko = 21, then zp, = zoun1
gives 2,41 = Zops2. Indeed,

¢(Sd(zzn+1,22n+2)) = 1P(Sd(fx2n, 9x2n+1))

) 2)
< Y(M(xan, x2041)) = P(M(2n, X2051)) + SN2, X21))N (X2, Xans1),

where,

M(x2n/ x2n+1)
d(Sx2n, fx2n) + A(RX2n41, §X2n+1) d(SXan, gX2n+1) + d(RX2n+1, fX20)
25 ! 2s
(220, Zon+1) + A(Z2n41, Zons2)  d(Zon, Zons2) + A(Z2n41, Z2041)
2s ! 2s
A(Zon+1, 2on+2) A(2Zon, Zon+2)
, }
2s 2s

€ {d(SXZn/ Rx2n+1 )/

}

}

= {d(zon, Zon+1),

=10,
and

N(X2n, X2n+1)
= min{d(Sx2u, fx21), A(SX2n, gX2141), A(RX2n41, fX21), A(RX2n11, GX2041)}
= min{d(z24, 22n+1), (221, Z2n+2), A(Z2041, Z2n+1), 422041, Z2042)} = 0.

If M(¥2, Xon41) = 22212202 then (2) will be,

A(zon+1, Zon+2)

¢(sd(22n+1,zz,l+2)) < ¢( v ) _ (P(d(22n+;,s22n+2)) + (P(O) % 0

< (s 2000)) — L2222

)

d n
which implies that (p(%

Zon+l = Zon+2 GiVeS Zono = Zon43. Continuing this process, we find that z; is a constant sequence for k > k.
Hence, %im d(zk, zk+1) = 0 holds true.
— 00

) = 0, that is, zo0, = 22541 = Zop4p. Similarly, if kg = 2n + 1, then
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Now, suppose that
dp = d(z, zk41) > 0
for each k. We claim that
d(zk+1, Zk+2) < d(2k, Zk+1)

foreachk=1,2,3,---.

3702

(4)

(5)

Let k = 2n and for an n > 0, d(zpp+1, Z2n4+2) = d(22n, 22n+1) > 0. Then, as a(Sx2,, Rx2n4+1) = 1, using (1) we

obtain that
Eb(Sd(ZZn+1/ Z2n+2)) = Eb(Sd(fon/ 9X2n+1))
< P(M(xan, x2041)) = (M2, X241)) + GO @2, Xona1))N (X, X241),

where,

M(me x2n+1)

ds nrs Vl+dR n 7 n dS ns n +dR n /xn

€ (d(Sxa, Rxgnen), (Sx2n, fx21) 23( Xon+1, X2 +1), (Sx2u, gx2041) s (Rxzn41, fx2 )}

_ A(z2n, zon41) + A(Z2n41, Z2n42)  A(Z2n, Z2n42) + A(Z2n41, Z2n41)

= {d(zon, Z2n+1), , }

2s 2s

and

N(x2n/ x2n+1)

= min{d(Sx2u, fX2n), A(SX21, gX2n+1), A(RX2041, fX2n), A(RX2111, GX2041)}

= min{d(zon, Zon+1), A(Z2n, 22n4+2), A(Zon+1, Z2n+1), A(Z2n41, Z2n+2)} = 0.
If

A(z2n, Zon+1) + A(Z2041, Zon+2) < A(Zon+1, Zon+2)

M(x2n/ x2n+1) = 25 S

4

as d(2on+1, Zon+2) = A(22n, 22n+1), then from (6), we have,

HD(Sd(Zan, Zzn+2)>
< A(zon, zon+1) + d(Zzn+1,Zzn+2)) 3 (d(ZZn/Z2n+1) + d(Zzn+1,22n+2))
<A 2 i 5
Z an n Z n /Z n
< ¢<5d(22n+1,22n+2)) - (P( 2n 22 s Al 22 ),

A(zon,2on1)+(Z2n41,220+2)

75 ) <0, this is possible only if

which implies that, (p(

d(z2n, Z2n+1) + d(Zon+1, Z2n+2)
2s

=0,

that is, d(z2,,, z2,+1) = 0, a contradiction to (4). Hence, d(z2,41, Z2n+2) < d(z2n, Zon+1) for all n > 0.

Therefore, (5) is proved for k = 2n.
Similarly, it can be shown that,

A(zon+2, 22043) < A(Zon+1, Z2042)

foralln > 0.

(6)
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Analogously, for other values of M(x2y, X2,+1), we can see that {d(z, zk+1)} is a nondecreasing sequence
of nonnegative real numbers. Therefore, there is an 7 > 0 such that

%im d(zk, zk41) = T- )
We know that,

M(Xgn, x2n+1)

A(zon, Zon+1) + A(Zone1, Zone2) A(Zon, Zone2) + A(Zon+1, Z2n+1)

2s ! 2s I

€ {d(ZZn/ 22n+1 )/

Substituting the values of M(x2,, X2,+1) in (6) and then taking the limit as n — oo in (6), we obtain that » = 0.
For instance, let

A(z2n, Zon+2) + A(Z2041, Zon+1)

M(xX2n, X2n+1) = s
So, from (6) we have
IP(Sd(Zan, Zzn+2))
< (d(ZZn/ Zon+2) + d(Zon11, ZZn+1)) N (d(ZZn/ Zon+2) + d(Zon11, ZZn+1))
<y 2s 14 2s
_ (d(Zzn,Zzn+z)) B (d(ZZn/ZZn+2)) (10)
= 2s 2s
< (d(ZZ‘m Zon+1) + d(Zons1, ZZn+2)) _ (d(Zzn, 22n+2))
=V 2 N )

Letting n — oo in (10), using (9) and the continuity of ¢ and ¢, we have,

(1im 2C2uzm)y

n—oo S

. d ,
Hence, lim (z2n,220+2)

n—oo

= 0, from our assumptions about ¢.

Now, taking into account (10) and letting n — oo, we find that 1,0(51’) < 1,[)(0) - (p(O). Hence, r = 0. In
general, for the other values of M(x3,, X2,+1) we can show that,

r= %im d(zx, zk+1) = lim d(z24, 22041) = 0. (11)

Step II. We will show that {z,} is a b-Cauchy sequence in X. Assume on contrary that, there exists € > 0
for which we can find subsequences {z,,3)} and {zp,} of {z2,} such that n(k) > m(k) > k and

A(Zom(ky, Zong) = € (12)
and n(k) is the smallest number such that the above condition holds; i.e.,
A(Zom(ky, Zong-1) < €. (13)
From triangle inequality and (12) and (13), we have,
& < d(zomery, Zon) < S[A@Z2mm), Zonm)-1) + A(Z2nm)-1, Z2n(0)) - (14)
Taking the limit as k — oo in (14), from (11) we obtain that,

e < lim sup d(zomek), Zonge) < SE. (15)

k—o00
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Using triangle inequality again we have,
A(zom(ky, Z2n(k)) < SldZom@), Zamy+1) + AZ2mE)+1, Z2n(k))]-

Making k — oo in the above inequality, we have,

3 .
< lim sup d(zom(ky+1, Z2n(k))-

57 ko
Finally,

A(Zom)+1, Zan-1) < sld(Zammy+1, Z2me) + A(Z2mk), Zonw-1)]-
Letting k — oo, and using (15), we have,

lim sup d(zom@+1, Zonky-1) < SE.

k—o0

3704

(16)

(17)

We know that 2n(k) —1 > 2m(k) and a(Sxous2, RX2n41) = a(9x2n+1, fX2,) 2 1 for all n € IN. On the other
hand, the pairs (f,g) and (g, f) are triangular partially weakly a-admissible with respect to R and S, re-
spectively. So, a(Rx2ug)-1, SXon@y-2) = 1 and a(Sxzu)-2, Rxony-3) = 1 implies a(Rxzx)-1, Rx2n)-3) = 1. Also,
a(Rx2n()-1, RxXong-3) = 1 and a(Rx2u-3, Sxonky-4) = 1 implies that a(Rxzup)-1, Sx2nk)-4) = 1. Continuing this

manner, we obtain that a(Rx2,¢-1, SXom@)) = 1. Now we can apply (1), to obtain that

lzb(Sd(ZZm(k)HrZZn(k))) = ll’(Sd(f X2m(k)s gxzn(k)—1))
< IP(M(xzm(k)/xzn(k)—l)) - (P(M(x2m(k)/x2n(k)—l))
+p(N (me(k)/ X2n(k)—1))N (x2m(k)/ in(k)—l),

where,

M2, X2n(k)-1)
d(Sxam@ry, fXam(ry) + A(RX2n(k)-1, GX2n(k)-1)

25 !
A(Sx2mk), FXon-1) + ARX2nm)-1, fXom@r)) |
2s
A(z2m(ky, Z2mx)+1) + A(Z2n)-1, Z2n(k))
2s !

}

€ {d(Sx2mk), Rx2nw)-1),

= {d(Zom(k), Zango-1)

A(Zom), Zon(ky) + AZ2n(k)-1, Z2m(p)+1)
2s

and

N(X2m(k), X2n(k)-1)

= min{d(Sx2m), fXomE)), A(SX2meiy, §X2n-1)r ARX 20001, FX2mei)), ARX20(00-1, FX2n(9-1)}
= min{d(Zom), 22mk)+1), A(Z2mk), Zon®)), AZonk)-1, Z2mky+1)r AZ2n)-1, Z2n(k))}-

From (11), clearly N(x2m), X2n¢)-1) — 0.
If

A(Z2m(ky, ZomE)+1) + A(Z2n@)-1, Z2n(k))
2s ’

M(x2m), Xon@-1) =

(18)

then from (11), we get that I}im M(x2mx), X2n@-1) = 0. Hence, according to (18) we have, I}im A(Zom(y+1, Zong)) =

0, which contradicts (16). If

A(Zamk), Z2n() + A(Z2n-1, Z2m(+1)
M(X2m(), X2n-1) = - : 2s ; - ’
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then from (15) and (17), we get that,

S€ + se
2s

lim sup M(Xom(k), X2n(9-1) <

k—o0

=&
Taking the limit as k — oo in (18), we have,

Ple) =i(s- -
< l,b(s lim sup d(zm(y+1, Zn(k)))
k—o0
< 1,[)( lim sup M(x2,), xzn(k)fl)) - (P( likm inf M(xm(k), x2n(k)fl)) (19)
k_}oo —00
+lim sup G(N (Xam(w), X2n(0-1))N (X2m(k), X2n(0-1)

k—o0

<y(e) - (P( h?lglfM(XZm(k)/ X2n(k)—1)) +0,

which implies that (p(liin inf M(x2m), X2ng)-1)) < 0. Hence, lilrcn inf d(xomk), X2n) = 0, a contradiction to (15).
If
M(me(k)r x2n(k)—1) = d(x2m(k)r xzn(k)—l),

then from (13), by taking the limit as k — oo in (18), we have,

P(e) =¢(S )

(s 11m sup AZm)+1,Zn k)))
(20)
< ¢( hm sup A(Zomk), Zon(k)- 1)) (hm inf d(22m(0), Zan(- 1))

IP(E) (P(hm inf d(zom@), Z2nk)-1)),

which implies that go(likm inf d(zom@), Z2n-1)) < 0. Hence, li]{n inf d(zom), Zon-1) = 0. Therefore, from
triangular inequality we can conclude that likm inf d(zomk), Z2ny) = 0 which contradicts (15).

Hence {z,} is a b-Cauchy sequence.

Step I11. We will show that f, g, R and S have a coincidence point.
Since {z,} is a b-Cauchy sequence in the a-complete b-metric space X and a(zy, zk+1) = 1, then there exists
z € X such that,

im d(z2u01,2) = lim d(Rizuin,2) = lim d(fxz,,2) = 0 @)
and

1}1_)1{1.0 d(zon,2) = 1}1_1;{)10 d(Sxo,,,2) = }1_)1{1.0 d(gxzq-1,2) = 0. (22)
Hence,

Sxop = z and fxp, =z, asn — oo. (23)

As (f, S) is a-compatible and a(z24, zon+2) = 1, s0,
lim d(Sf3,, fS%20) = 0. (24)

Moreover, from lim d(fxz,,z) = 0, lim d(Sxy,,z) = 0 and the a-continuity of S and f, we obtain that
n—oo n—oo

lim d(S fxp,, Sz) = 0 = lim d(fSxy,, f2). (25)
n—oo n—oo
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By the triangle inequality, we have,

d(Sz, fz) < s[d(Sz, Sfxon) +d(Sfxou, f2)]

< sd(Sz, S fxam) + S2LA(S fx2g, FSxan) + d(fSxam, f2)]. (26)

Taking the limit as n — oo in (26), we obtain that
d(Sz, fz) <0,

which yields that fz = Sz, that is, z is a coincidence point of f and S.
Similarly, it can be proved that gz = Rz. Now, let a(Rz, Sz) > 1. From (1) we have,

Y(sd(fz 92)) < $(M(z,2)) - (M, 2)) + DN 2N, 2), (27)
where,

d(Sz, fz) + d(Rz, gz) d(Sz,gz) + d(Rz, fz)
2s ’ 2s }
d(fz g2) |

S

M(z,z) € {d(Sz, Rz),

= 1d(fz,92),0,

and
N(z,z) = min{d(Sz, fz),d(Sz, gz), d(Rz, fz), d(Rz, gz)} = 0.
In all three cases, (27) yields that fz = gz =Sz=Rz. O

In the following theorem, we omit the assumption of a-continuity of f, g, R and S and replace the
a-compatibility of the pairs (f, S) and (g, R) by weak compatibility of the pairs.

Theorem 2.2. Let (X, d) be an a-regular a-complete b-metric space, f,g9,R,S : X — X be four mappings such that
f(X) € R(X) and g(X) € S(X) and RX and SX are b-closed subsets of X. Suppose that

Y(sd(fx, gy)) < ¥(M(x, ) - p(M(x, 1) + SN, PIN(x, ), (28)

for all x and y with a(Sx, Ry) > 1. Then, the pairs (f, S) and (g, R) have a coincidence point z in X provided that the
pairs (f, S) and (g, R) are weakly compatible and the pairs (f, g) and (g, f) are triangular partially weakly a-admissible
with respect to R and S, respectively. Moreover, if a(Sz, Rz) > 1, then z € X is a coincidence point of f, g, R and S.

Proof. Following the proof of Theorem 2.1, there exists z € X such that:

1}1_{?0 d(zx,z) = 0. (29)
Since R(X) is b-closed and {z5,+1} € R(X), therefore z € R(X). Hence, there exists u# € X such that z = Ru and

lim d(zp441, Ru) = lim d(Rxzp41, Ru) = 0. (30)
Similarly, there exists v € X such that z = Ru = Sv and

7}1_1)1010 d(za,,, Sv) = 1}1_1}30 d(Sxyy,, Sv) = 0. (31)

Now, we prove that v is a coincidence point of f and S.
Since Rxpu+1 — z = Sv, as n — oo, from a-regularity of X, a(Rxz,41,5v) = 1. Therefore, from (28), we
have

Y(sd(fo, gxane1)) < Y(M(©, x2011)) = P(M(D, X2011)) + GN(©, X20:1))N (@, X2141), (32)



Lj. Cirié et al. / Filomat 30:14 (2016), 3697-3713 3707
where,

M(U/ x2n+1)

d S , +d R n+1, n d S , " +d R nils
€ (d(So, Rxasn), (Sv, fo) (2sz +1,0%2 +1)/ (S0, gx2 +1)ZS (Rxzne1, f0)

d(z, fv) + d(zons1, 22n) A(2, 220) + d(Z2n+1,fU)}
2s ! 25

}

= {d(zl ZZH+1 )/
and

N(v/ x2n+l)
= min{d(Sv, fv),d(5v, gx2u+1), d(Rx2n11, f0), d(RX2n11, §X2n41)}
= min{d(z, fv),d(z, zon), A(Z2n+1, f0), A(Z2n41, Z20)} = 0.

From Lemma 1.20,

d(z, fv)

252

d(z, fo)
2

< liminf M(v, X2441) < lim sup M(v, x2p41) <
n n

Taking the limit as 7 — oo in (32), using Lemma 1.20 and the continuity of ¢ and ¢, we can obtain that
fu=2z="5v.

As f and S are weakly compatible, we have fz = fSv = Sfv = 5z. Thus, z is a coincidence point of f and
S.

Similarly, it can be shown that z is a coincidence point of the pair (g, R). The rest of the proof follows
from similar arguments as in Theorem 2.1. [

Taking S = R in Theorem 2.1, we obtain the following result.

Corollary 2.3. Let (X,d) be an a-complete b-metric space and let f,g9,R : X — X be three mappings such that
f(X) U g(X) € R(X) and R is a-continuous. Suppose that for every x,y € X with a(Rx, Ry) > 1, we have,

(sd(fx, g)) < p(M(x, 1)) — 9(M(x, ) + N, Y)N(x, ¥), (33)

where,

d(Rx, fx) + d(Ry, gy) d(Rx,gy) + d(Ry, fx)}

M(x, y) € {d(Rx, Ry), 5 2s

and

N(x, y) = min{d(Rx, fx),d(Rx, gy), d(Ry, fx),d(Ry, gy)}.

Then, f, g and R have a coincidence point in X provided that the pair (f, g) is triangular weakly a-admissible with
respect to R and either,

a. the pair (f, R) is a-compatible and f is a-continuous, or,

b. the pair (g, R) is a-compatible and g is a-continuous.

Taking R = S and f = g in Theorem 2.1, we obtain the following coincidence point result:

Corollary 2.4. Let (X,d) be an a-complete b-metric space and let f,R : X — X be two mappings such that
f(X) € R(X). Suppose that for every x, y € X with a(Rx, Ry) > 1, we have,

(sd(fx, fy)) < P(Mx, 1) - p(M(x, y)) + GINx, Y)N(x, y), (34)
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where,

d(Rx, fx) +d(Ry, fy) d(Rx, fy) +d(Ry, fx)}

M(x, y) € {d(Rx, Ry), L o

and

N(x, y) = min{d(Rx, fx),d(Rx, fy),d(Ry, fx),d(Ry, fy)}-

Then, the pair (f, R) has a coincidence point in X provided that f and R are a-continuous, the pair (f, R) is a-compatible
and f is triangular weakly a-admissible with respect to R.

Example 2.5. Let X = [0, 00), the metric d on X be given by d(x, y) = |x -y ? Jforallx,y € Xanda : XXX — [0, 00)
be given by a(x, y) = e*Y. Define self-maps f, g, S and R on X by

fx=In1+x), Rx=¢e"-1,
gx=In(1+ g), Sx =e* —1.

To prove that (f, g) is partially weakly a-admissible with respect to R, let x,y € X be such that y € R™ fx, that is,
Ry = fx. By the definition of f and R, we have ¢ — 1 = In(1 + x) and so, y = In(1 + In(1 + x)). Therefore,

In(1 + In(1 + x))

fx=In(1+x)>In(1+ >

)=In(1+3) = gy.

Therefore, a(fx, gy) > 1. Hence (f, g) is partially weakly a-admissible with respect to R.
To prove that (g, f) is partially weakly a-admissible with respect to S, let x,y € X be such that y € S\ gx, that is,

Sy = gx. Hence, we have e? — 1 = In(1 + ;—C) and so, y = w Therefore,

In(1+In(1+3))

gx=In(1+3) > In(l+ —2—) =In(1+y) = fv.

Therefore, a(gx, fy) > 1.
Furthermore, fX = gX = SX = RX = [0, o).
Define ¢, ¢ : [0, 00) — [0, 00) as (t) = bt and @(t) = (b — 1)t for all t € [0, o0), where 1 < b < 22.
Using the mean value theorem, for all x and y with a(Sx, Ry) > 1 we have,

$QA(fx, gy)) = 2b|fx — gy’
b |ln(1 +2) —1In(1 + §>|2
y 2
< 2b |x - §|

|2x - y|2

<2b
2b

< —

=4

< |Sx - Ry|2

= d(Sx, Ry)

= Y(d(Sx, Ry)) — ¢(d(Sx, Ry)) + p(N(x, y))N(x, ).

Thus, (1) is true for all x,y € X and M(x,y) = d(Sx, Ry). Therefore, all the conditions of Theorem 2.1 are satisfied.
Moreover, 0 is a coincidence point of f, g, Rand S. O

| =1 - - 1)[*
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Corollary 2.6. Let (X, d) be an a-regular b-metric space, f,g,R : X — X be three mappings such that f(X) € R(X)
and g(X) € R(X) and RX is a b-closed subset of X. Suppose that for all elements x and y with a(Rx,Ry) > 1, we
have,

Y(sd(fx, gy)) < $(M(x, ) — 9(M(x, ) + GING, Y)IN(x, y), (35)

where

d(Rx, fx) + d(Ry, gy) d(Rx,gy) +d(Ry, fX>}
2s ! 2s

M(x, y) € {d(Rx, Ry),

and

N(x, y) = min{d(Rx, fx),d(Rx, gy), d(Ry, fx),d(Ry, gy)}.

Then, the pairs (f, R) and (g, R) have a coincidence point z in X provided that the pairs (f, R) and (g, R) are weakly
compatible and the pair (f, g) is triangular weakly a-admissible with respect to R. Moreover, if a(Rz, Rz) > 1, then
z € X is a coincidence point of f, g and R.

Corollary 2.7. Let (X, d) be an a-regular b-metric space, f,R : X — X be two mappings such that f(X) € R(X) and
RXis a b-closed subset of X. Suppose that for all elements x and y with a(Rx, Ry) > 1, we have,
Y(sd(fx, f)) < p(M(x, ) - 9(M(x, y)) + HN(x, Y)N(x, y), (36)

where

dRx, fx) +dRy, fy) dRx, fy)+dRy, fx)}
2s ! 2s

M(x, y) € {d(Rx, Ry),

and

N(X, y) = min{d(Rx, fx)/ d(RX/ fy)/ d(R]// fx)/ d(Ry/ f]/)}

Then, the pair (f,R) have a coincidence point z in X provided that the pair (f,R) is weakly compatible and f is
triangular weakly a-admissible with respect to R.

Taking R = S = Ix (the identity mapping on X) in Theorems 2.1 and 2.2, we obtain the following common
fixed point result.

Corollary 2.8. Let (X, d) be an a-complete b-metric space and let f,g : X — X be two mappings. Suppose that for
every elements x,y € X with a(x, y) > 1,

Y(sd(fx, gy)) < P(M(x, v) - 9(M(x, y)) + (N, Y)N(x, ), (37)
where,

d(x, gy) +d(y, fx) |
2s !

M(x, y) € {d(x, y),d(x, fx),d(y, gy),
and

N(x, y) = min{d(x, fx),d(x, gy),d(y, fx),d(y, gy)}-

Then, the pair (f, g) have a common fixed point z in X provided that the pair (f, g) is triangular weakly a-admissible
and either,

a. f or g is a-continuous, or,

b. X is a-regular.

Remark 2.9. 1. In all obtained results in this paper, we can replace M(x, y) by O(x, y), where,
d(Sx, gy) + ARy, fx) |

2s '
2.In all obtained results in this paper, we can replace N(x,y) by P(x, y), where,

P(x, y) = d(Rx, fx) x d(Rx, gy) x d(Ry, fx) X d(Ry, gy)-

O(x, y) = max{d(Sx, Ry),d(Sx, fx),d(Ry, gy),
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3. Consequences in Partially Ordered b-Metric Spaces

In this section, we give some common fixed point results on metric spaces endowed with an arbitrary
binary relation, specially a partial order relation which can be regarded as consequences of the results
presented in the previous section.

In the sequel, let (X, d) be a metric space and let R be a transitive binary relation over X.

Definition 3.1. Let f and g be two selfmaps on X and R be a binary relation over X. A pair (f, g) is said to be,
(i) weakly R-increasing if fxRgfx and gxRfgx for all x € X,
(ii) partially weakly R-increasing if fxRgfx for all x € X.

Definition 3.2. Let R be a binary relation over X and let f,g,h : X — X are mappings such that fX U gX C hX.
The ordered pair (f, g) is said to be:

(a) weakly R-increasing with respect to h if and only if for all x € X, fxRgy for all y € h™(fx) and gxRfy for all
y € h™l(gx),

(b) partially weakly R-increasing with respect to h if fxRgy for all y € h™*(fx).

Let R be a binary relation over X and let

|1, xRy,
a(x,y) _{ 0, otherwise.

By this assumption, we see that the above definitions are special cases from the definition of weak a-
admissibility and partially weak a-admissibility.

Definition 3.3. [37] Let (X, d) be a metric space. The metric space X is said to be R-complete if and only if every
Cauchy sequence {x,} in X with x,Rx,.1 for all n € IN, converges in X.

Definition 3.4. [37] Let (X, d) be a metric space and let T : X — X be a mapping. We say that T is an R-continuous
mapping on (X, d), if, for given x € X and sequence {x,} with x,Rx,41 for all n € N,

Xy > xasn — oo forallne N = Tx, — Tx.

Definition 3.5. Let (X,d) be a metric space and let f,g : X — X. The pair (f,g) is said to be R-compatible if
lim d(fgx,, gfxn) = 0, whenever {x,} is a sequence in X such that x,Rxy+1 foralln € Nand lim fx, = lim gx, =t

n—oo

for some t € X.

Definition 3.6. Let R be a binary relation over X and let d be a metric on X. We say that (X, d, R) is R-reqular if the
following condition hold:
if a sequence x, — x where where x,Rx.1 for all n € IN, then x,Rx for all n € IN.

Taking R =< where < is a partial order on the non-empty set X, we have

Corollary 3.7. a) Theorem 2.1 of [24] is a special case of Corollary 2.3.
b) Theorem 2.2 of [24] is a special case of Corollary 2.6.
c) Corollary 2.1 of [24] is a special case of Corollary 2.8.
d) Corollary 2.2 of [24] is a special case of Corollary 2.8.
e) Theorem 2.4 of [23] is a special case of Corollary 2.4.
f) Theorem 2.6 of [23] is a special case of Corollary 2.7.
g) Corollary 2.7 of [23] is a special case of Corollary 2.3 with R = Ix.
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4. Contractive Mappings on b-Metric Spaces Endowed with a Graph

Consistent with Jachymski [35], let (X, d) be a b-metric space and A denotes the diagonal of the Cartesian
product X x X. Consider a directed graph G such that the set V(G) of its vertices coincides with X, and the
set E(G) of its edges contains all loops, that is, E(G) 2 A. We assume that G has no parallel edges, so we can
identify G with the pair (V(G), E(G)). Moreover, we may treat G as a weighted graph (see [36], p. 309) by
assigning to each edge the distance between its vertices. If x and y are vertices in a graph G, then a path
in G from x to y of length N (N € N) is a sequence {x;}}¥; of N + 1 vertices such that xo = x, xy = y and
(xi,l,xi) S E(G) fori=1,...,N.

Recently, some results have appeared in the setting of metric spaces which are endowed with a graph.
The first result in this direction was given by Jachymski [35].

Definition 4.1. Let f and g be two selfmaps on graphic b-metric space (X, d). The pair (f, g) is said to be,
(i) weakly G-increasing if (fx, gfx) € E(G) and (gx, fgx) € E(G) forall x € X,
(ii) partially weakly G-increasing if (fx, gfx) € E(G) for all x € X.

Definition 4.2. Let (X, d) be a graphic b-metric space and let f, g,h : X — X are mappings such that fXUgX C hX.
The ordered pair (f, g) is said to be:
(a) weakly G-increasing with respect to h if and only if for all x € X, (fx,qy) € E(G) for all y € h™(fx) and

(9x, fy) € E(G) for all y € h™(gx),
(b) partially weakly G-increasing with respect to h if (fx, gy) € E(G) for all y € h™'(fx).

Let (X, d) be a graphic b-metric space and let

_ ] 1, (x,y) € E(G),
a(x,y) = { 0, otherwise.

By this assumption, we see that the above definitions are special cases from the definition of weak a-
admissibility and partially weak a-admissibility.

Definition 4.3. [37] Let (X, d) be a graphic metric space. (X, d) is said to be G-complete if and only if every Cauchy
sequence {x,} in X with (x,, x,+1) € E(G) for all n € IN, converges in X.

Definition 4.4. [37] Let (X, d) be a graphic metric space and let T : X — X be a mapping. We say that T is an
G-continuous mapping on (X, d), if, for given x € X and sequence {x,} with (x,, X,+1) € E(G) foralln € N,

Xy = xasn — oo forallne N = Tx, — Tx.

Definition 4.5. Let (X,d) be a graphic metric space and let f,g : X — X. The pair (f,g) is said to be G-
compatible if lim d(fgx,, gfx,) = 0, whenever {x,} is a sequence in X such that (x,, X,+1) € E(G) for all n € N and

lim fx, = lim gx, =t for somet € X.
n—oo n—oo

Definition 4.6. Let R be a binary relation over X and let d be a metric on X. We say that (X, d, R) is R-reqular if the
following condition hold:
if a sequence x, — x where where x,Rxy.1 for all n € IN, then x,Rx for all n € IN.

Definition 4.7. Let (X,d) be a graphic b-metric space. We say that (X, d) is G-regular if the following condition
holds:
if a sequence x, — x with (x,, Xn+1) € E(G), then (x,,x) € E(G) for all n € IN.

In the following theorems, we assume that:
for all (x, y) € E(G) and (y, z) € E(G), we have (x,z) € E(G).
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Theorem 4.8. Let (X, G,d) be a G-complete graphic b-metric space. Let f,g,R,S : X — X be four mappings such
that f(X) € R(X) and g(X) € S(X). Suppose that for every x,y € X such that (Sx, Ry) € E(G), we have,

(sd(fx, gy)) < 9(M(x, ) - p(M(x, y)) + SN, Y)IN(x, y).

Let f, g, R and S are G-continuous, the pairs (f,S) and (g, R) are G-compatible and the pairs (f, g) and (g, f) are
partially weakly G-increasing with respect to R and S, respectively. Then, the pairs (f, S) and (g, R) have a coincidence
point z in X. Moreover, if (Sz, Rz) € E(G), then z is a coincidence point of f, g, R and S.

Theorem 4.9. Let (X, G, d) be a G-regular G-complete graphic b-metric space, f,g,R,S : X — X be four mappings
such that f(X) € R(X) and g(X) € S(X) and RX and SX are b-closed subsets of X. Suppose that

(sd(fx, gy)) < $(M(x, ) - p(M(x, 1) + SN, PIN(x, ),

for all x and y for which (Sx, Ry) € E(G). Then, the pairs (f, S) and (g, R) have a coincidence point z in X provided
that the pairs (f, S) and (g, R) are weakly compatible and the pairs (f, g) and (g, f) are partially weakly G-increasing
with respect to R and S, respectively. Moreover, if (Sz, Rz) € E(G), then z € X is a coincidence point of f, g, Rand S.

5. Conclusion

As we know, the concepts of a-complete metric space, a-continuity of a mapping and a-compatibility
of a pair of mappings are weaker than the concepts of complete metric space, continuity of a mapping and
compatibility of a pair of mappings, respectively. Therefore, Theorems 2.1 and 2.2 are more general than
the corresponding results in [38].

Acknowledgement. The third author is grateful to KACST, Riyad, for supporting research project
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