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Abstract. In this paper, we introduce the concepts of weakly and partially weakly α-admissible pair
of mappings and obtain certain coincidence and fixed point theorems for classes of weakly α-admissible
contractive mappings in a b-metric space. As an application, we derive some new coincidence and common
fixed point results in a b-metric space endowed with a binary relation or a graph. Moreover, an example is
provided here to illustrate the usability of the obtained results.

1. Introduction and Preliminaries

The concept of a weakly contractive mapping (d( f x, f y) ≤ d(x, y) − ϕ(d(x, y)) for all x, y ∈ X, where ϕ
is an altering distance function) was introduced by Alber and Guerre-Delabrere [5] in the setup of Hilbert
spaces. Rhoades [34] proved that every weakly contractive mapping defined on a complete metric space
has a unique fixed point.

Self mappings f and 1 on a metric space X are called generalized weakly contractions, if there exists a
lower semicontinuous function ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 and ϕ(t) > 0 for all t > 0 such that

d( f x, 1y) ≤ N(x, y) − ϕ(N(x, y)),

where,

N(x, y) = max{d(x, y), d(x, f x), d(y, 1y),
1
2

[d(x, 1y) + d(y, f x)]},

for all x, y ∈ X ([33]).

Theorem 1.1. [33] Let (X, d) be a complete metric space. If f , 1 : X → X are generalized weakly contractions, then
there exists a unique point u ∈ X such that u = f u = 1u.

For more results in this direction we refer the reader to [8, 15].
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Many researchers have obtained fixed point results in complete metric spaces endowed with a partial
order (See, e.g., [1, 3, 9, 11, 23–27, 30]).

In 2012, Samet et al. [32] introduced the concepts of α-ψ-contractive and α-admissible mappings and
established various fixed point theorems for such mappings defined on complete metric spaces. Afterwards,
Salimi et al. [31] and Hussain et al. [16–18] modified the notion of α-admissible mapping and established
certain (common) fixed point theorems.

Definition 1.2. [32] Let T be a self-mapping on X and let α : X × X → [0,+∞) be a function. We say that T is an
α-admissible mapping if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(Tx,Ty) ≥ 1.

Definition 1.3. Let f and 1 be two self-maps on a set X and let α : X × X → [0,∞) be a function. A pair ( f , 1) is
said to be,

(i) weakly α-admissible if α( f x, 1 f x) ≥ 1 and α(1x, f1x) ≥ 1 for all x ∈ X,
(ii) partially weakly α-admissible if α( f x, 1 f x) ≥ 1 for all x ∈ X.

Let X be a non-empty set and f : X→ X be a given mapping. For every x ∈ X, let f−1(x) = {u ∈ X : f u = x}.

Definition 1.4. Let X be a set, f , 1, h : X → X are mappings such that f X ∪ 1X ⊆ hX and let α : X × X → [0,∞)
be a function. The ordered pair ( f , 1) is said to be:
(a) weaklyα-admissible with respect to h if and only if for all x ∈ X, α( f x, 1y) ≥ 1 for all y ∈ h−1( f x) andα(1x, f y) ≥ 1
for all y ∈ h−1(1x),
(b) partially weakly α-admissible with respect to h if α( f x, 1y) ≥ 1 for all y ∈ h−1( f x).

Remark 1.5. In the above definition: (i) if 1 = f , we say that f is weakly α-admissible (partially weakly α-admissible)
with respect to h, (ii) if h = IX (the identity mapping on X), then the above definition reduces to the concepts of weakly
α-admissible (partially weakly α-admissible) mapping.

Definition 1.6. Let f and 1 be two self-maps on a set X and let α : X × X → [0,∞) be a function. The weakly α-
admissible (partially weakly α-admissible) pair ( f , 1) is said to be triangular weakly α-admissible (triangular partially
weakly α-admissible) if α(x, z) ≥ 1 and α(z, y) ≥ 1 implies α(x, y) ≥ 1 for all x, y, z ∈ X.

Definition 1.7. Let X be a set, f , 1, h : X→ X are mappings such that f X∪1X ⊆ hX and let α : X×X→ [0,∞) be a
function. The ordered pair ( f , 1) is said to be triangular weaklyα-admissible (triangular partially weaklyα-admissible)
with respect to h if it is weakly α-admissible (partially weakly α-admissible) with respect to h and if α(x, z) ≥ 1 and
α(z, y) ≥ 1 imply α(x, y) ≥ 1 for all x, y, z ∈ X.

Example 1.8. Let X = [0,∞),

f (x) =

{
x, 0 ≤ x ≤ 1,
1, 1 ≤ x ≤ ∞, 1(x) =

{ √
x, 0 ≤ x ≤ 1,

1, 1 ≤ x ≤ ∞,

R(x) =

{
x3, 0 ≤ x ≤ 1,
1, 1 ≤ x ≤ ∞, S(x) =

{
x2, 0 ≤ x ≤ 1,
1, 1 ≤ x ≤ ∞,

and let α(x, y) = ey−x for all x, y ∈ [0,∞). Then ( f , 1) is triangular weakly α-admissible with respect to R, and, (1, f )

is a triangular weakly α-admissible pair with respect to S. Indeed, if
{
α(x, z) ≥ 1
α(z, y) ≥ 1 , then

{
x − z ≤ 0,
z − y ≤ 0, that is,

x − y ≤ 0 and so, α(x, y) = ey−x
≥ 1.

To prove that ( f , 1) is partially weakly α-admissible with respect to R, let x, y ∈ X be such that y ∈ R−1 f x, that

is, Ry = f x. So, we have x = y3 and hence, y = 3
√

x. As 1y = 1( 3
√

x) =

√
3
√

x = 6
√

x ≥ x = f x, for all x ∈ [0, 1],

therefore, α( f x, 1y) = e1y− f x = e
6√x−x
≥ 1. Hence, ( f , 1) is partially weakly α-admissible with respect to R.

Also, (1, f ) is partially weakly α-admissible with respect to S. Indeed, let x, y ∈ X be such that y ∈ S−11x,
that is, Sy = 1x. Hence, we have y2 =

√
x. As f y = f ( 4

√
x) = 4

√
x ≥

√
x = 1x, for all x ∈ [0, 1], therefore,

α(1x, f y) = e f y−1x = e
4√x−
√

x
≥ 1. Hence, (1, f ) is partially weakly α-admissible with respect to S.
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Recently, Hussain et al. [16] introduced the concept of α-completeness for a metric space which is weaker
than the concept of completeness.

Definition 1.9. [16] Let (X, d) be a metric space and let α : X × X → [0,∞) be a mapping. The metric space X is
said to be α-complete if and only if every Cauchy sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈N, converges in
X.

Remark 1.10. If X is a complete metric space, then X is also an α-complete metric space. But, the converse is not
true(see, Example 1.17 of [37]).

Definition 1.11. [16] Let (X, d) be a metric space and let α : X × X→ [0,∞) and T : X→ X be mappings. We say
that T is an α-continuous mapping on (X, d), if, for given x ∈ X and sequence {xn},

xn → x as n→∞ and α(xn, xn+1) ≥ 1 for all n ∈N =⇒ Txn → Tx.

Example 1.12. [16] Let X = [0,∞) and d(x, y) = |x − y| be a metric on X. Assume that T : X → X and
α : X × X→ [0,+∞) be defined by

Tx =


x5, if x ∈ [0, 1],

sinπx + 2, if (1,∞),
and α(x, y) =


x2 + y2 + 1, if x, y ∈ [0, 1],

0, otherwise.

Clearly, T is not continuous, but T is α-continuous on (X, d).

Motivated by [19] we introduce the following concept.

Definition 1.13. [19] Let (X, d) be a metric space and f , 1 : X → X. The pair ( f , 1) is said to be α-compatible if
lim
n→∞

d( f1xn, 1 f xn) = 0, whenever {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and lim
n→∞

f xn =

lim
n→∞
1xn = t for some t ∈ X.

Remark 1.14. If ( f , 1) is a compatible pair, then ( f , 1) is also an α-compatible pair. But, the converse is not true. The
following example which is adapted from example 1.2 of [7] illustrates this fact.

Example 1.15. Let X = [1,∞) and d(x, y) = |x− y|. Assume that f , 1 : X→ X and α : X×X→ [0,+∞) be defined
by

f x =


2, if x ∈ [1, 2],

6, if (2,∞),
1x =


6 − 2x, if x ∈ [1, 2],

7, if (2,∞),
and α(x, y) =


1, if x = y = 2,

0, otherwise.

Clearly, ( f , 1) is not compatible, but it is an α-compatible pair. Indeed, let {xn} be a sequence such that α(xn, xn+1) ≥ 1
for all n ∈ N and lim

n→∞
f xn = lim

n→∞
1xn. Then, xn = 2 for all n ∈ N. Then lim

n→∞
f xn = lim

n→∞
1xn = 2 and

lim
n→∞
1 f xn = lim

n→∞
f1xn = 2. Again, if we consider the sequence yn = 2 − 1

n , then lim
n→∞

f yn = lim
n→∞
1yn = 2,

lim
n→∞
1 f yn = 2 and lim

n→∞
f1yn = 6. Thus, f and 1 are α-compatible but not compatible.

Definition 1.16. [20] Let f , 1 : X→ X be given self-mappings on X. The pair ( f , 1) is said to be weakly compatible
if f and 1 commute at their coincidence points (i.e., f1x = 1 f x, whenever f x = 1x).

Definition 1.17. Let (X, d) be a metric space and let α : X×X→ [0,∞) be a function. We say that (X, d) is α-regular
if the following conditions hold:

if xn → x, where α(xn, xn+1) ≥ 1 for all n ∈N, then α(xn, x) ≥ 1 for all n ∈N.
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The concept of b-metric space was introduced by Czerwik in [10]. Since then, several papers have been
published on the fixed point theory of various classes of operators in b-metric spaces (see, also, [4, 6, 12–
14, 21, 28, 29]).

Definition 1.18. [10] Let X be a (nonempty) set and s ≥ 1 be a given real number. A function d : X × X→ R+ is a
b-metric iff, for all x, y, z ∈ X, the following conditions are satisfied:

b1. d(x, y) = 0 iff x = y,
b2. d(x, y) = d(y, x),
b3. d(x, z) ≤ s[d(x, y) + d(y, z)].
The pair (X, d) is called a b-metric space.

Definition 1.19. Let X be a nonempty set. Then (X, d,�) is called a partially ordered b-metric space if and only if d
is a b-metric on a partially ordered set (X,�).

Recently, Hussain et al. have presented an example of a b-metric which is not continuous (see, example 3
in [12]).

Since in general a b-metric is not continuous, we need the following simple lemma about the b-convergent
sequences in the proof of our main result.

Lemma 1.20. [2] Let (X, d) be a b-metric space with s ≥ 1 and suppose that {xn} and {yn} are b-convergent to x and
y, respectively. Then we have,

1
s2 d(x, y) ≤ lim inf

n−→∞
d(xn, yn) ≤ lim sup

n−→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have lim
n−→∞

d(xn, yn) = 0. Moreover, for each z ∈ X, we have,

1
s

d(x, z) ≤ lim inf
n−→∞

d(xn, z) ≤ lim sup
n−→∞

d(xn, z) ≤ sd(x, z).

Motivated by the works in [11, 17, 18, 23, 24], we prove some coincidence point results for weakly α-
admissible (ψ,ϕ)-contractive mappings in b-metric and partially ordered b-metric spaces. Our results extend
and generalize certain recent results in the literature and provide main results in [23, 24] as corollaries.

2. Main Results

Let (X, d) be a b-metric space and let f , 1,R,S : X → X be four self mappings. Throughout this paper,
unless otherwise stated, for all x, y ∈ X, let

M(x, y) ∈ {d(Sx,Ry),
d(Sx, f x) + d(Ry, 1y)

2s
,

d(Sx, 1y) + d(Ry, f x)
2s

}

and

N(x, y) = min{d(Sx, f x), d(Sx, 1y), d(Ry, f x), d(Ry, 1y)}.

Throughout this paper, ψ,ϕ : [0,∞) → [0,∞) are altering distance functions and φ : [0,∞) → [0,∞) is a
bounded function. Recall that a function ϕ : [0,∞) → [0,∞) is called an altering distance function, if ϕ is
continuous and nondecreasing and ϕ(t) = 0 if and only if t = 0 [22].

Theorem 2.1. Let (X, d) be an α-complete b-metric space and let f , 1,R,S : X → X be four mappings such that
f (X) ⊆ R(X), 1(X) ⊆ S(X) and α : X×X→ [0,∞) be a function. Suppose that for every x, y ∈ X with α(Sx,Ry) ≥ 1,

ψ
(
sd( f x, 1y)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
M(x, y)

)
+ φ(N(x, y))N(x, y). (1)

Assume that f , 1, R and S are α-continuous, the pairs ( f ,S) and (1,R) are α-compatible and the pairs ( f , 1) and (1, f )
are triangular partially weakly α-admissible with respect to R and S, respectively. Then, the pairs ( f ,S) and (1,R)
have a coincidence point z in X. Moreover, if α(Sz,Rz) ≥ 1, then z is a coincidence point of f , 1, R and S.
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Proof. Let x0 be an arbitrary point of X. Choose x1 ∈ X such that f x0 = Rx1 and x2 ∈ X such that 1x1 = Sx2.
Continuing this way, construct a sequence {zn} defined by:

z2n+1 = Rx2n+1 = f x2n

and

z2n+2 = Sx2n+2 = 1x2n+1

for all n ≥ 0.
As x1 ∈ R−1( f x0) and x2 ∈ S−1(1x1) and the pairs ( f , 1) and (1, f ) are partially weakly α-admissible with

respect to R and S, respectively, we have,

α(Rx1 = f x0, 1x1 = Sx2) ≥ 1

and

α(1x1 = Sx2, f x2 = Rx3) ≥ 1.

Repeating this process, we obtain α(Rx2n+1,Sx2n+2) = α(z2n+1, z2n+2) ≥ 1 for all n ≥ 0.
We will complete the proof in three steps.
Step I. We will prove that lim

k→∞
d(zk, zk+1) = 0.

Define dk = d(zk, zk+1). Suppose that dk0 = 0 for some k0. Then, zk0 = zk0+1. If k0 = 2n, then z2n = z2n+1
gives z2n+1 = z2n+2. Indeed,

ψ
(
sd(z2n+1, z2n+2)

)
= ψ

(
sd( f x2n, 1x2n+1)

)
≤ ψ

(
M(x2n, x2n+1)

)
− ϕ

(
M(x2n, x2n+1)

)
+ φ(N(x2n, x2n+1))N(x2n, x2n+1),

(2)

where,

M(x2n, x2n+1)

∈ {d(Sx2n,Rx2n+1),
d(Sx2n, f x2n) + d(Rx2n+1, 1x2n+1)

2s
,

d(Sx2n, 1x2n+1) + d(Rx2n+1, f x2n)
2s

}

= {d(z2n, z2n+1),
d(z2n, z2n+1) + d(z2n+1, z2n+2)

2s
,

d(z2n, z2n+2) + d(z2n+1, z2n+1)
2s

}

= {0,
d(z2n+1, z2n+2)

2s
,

d(z2n, z2n+2)
2s

}

and

N(x2n, x2n+1)
= min{d(Sx2n, f x2n), d(Sx2n, 1x2n+1), d(Rx2n+1, f x2n), d(Rx2n+1, 1x2n+1)}
= min{d(z2n, z2n+1), d(z2n, z2n+2), d(z2n+1, z2n+1), d(z2n+1, z2n+2)} = 0.

If M(x2n, x2n+1) =
d(z2n+1,z2n+2)

2s , then (2) will be,

ψ
(
sd(z2n+1, z2n+2)

)
≤ ψ

(d(z2n+1, z2n+2)
2s

)
− ϕ

(d(z2n+1, z2n+2)
2s

)
+ φ(0) × 0

≤ ψ
(
sd(z2n+1, z2n+2)

)
− ϕ

(d(z2n+1, z2n+2)
2s

)
,

(3)

which implies that ϕ(
d(z2n+1, z2n+2)

2s
) = 0, that is, z2n = z2n+1 = z2n+2. Similarly, if k0 = 2n + 1, then

z2n+1 = z2n+2 gives z2n+2 = z2n+3. Continuing this process, we find that zk is a constant sequence for k ≥ k0.
Hence, lim

k→∞
d(zk, zk+1) = 0 holds true.
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Now, suppose that

dk = d(zk, zk+1) > 0 (4)

for each k. We claim that

d(zk+1, zk+2) ≤ d(zk, zk+1) (5)

for each k = 1, 2, 3, · · · .
Let k = 2n and for an n ≥ 0, d(z2n+1, z2n+2) ≥ d(z2n, z2n+1) > 0. Then, as α(Sx2n,Rx2n+1) ≥ 1, using (1) we

obtain that

ψ
(
sd(z2n+1, z2n+2)

)
= ψ

(
sd( f x2n, 1x2n+1)

)
≤ ψ

(
M(x2n, x2n+1)

)
− ϕ

(
M(x2n, x2n+1)

)
+ φ(N(x2n, x2n+1))N(x2n, x2n+1),

(6)

where,

M(x2n, x2n+1)

∈ {d(Sx2n,Rx2n+1),
d(Sx2n, f x2n) + d(Rx2n+1, 1x2n+1)

2s
,

d(Sx2n, 1x2n+1) + d(Rx2n+1, f x2n)
2s

}

= {d(z2n, z2n+1),
d(z2n, z2n+1) + d(z2n+1, z2n+2)

2s
,

d(z2n, z2n+2) + d(z2n+1, z2n+1)
2s

}

and

N(x2n, x2n+1)
= min{d(Sx2n, f x2n), d(Sx2n, 1x2n+1), d(Rx2n+1, f x2n), d(Rx2n+1, 1x2n+1)}
= min{d(z2n, z2n+1), d(z2n, z2n+2), d(z2n+1, z2n+1), d(z2n+1, z2n+2)} = 0.

If

M(x2n, x2n+1) =
d(z2n, z2n+1) + d(z2n+1, z2n+2)

2s
≤

d(z2n+1, z2n+2)
s

,

as d(z2n+1, z2n+2) ≥ d(z2n, z2n+1), then from (6), we have,

ψ
(
sd(z2n+1, z2n+2)

)
≤ ψ

(d(z2n, z2n+1) + d(z2n+1, z2n+2)
2s

)
− ϕ

(d(z2n, z2n+1) + d(z2n+1, z2n+2)
2s

)
≤ ψ

(
sd(z2n+1, z2n+2)

)
− ϕ

(d(z2n, z2n+1) + d(z2n+1, z2n+2)
2s

)
,

(7)

which implies that, ϕ
(

d(z2n,z2n+1)+d(z2n+1,z2n+2)
2s

)
≤ 0, this is possible only if

d(z2n, z2n+1) + d(z2n+1, z2n+2)
2s

= 0,

that is, d(z2n, z2n+1) = 0, a contradiction to (4). Hence, d(z2n+1, z2n+2) ≤ d(z2n, z2n+1) for all n ≥ 0.
Therefore, (5) is proved for k = 2n.
Similarly, it can be shown that,

d(z2n+2, z2n+3) ≤ d(z2n+1, z2n+2) (8)

for all n ≥ 0.
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Analogously, for other values of M(x2n, x2n+1), we can see that {d(zk, zk+1)} is a nondecreasing sequence
of nonnegative real numbers. Therefore, there is an r ≥ 0 such that

lim
k→∞

d(zk, zk+1) = r. (9)

We know that,

M(x2n, x2n+1)

∈ {d(z2n, z2n+1),
d(z2n, z2n+1) + d(z2n+1, z2n+2)

2s
,

d(z2n, z2n+2) + d(z2n+1, z2n+1)
2s

}.

Substituting the values of M(x2n, x2n+1) in (6) and then taking the limit as n→∞ in (6), we obtain that r = 0.
For instance, let

M(x2n, x2n+1) =
d(z2n, z2n+2) + d(z2n+1, z2n+1)

2s
.

So, from (6) we have

ψ
(
sd(z2n+1, z2n+2)

)
≤ ψ

(d(z2n, z2n+2) + d(z2n+1, z2n+1)
2s

)
− ϕ

(d(z2n, z2n+2) + d(z2n+1, z2n+1)
2s

)
= ψ

(d(z2n, z2n+2)
2s

)
− ϕ

(d(z2n, z2n+2)
2s

)
≤ ψ

(d(z2n, z2n+1) + d(z2n+1, z2n+2)
2

)
− ϕ

(d(z2n, z2n+2)
2s

)
.

(10)

Letting n→∞ in (10), using (9) and the continuity of ψ and ϕ, we have,

ϕ
(

lim
n→∞

d(z2n, z2n+2)
2s

)
= 0.

Hence, lim
n→∞

d(z2n,z2n+2)
2s = 0, from our assumptions about ϕ.

Now, taking into account (10) and letting n→∞, we find that ψ
(
sr
)
≤ ψ

(
0
)
− ϕ

(
0
)
. Hence, r = 0. In

general, for the other values of M(x2n, x2n+1) we can show that,

r = lim
k→∞

d(zk, zk+1) = lim
n→∞

d(z2n, z2n+1) = 0. (11)

Step II. We will show that {zn} is a b-Cauchy sequence in X. Assume on contrary that, there exists ε > 0
for which we can find subsequences {z2m(k)} and {z2n(k)} of {z2n} such that n(k) > m(k) ≥ k and

d(z2m(k), z2n(k)) ≥ ε (12)

and n(k) is the smallest number such that the above condition holds; i.e.,

d(z2m(k), z2n(k)−1) < ε. (13)

From triangle inequality and (12) and (13), we have,

ε ≤ d(z2m(k), z2n(k)) ≤ s[d(z2m(k), z2n(k)−1) + d(z2n(k)−1, z2n(k))]. (14)

Taking the limit as k→∞ in (14), from (11) we obtain that,

ε ≤ lim sup
k→∞

d(z2m(k), z2n(k)) ≤ sε. (15)
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Using triangle inequality again we have,

d(z2m(k), z2n(k)) ≤ s[d(z2m(k), z2m(k)+1) + d(z2m(k)+1, z2n(k))].

Making k→∞ in the above inequality, we have,

ε
s
≤ lim sup

k→∞
d(z2m(k)+1, z2n(k)). (16)

Finally,

d(z2m(k)+1, z2n(k)−1) ≤ s[d(z2m(k)+1, z2m(k)) + d(z2m(k), z2n(k)−1)].

Letting k→∞, and using (15), we have,

lim sup
k→∞

d(z2m(k)+1, z2n(k)−1) ≤ sε. (17)

We know that 2n(k) − 1 ≥ 2m(k) and α(Sx2n+2,Rx2n+1) = α(1x2n+1, f x2n) ≥ 1 for all n ∈ N. On the other
hand, the pairs ( f , 1) and (1, f ) are triangular partially weakly α-admissible with respect to R and S, re-
spectively. So, α(Rx2n(k)−1,Sx2n(k)−2) ≥ 1 and α(Sx2n(k)−2,Rx2n(k)−3) ≥ 1 implies α(Rx2n(k)−1,Rx2n(k)−3) ≥ 1. Also,
α(Rx2n(k)−1,Rx2n(k)−3) ≥ 1 and α(Rx2n(k)−3,Sx2n(k)−4) ≥ 1 implies that α(Rx2n(k)−1,Sx2n(k)−4) ≥ 1. Continuing this
manner, we obtain that α(Rx2n(k)−1,Sx2m(k)) ≥ 1. Now we can apply (1), to obtain that

ψ
(
sd(z2m(k)+1, z2n(k))

)
= ψ

(
sd( f x2m(k), 1x2n(k)−1)

)
≤ ψ

(
M(x2m(k), x2n(k)−1)

)
− ϕ

(
M(x2m(k), x2n(k)−1)

)
+φ(N(x2m(k), x2n(k)−1))N(x2m(k), x2n(k)−1),

(18)

where,

M(x2m(k), x2n(k)−1)

∈ {d(Sx2m(k),Rx2n(k)−1),
d(Sx2m(k), f x2m(k)) + d(Rx2n(k)−1, 1x2n(k)−1)

2s
,

d(Sx2m(k), 1x2n(k)−1) + d(Rx2n(k)−1, f x2m(k))
2s

}

= {d(z2m(k), z2n(k)−1),
d(z2m(k), z2m(k)+1) + d(z2n(k)−1, z2n(k))

2s
,

d(z2m(k), z2n(k)) + d(z2n(k)−1, z2m(k)+1)
2s

}

and

N(x2m(k), x2n(k)−1)
= min{d(Sx2m(k), f x2m(k)), d(Sx2m(k), 1x2n(k)−1), d(Rx2n(k)−1, f x2m(k)), d(Rx2n(k)−1, 1x2n(k)−1)}
= min{d(z2m(k), z2m(k)+1), d(z2m(k), z2n(k)), d(z2n(k)−1, z2m(k)+1), d(z2n(k)−1, z2n(k))}.

From (11), clearly N(x2m(k), x2n(k)−1) −→ 0.
If

M(x2m(k), x2n(k)−1) =
d(z2m(k), z2m(k)+1) + d(z2n(k)−1, z2n(k))

2s
,

then from (11), we get that lim
k→∞

M(x2m(k), x2n(k)−1) = 0.Hence, according to (18) we have, lim
k→∞

d(z2m(k)+1, z2n(k)) =

0, which contradicts (16). If

M(x2m(k), x2n(k)−1) =
d(z2m(k), z2n(k)) + d(z2n(k)−1, z2m(k)+1)

2s
,
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then from (15) and (17), we get that,

lim sup
k→∞

M(x2m(k), x2n(k)−1) ≤
sε + sε

2s
= ε.

Taking the limit as k→∞ in (18), we have,

ψ(ε) = ψ(s ·
ε
s

)

≤ ψ
(
s lim sup

k→∞
d(zm(k)+1, zn(k))

)
≤ ψ

(
lim sup

k→∞
M(x2m(k), x2n(k)−1)

)
− ϕ

(
lim inf

k→∞
M(x2m(k), x2n(k)−1)

)
+ lim sup

k→∞
φ(N(x2m(k), x2n(k)−1))N(x2m(k), x2n(k)−1)

≤ ψ(ε) − ϕ
(

lim inf
k→∞

M(x2m(k), x2n(k)−1)
)

+ 0,

(19)

which implies that ϕ(lim inf
k→∞

M(x2m(k), x2n(k)−1)) ≤ 0. Hence, lim inf
k→∞

d(x2m(k), x2n(k)) = 0, a contradiction to (15).

If

M(x2m(k), x2n(k)−1) = d(x2m(k), x2n(k)−1),

then from (13), by taking the limit as k→∞ in (18), we have,

ψ(ε) = ψ(s ·
ε
s

)

≤ ψ
(
s lim sup

k→∞
d(zm(k)+1, zn(k))

)
≤ ψ

(
lim sup

k→∞
d(z2m(k), z2n(k)−1)

)
− ϕ

(
lim inf

k→∞
d(z2m(k), z2n(k)−1)

)
≤ ψ(ε) − ϕ(lim inf

k→∞
d(z2m(k), z2n(k)−1)),

(20)

which implies that ϕ(lim inf
k→∞

d(z2m(k), z2n(k)−1)) ≤ 0. Hence, lim inf
k→∞

d(z2m(k), z2n(k)−1) = 0. Therefore, from

triangular inequality we can conclude that lim inf
k→∞

d(z2m(k), z2n(k)) = 0 which contradicts (15).

Hence {zn} is a b-Cauchy sequence.

Step III. We will show that f , 1, R and S have a coincidence point.
Since {zn} is a b-Cauchy sequence in the α-complete b-metric space X and α(zk, zk+1) ≥ 1, then there exists

z ∈ X such that,

lim
n→∞

d(z2n+1, z) = lim
n→∞

d(Rx2n+1, z) = lim
n→∞

d( f x2n, z) = 0 (21)

and

lim
n→∞

d(z2n, z) = lim
n→∞

d(Sx2n, z) = lim
n→∞

d(1x2n−1, z) = 0. (22)

Hence,

Sx2n → z and f x2n → z, as n→∞. (23)

As ( f ,S) is α-compatible and α(z2n, z2n+2) ≥ 1, so,

lim
n→∞

d(S f x2n, f Sx2n) = 0. (24)

Moreover, from lim
n→∞

d( f x2n, z) = 0, lim
n→∞

d(Sx2n, z) = 0 and the α-continuity of S and f , we obtain that

lim
n→∞

d(S f x2n,Sz) = 0 = lim
n→∞

d( f Sx2n, f z). (25)
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By the triangle inequality, we have,

d(Sz, f z) ≤ s[d(Sz,S f x2n) + d(S f x2n, f z)]
≤ sd(Sz,S f x2n) + s2[d(S f x2n, f Sx2n) + d( f Sx2n, f z)]. (26)

Taking the limit as n→∞ in (26), we obtain that

d(Sz, f z) ≤ 0,

which yields that f z = Sz, that is, z is a coincidence point of f and S.
Similarly, it can be proved that 1z = Rz. Now, let α(Rz,Sz) ≥ 1. From (1) we have,

ψ
(
sd( f z, 1z)

)
≤ ψ

(
M(z, z)

)
− ϕ

(
M(z, z)

)
+ φ(N(z, z))N(z, z), (27)

where,

M(z, z) ∈ {d(Sz,Rz),
d(Sz, f z) + d(Rz, 1z)

2s
,

d(Sz, 1z) + d(Rz, f z)
2s

}

= {d( f z, 1z), 0,
d( f z, 1z)

s
}

and

N(z, z) = min{d(Sz, f z), d(Sz, 1z), d(Rz, f z), d(Rz, 1z)} = 0.

In all three cases, (27) yields that f z = 1z = Sz = Rz.

In the following theorem, we omit the assumption of α-continuity of f , 1, R and S and replace the
α-compatibility of the pairs ( f ,S) and (1,R) by weak compatibility of the pairs.

Theorem 2.2. Let (X, d) be an α-regular α-complete b-metric space, f , 1,R,S : X → X be four mappings such that
f (X) ⊆ R(X) and 1(X) ⊆ S(X) and RX and SX are b-closed subsets of X. Suppose that

ψ
(
sd( f x, 1y)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
M(x, y)

)
+ φ(N(x, y))N(x, y), (28)

for all x and y with α(Sx,Ry) ≥ 1. Then, the pairs ( f ,S) and (1,R) have a coincidence point z in X provided that the
pairs ( f ,S) and (1,R) are weakly compatible and the pairs ( f , 1) and (1, f ) are triangular partially weakly α-admissible
with respect to R and S, respectively. Moreover, if α(Sz,Rz) ≥ 1, then z ∈ X is a coincidence point of f , 1, R and S.

Proof. Following the proof of Theorem 2.1, there exists z ∈ X such that:

lim
k→∞

d(zk, z) = 0. (29)

Since R(X) is b-closed and {z2n+1} ⊆ R(X), therefore z ∈ R(X). Hence, there exists u ∈ X such that z = Ru and

lim
n→∞

d(z2n+1,Ru) = lim
n→∞

d(Rx2n+1,Ru) = 0. (30)

Similarly, there exists v ∈ X such that z = Ru = Sv and

lim
n→∞

d(z2n,Sv) = lim
n→∞

d(Sx2n,Sv) = 0. (31)

Now, we prove that v is a coincidence point of f and S.
Since Rx2n+1 → z = Sv, as n→∞, from α-regularity of X, α(Rx2n+1,Sv) ≥ 1. Therefore, from (28), we

have

ψ
(
sd( f v, 1x2n+1)

)
≤ ψ

(
M(v, x2n+1)

)
− ϕ

(
M(v, x2n+1)

)
+ φ(N(v, x2n+1))N(v, x2n+1), (32)



Lj. Ćirić et al. / Filomat 30:14 (2016), 3697–3713 3707

where,

M(v, x2n+1)

∈ {d(Sv,Rx2n+1),
d(Sv, f v) + d(Rx2n+1, 1x2n+1)

2s
,

d(Sv, 1x2n+1) + d(Rx2n+1, f v)
2s

}

= {d(z, z2n+1),
d(z, f v) + d(z2n+1, z2n)

2s
,

d(z, z2n) + d(z2n+1, f v)
2s

}

and

N(v, x2n+1)
= min{d(Sv, f v), d(Sv, 1x2n+1), d(Rx2n+1, f v), d(Rx2n+1, 1x2n+1)}
= min{d(z, f v), d(z, z2n), d(z2n+1, f v), d(z2n+1, z2n)} → 0.

From Lemma 1.20,

d(z, f v)
2s2 ≤ lim inf

n
M(v, x2n+1) ≤ lim sup

n
M(v, x2n+1) ≤

d(z, f v)
2

.

Taking the limit as n→∞ in (32), using Lemma 1.20 and the continuity of ψ and ϕ, we can obtain that
f v = z = Sv.

As f and S are weakly compatible, we have f z = f Sv = S f v = Sz. Thus, z is a coincidence point of f and
S.

Similarly, it can be shown that z is a coincidence point of the pair (1,R). The rest of the proof follows
from similar arguments as in Theorem 2.1.

Taking S = R in Theorem 2.1, we obtain the following result.

Corollary 2.3. Let (X, d) be an α-complete b-metric space and let f , 1,R : X → X be three mappings such that
f (X) ∪ 1(X) ⊆ R(X) and R is α-continuous. Suppose that for every x, y ∈ X with α(Rx,Ry) ≥ 1, we have,

ψ
(
sd( f x, 1y)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
M(x, y)

)
+ φ(N(x, y))N(x, y), (33)

where,

M(x, y) ∈ {d(Rx,Ry),
d(Rx, f x) + d(Ry, 1y)

2s
,

d(Rx, 1y) + d(Ry, f x)
2s

}

and

N(x, y) = min{d(Rx, f x), d(Rx, 1y), d(Ry, f x), d(Ry, 1y)}.

Then, f , 1 and R have a coincidence point in X provided that the pair ( f , 1) is triangular weakly α-admissible with
respect to R and either,

a. the pair ( f ,R) is α-compatible and f is α-continuous, or,
b. the pair (1,R) is α-compatible and 1 is α-continuous.

Taking R = S and f = 1 in Theorem 2.1, we obtain the following coincidence point result:

Corollary 2.4. Let (X, d) be an α-complete b-metric space and let f ,R : X → X be two mappings such that
f (X) ⊆ R(X). Suppose that for every x, y ∈ X with α(Rx,Ry) ≥ 1, we have,

ψ
(
sd( f x, f y)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
M(x, y)

)
+ φ(N(x, y))N(x, y), (34)
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where,

M(x, y) ∈ {d(Rx,Ry),
d(Rx, f x) + d(Ry, f y)

2s
,

d(Rx, f y) + d(Ry, f x)
2s

}

and

N(x, y) = min{d(Rx, f x), d(Rx, f y), d(Ry, f x), d(Ry, f y)}.

Then, the pair ( f ,R) has a coincidence point in X provided that f and R areα-continuous, the pair ( f ,R) isα-compatible
and f is triangular weakly α-admissible with respect to R.

Example 2.5. Let X = [0,∞), the metric d on X be given by d(x, y) =
∣∣∣x − y

∣∣∣2 , for all x, y ∈ X andα : X×X→ [0,∞)
be given by α(x, y) = ex−y. Define self-maps f , 1, S and R on X by

f x = ln(1 + x), Rx = ex
− 1,

1x = ln(1 +
x
2

), Sx = e2x
− 1.

To prove that ( f , 1) is partially weakly α-admissible with respect to R, let x, y ∈ X be such that y ∈ R−1 f x, that is,
Ry = f x. By the definition of f and R, we have ey

− 1 = ln(1 + x) and so, y = ln(1 + ln(1 + x)). Therefore,

f x = ln(1 + x) ≥ ln(1 +
ln(1 + ln(1 + x))

2
) = ln(1 +

y
2

) = 1y.

Therefore, α( f x, 1y) ≥ 1. Hence ( f , 1) is partially weakly α-admissible with respect to R.
To prove that (1, f ) is partially weakly α-admissible with respect to S, let x, y ∈ X be such that y ∈ S−11x, that is,

Sy = 1x. Hence, we have e2y
− 1 = ln(1 +

x
2

) and so, y =
ln(1+ln(1+ x

2 ))
2 . Therefore,

1x = ln(1 +
x
2

) ≥ ln(1 +

ln(1+ln(1+ x
2 ))

2

2
) = ln(1 + y) = f y.

Therefore, α(1x, f y) ≥ 1.
Furthermore, f X = 1X = SX = RX = [0,∞).
Define ψ,ϕ : [0,∞)→ [0,∞) as ψ(t) = bt and ϕ(t) = (b − 1)t for all t ∈ [0,∞), where 1 < b ≤ 22.
Using the mean value theorem, for all x and y with α(Sx,Ry) ≥ 1 we have,

ψ(2d( f x, 1y)) = 2b
∣∣∣ f x − 1y

∣∣∣2
= 2b

∣∣∣∣ln(1 + x) − ln(1 +
y
2

)
∣∣∣∣2

≤ 2b
∣∣∣∣x − y

2

∣∣∣∣2
≤ 2b

∣∣∣2x − y
∣∣∣2

4

≤
2b
4

∣∣∣e2x
− 1 − (ey

− 1)
∣∣∣2

≤

∣∣∣Sx − Ry
∣∣∣2

= d(Sx,Ry)
= ψ(d(Sx,Ry)) − ϕ(d(Sx,Ry)) + φ(N(x, y))N(x, y).

Thus, (1) is true for all x, y ∈ X and M(x, y) = d(Sx,Ry). Therefore, all the conditions of Theorem 2.1 are satisfied.
Moreover, 0 is a coincidence point of f , 1, R and S. �
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Corollary 2.6. Let (X, d) be an α-regular b-metric space, f , 1,R : X→ X be three mappings such that f (X) ⊆ R(X)
and 1(X) ⊆ R(X) and RX is a b-closed subset of X. Suppose that for all elements x and y with α(Rx,Ry) ≥ 1, we
have,

ψ
(
sd( f x, 1y)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
M(x, y)

)
+ φ(N(x, y))N(x, y), (35)

where

M(x, y) ∈ {d(Rx,Ry),
d(Rx, f x) + d(Ry, 1y)

2s
,

d(Rx, 1y) + d(Ry, f x)
2s

}

and

N(x, y) = min{d(Rx, f x), d(Rx, 1y), d(Ry, f x), d(Ry, 1y)}.

Then, the pairs ( f ,R) and (1,R) have a coincidence point z in X provided that the pairs ( f ,R) and (1,R) are weakly
compatible and the pair ( f , 1) is triangular weakly α-admissible with respect to R. Moreover, if α(Rz,Rz) ≥ 1, then
z ∈ X is a coincidence point of f , 1 and R.

Corollary 2.7. Let (X, d) be an α-regular b-metric space, f ,R : X→ X be two mappings such that f (X) ⊆ R(X) and
RX is a b-closed subset of X. Suppose that for all elements x and y with α(Rx,Ry) ≥ 1, we have,

ψ
(
sd( f x, f y)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
M(x, y)

)
+ φ(N(x, y))N(x, y), (36)

where

M(x, y) ∈ {d(Rx,Ry),
d(Rx, f x) + d(Ry, f y)

2s
,

d(Rx, f y) + d(Ry, f x)
2s

}

and

N(x, y) = min{d(Rx, f x), d(Rx, f y), d(Ry, f x), d(Ry, f y)}.

Then, the pair ( f ,R) have a coincidence point z in X provided that the pair ( f ,R) is weakly compatible and f is
triangular weakly α-admissible with respect to R.

Taking R = S = IX (the identity mapping on X) in Theorems 2.1 and 2.2, we obtain the following common
fixed point result.

Corollary 2.8. Let (X, d) be an α-complete b-metric space and let f , 1 : X → X be two mappings. Suppose that for
every elements x, y ∈ X with α(x, y) ≥ 1,

ψ
(
sd( f x, 1y)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
M(x, y)

)
+ φ(N(x, y))N(x, y), (37)

where,

M(x, y) ∈ {d(x, y), d(x, f x), d(y, 1y),
d(x, 1y) + d(y, f x)

2s
},

and

N(x, y) = min{d(x, f x), d(x, 1y), d(y, f x), d(y, 1y)}.

Then, the pair ( f , 1) have a common fixed point z in X provided that the pair ( f , 1) is triangular weakly α-admissible
and either,

a. f or 1 is α-continuous, or,
b. X is α-regular.

Remark 2.9. 1. In all obtained results in this paper, we can replace M(x, y) by O(x, y), where,

O(x, y) = max{d(Sx,Ry), d(Sx, f x), d(Ry, 1y),
d(Sx, 1y) + d(Ry, f x)

2s
}.

2.In all obtained results in this paper, we can replace N(x, y) by P(x, y), where,

P(x, y) = d(Rx, f x) × d(Rx, 1y) × d(Ry, f x) × d(Ry, 1y).
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3. Consequences in Partially Ordered b-Metric Spaces

In this section, we give some common fixed point results on metric spaces endowed with an arbitrary
binary relation, specially a partial order relation which can be regarded as consequences of the results
presented in the previous section.

In the sequel, let (X, d) be a metric space and let R be a transitive binary relation over X.

Definition 3.1. Let f and 1 be two selfmaps on X and R be a binary relation over X. A pair ( f , 1) is said to be,
(i) weakly R-increasing if f xR1 f x and 1xR f1x for all x ∈ X,
(ii) partially weakly R-increasing if f xR1 f x for all x ∈ X.

Definition 3.2. Let R be a binary relation over X and let f , 1, h : X → X are mappings such that f X ∪ 1X ⊆ hX.
The ordered pair ( f , 1) is said to be:
(a) weakly R-increasing with respect to h if and only if for all x ∈ X, f xR1y for all y ∈ h−1( f x) and 1xR f y for all
y ∈ h−1(1x),
(b) partially weakly R-increasing with respect to h if f xR1y for all y ∈ h−1( f x).

Let R be a binary relation over X and let

α(x, y) =

{
1, xRy,
0, otherwise.

By this assumption, we see that the above definitions are special cases from the definition of weak α-
admissibility and partially weak α-admissibility.

Definition 3.3. [37] Let (X, d) be a metric space. The metric space X is said to be R-complete if and only if every
Cauchy sequence {xn} in X with xnRxn+1 for all n ∈N, converges in X.

Definition 3.4. [37] Let (X, d) be a metric space and let T : X→ X be a mapping. We say that T is an R-continuous
mapping on (X, d), if, for given x ∈ X and sequence {xn} with xnRxn+1 for all n ∈N,

xn → x as n→∞ for all n ∈N =⇒ Txn → Tx.

Definition 3.5. Let (X, d) be a metric space and let f , 1 : X → X. The pair ( f , 1) is said to be R-compatible if
lim
n→∞

d( f1xn, 1 f xn) = 0, whenever {xn} is a sequence in X such that xnRxn+1 for all n ∈N and lim
n→∞

f xn = lim
n→∞
1xn = t

for some t ∈ X.

Definition 3.6. Let R be a binary relation over X and let d be a metric on X. We say that (X, d,R) is R-regular if the
following condition hold:

if a sequence xn → x where where xnRxn+1 for all n ∈N, then xnRx for all n ∈N.

Taking R =�where � is a partial order on the non-empty set X, we have

Corollary 3.7. a) Theorem 2.1 of [24] is a special case of Corollary 2.3.
b) Theorem 2.2 of [24] is a special case of Corollary 2.6.
c) Corollary 2.1 of [24] is a special case of Corollary 2.8.
d) Corollary 2.2 of [24] is a special case of Corollary 2.8.
e) Theorem 2.4 of [23] is a special case of Corollary 2.4.
f) Theorem 2.6 of [23] is a special case of Corollary 2.7.
g) Corollary 2.7 of [23] is a special case of Corollary 2.3 with R = IX.
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4. Contractive Mappings on b-Metric Spaces Endowed with a Graph

Consistent with Jachymski [35], let (X, d) be a b-metric space and ∆ denotes the diagonal of the Cartesian
product X × X. Consider a directed graph G such that the set V(G) of its vertices coincides with X, and the
set E(G) of its edges contains all loops, that is, E(G) ⊇ ∆. We assume that G has no parallel edges, so we can
identify G with the pair (V(G),E(G)). Moreover, we may treat G as a weighted graph (see [36], p. 309) by
assigning to each edge the distance between its vertices. If x and y are vertices in a graph G, then a path
in G from x to y of length N (N ∈ N) is a sequence {xi}

N
i=0 of N + 1 vertices such that x0 = x, xN = y and

(xi−1, xi) ∈ E(G) for i = 1, . . . ,N.
Recently, some results have appeared in the setting of metric spaces which are endowed with a graph.

The first result in this direction was given by Jachymski [35].

Definition 4.1. Let f and 1 be two selfmaps on graphic b-metric space (X, d). The pair ( f , 1) is said to be,
(i) weakly G-increasing if ( f x, 1 f x) ∈ E(G) and (1x, f1x) ∈ E(G) for all x ∈ X,
(ii) partially weakly G-increasing if ( f x, 1 f x) ∈ E(G) for all x ∈ X.

Definition 4.2. Let (X, d) be a graphic b-metric space and let f , 1, h : X→ X are mappings such that f X∪1X ⊆ hX.
The ordered pair ( f , 1) is said to be:
(a) weakly G-increasing with respect to h if and only if for all x ∈ X, ( f x, 1y) ∈ E(G) for all y ∈ h−1( f x) and
(1x, f y) ∈ E(G) for all y ∈ h−1(1x),
(b) partially weakly G-increasing with respect to h if ( f x, 1y) ∈ E(G) for all y ∈ h−1( f x).

Let (X, d) be a graphic b-metric space and let

α(x, y) =

{
1, (x, y) ∈ E(G),
0, otherwise.

By this assumption, we see that the above definitions are special cases from the definition of weak α-
admissibility and partially weak α-admissibility.

Definition 4.3. [37] Let (X, d) be a graphic metric space. (X, d) is said to be G-complete if and only if every Cauchy
sequence {xn} in X with (xn, xn+1) ∈ E(G) for all n ∈N, converges in X.

Definition 4.4. [37] Let (X, d) be a graphic metric space and let T : X → X be a mapping. We say that T is an
G-continuous mapping on (X, d), if, for given x ∈ X and sequence {xn} with (xn, xn+1) ∈ E(G) for all n ∈N,

xn → x as n→∞ for all n ∈N =⇒ Txn → Tx.

Definition 4.5. Let (X, d) be a graphic metric space and let f , 1 : X → X. The pair ( f , 1) is said to be G-
compatible if lim

n→∞
d( f1xn, 1 f xn) = 0, whenever {xn} is a sequence in X such that (xn, xn+1) ∈ E(G) for all n ∈ N and

lim
n→∞

f xn = lim
n→∞
1xn = t for some t ∈ X.

Definition 4.6. Let R be a binary relation over X and let d be a metric on X. We say that (X, d,R) is R-regular if the
following condition hold:

if a sequence xn → x where where xnRxn+1 for all n ∈N, then xnRx for all n ∈N.

Definition 4.7. Let (X, d) be a graphic b-metric space. We say that (X, d) is G-regular if the following condition
holds:

if a sequence xn → x with (xn, xn+1) ∈ E(G), then (xn, x) ∈ E(G) for all n ∈N.

In the following theorems, we assume that:
for all (x, y) ∈ E(G) and (y, z) ∈ E(G), we have (x, z) ∈ E(G).
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Theorem 4.8. Let (X,G, d) be a G-complete graphic b-metric space. Let f , 1,R,S : X → X be four mappings such
that f (X) ⊆ R(X) and 1(X) ⊆ S(X). Suppose that for every x, y ∈ X such that (Sx,Ry) ∈ E(G), we have,

ψ
(
sd( f x, 1y)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
M(x, y)

)
+ φ(N(x, y))N(x, y).

Let f , 1, R and S are G-continuous, the pairs ( f ,S) and (1,R) are G-compatible and the pairs ( f , 1) and (1, f ) are
partially weakly G-increasing with respect to R and S, respectively. Then, the pairs ( f ,S) and (1,R) have a coincidence
point z in X. Moreover, if (Sz,Rz) ∈ E(G), then z is a coincidence point of f , 1, R and S.

Theorem 4.9. Let (X,G, d) be a G-regular G-complete graphic b-metric space, f , 1,R,S : X → X be four mappings
such that f (X) ⊆ R(X) and 1(X) ⊆ S(X) and RX and SX are b-closed subsets of X. Suppose that

ψ
(
sd( f x, 1y)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
M(x, y)

)
+ φ(N(x, y))N(x, y),

for all x and y for which (Sx,Ry) ∈ E(G). Then, the pairs ( f ,S) and (1,R) have a coincidence point z in X provided
that the pairs ( f ,S) and (1,R) are weakly compatible and the pairs ( f , 1) and (1, f ) are partially weakly G-increasing
with respect to R and S, respectively. Moreover, if (Sz,Rz) ∈ E(G), then z ∈ X is a coincidence point of f , 1, R and S.

5. Conclusion

As we know, the concepts of α-complete metric space, α-continuity of a mapping and α-compatibility
of a pair of mappings are weaker than the concepts of complete metric space, continuity of a mapping and
compatibility of a pair of mappings, respectively. Therefore, Theorems 2.1 and 2.2 are more general than
the corresponding results in [38].
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