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Abstract. We consider codes over Zps with the extended Lee weight. We find Singleton bounds with
respect to this weight and define MLDS and MLDR codes accordingly. We also consider the kernels of these
codes and the notion of independence of vectors in this space. We investigate the linearity and duality of
the Gray images of codes over Zps .

1. Introduction

In the early history of coding theory, codes over finite fields were predominantly studied. The most
common weight used for such codes was the Hamming weight, which is defined to be the number of
nonzero coordinates. We will denote the Hamming weight by wH. Many encoding and decoding schemes
as well as error correction algorithms are based on the Hamming distance.

Codes over rings have been considered since the early seventies, however it was not until the beginning
of the nineties that they became a widely popular research field in coding theory. In 1994, Hammons
et al.([12]) solved a long standing problem in nonlinear binary codes by constructing the Kerdock and
Preparata codes as the Gray images of linear codes overZ4. This work started an intense activity on codes
over rings. The rich algebraic structure that rings bring together with some better than optimal nonlinear
codes obtained from linear codes over rings have increased the popularity of this topic. What started with
the ring Z4, later was extended to rings such as Z2k , Zpk , Galois rings, Fq + uFq, and various other rings.

For codes over rings, weights other than the Hamming weight were considered. For example, in [12],
the authors used the Lee weight on Z4, which we will denote by wL and was defined as

wL(x) :=


0 if x = 0,
2 if x = 2,
1 otherwise.

The Gray map

φL : Z4 → Z
2
2,
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with

φL(0) = (00), φL(1) = (01), φL(2) = (11), φL(3) = (10)

turns out to be a nonlinear isometry from (Zn
4 ,Lee distance) to (F2n

2 ,Hamming distance), where the Lee
distance on Z4 is defined as

dL(x, y) := wL(x − y), x, y ∈ Z4,

and similarly, the Hamming distance on Z4 as

dH(x, y) := wH(x − y), x, y ∈ Z4.

This means that if C is a linear code over Z4 of length n, size M and minimum Lee distance d, then φL(C)
is a possibly nonlinear binary code with parameters [2n,M, d], where d is the minimum Hamming distance
of φL(C).

When extending the Lee distance fromZ4 to the more general ring extensions, the homogeneous weight
was mostly used. The homogeneous weight has a lot of advantages, which made them useful in constructing
codes over rings. It is related to exponential sums (see [5] and [20] for example), making it easier to find
bounds by using some number theoretic arguments such as the Weil bound. The homogeneous weight also
gives rise to codes with high divisibility properties.

Another extension of the Lee weight is also possible and has been used by different researchers. For
example the weight wL on Z2s , defined by

wL(x) :=
{

x if x ≤ 2s−1,
2s
− x if x > 2s−1,

was used partly in [4], [6] and [23]. A simple Gray map for this weight maps codes over Z2s to (mostly)
nonlinear binary codes. This extension was generalized to Zm as the Lee weight by letting wL(x) =
min{x,m − x} in some works, however no Gray map has been offered for such a weight.

In [22], the Lee weight onZ2s given above was generalized to the ringsZps and the Galois rings GR(ps,m),
together with a simple description of a Gray map projecting codes over Zps to codes over the finite prime
field Fp = Zp. In this work, we study codes over Zps together with this Lee weight from many angles such
as Singleton bounds, independence, kernels and duality.

The rest of the paper is organized as follows: In section 2, we recall the extended Lee weight, the
Gray map and some properties for codes over Zps from [22]. In section 3, some bounds on codes over
Zps concerning both length and size of the codes are given and MLDS and MLDR codes are defined
accordingly. In section 4, the notions of kernel and independence are investigated. In section 5, some
results about self-duality and self-orthogonality are found.

2. The Extended Lee Weight and Its Gray Map

We recall that a new weight on Zps , a generalization of wL, was defined in [22] as follows:

wL(x) :=


x if x ≤ ps−1,
ps−1 if ps−1 < x ≤ ps

− ps−1,
ps
− x if ps

− ps−1 < x ≤ ps
− 1,

where p is prime. Note that for p = 2 and s = 2 this reduces to the Lee weight for Z4 and for p = 2 and any
s, this is the weight that was used briefly by Carlet in [4] and by Dougherty and Fernández-Córdoba in [6].

We can define a Gray map from Zps to Zps−1

p just as was done for the homogeneous weight as follows:
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0 → (000 · · · 000),
1 → (100 · · · 000),
2 → (110 · · · 000),

·

·

ps−1
→ (111 · · · 111),

ps−1 + 1 → (211 · · · 111),
ps−1 + 2 → (221 · · · 111),

·

·

ps−1 + ps−1
− 1 → (222 · · · 221),

2ps−1
→ (222 · · · 222),

2ps−1 + 1 → (322 · · · 222),
·

·

2ps−1 + ps−1
− 1 → (333 · · · 332),

3ps−1
→ (333 · · · 333),
·

·

(p − 1)ps−1
→ ((p − 1) · · · (p − 1)),

(p − 1)ps−1 + 1 → (0(p − 1) · · · (p − 1)),
·

·

ps
− 2 → (000 · · · 0(p − 1)(p − 1)),

ps
− 1 → (000 · · · 00(p − 1)).

We simply put 1’s in the first x coordinates and 0’s in the other coordinates for all x ≤ ps−1. If x > ps−1 then
the Gray map takes x to q +φL(r), where φL is the Gray map for wL, q = (qqq · · · qqq) and q and r are such that

x = qps−1 + r,

which can be found by division algorithm. Here, 0 ≤ x ≤ ps
− 1, 0 ≤ q ≤ p − 1, 0 ≤ r ≤ ps−1

− 1. Here by
putting p = 2, we get the same Gray map given in [23] and [6], which is

0 → (000 · · · 000),
1 → (100 · · · 000),
2 → (110 · · · 000),

·

·

2s−1
→ (111 · · · 111),

2s−1 + 1 → (011 · · · 111),
2s−1 + 2 → (001 · · · 111),

·

·

2s
− 2 → (000 · · · 011),

2s
− 1 → (000 · · · 001).

As an example, when p = 3, s = 2 we get the extended Lee weight on Z9 is defined as

wL(x) :=


x if x ≤ 3,
3 if 3 < x ≤ 6,
9 − x if 6 < x ≤ 8.
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The Gray map takes Z9 to Z3
3 as follows:

0 → (000),
1 → (100),
2 → (110),
3 → (111),
4 → (211),
5 → (221),
6 → (222),
7 → (022),
8 → (002).

We define the Lee distance on Zps as

dL(x, y) := wL(x − y), x, y ∈ Zps .

Note that this is a metric onZps and by extending wL and dL linearly to (Zps )n in an obvious way, we get
a weight and a metric on (Zps )n.

Theorem 2.1. The map φL : (Zps , dL) −→ (Fps−1

p , dH) is a distance preserving (not necessarily linear) map, where dL
and dH denote the Lee and the Hamming distances respectively.

The proof of this theorem can be found in [22] with the following corollary:

Corollary 2.2. If C is a linear code overZps of length n, size M and minimum Lee distance d, thenφL(C) is a (possibly
nonlinear) code over Fp of length nps−1, size M and minimum Hamming distance d.

The concepts of minimum Lee distance and minimum Lee weight are the same for linear codes over
Zps .

A Gray map from GR(ps,m) to Fps−1m
p can also be defined by extending φL : (Zps , dL) −→ (Fps−1

p , dH) (see
[22], Section 3), which means that most of the work done in this paper is applicable to Galois rings.

3. Singleton Bounds for Codes Over Zps

A Singleton bound for codes over a finite quasi-Frobenius ring is already given in [19] as an MDS bound.
Since this result is given for any weight function, it can be specified for the extended Lee weight.

Definition 3.1 (Complete weight). [19] Let R be a finite commutative quasi-Frobenius ring, and let V := Rn be
a free module of rank n consisting of all n-tuples of elements of R. For every x = (x1, · · ·, xn) ∈ V and r ∈ R, the
complete weight of x is defined by

nr(x) := |{i |xi = r }| .

Definition 3.2 (General weight function). [19] Let ar,(0 ,)r ∈ R, be positive real numbers, and set a0 = 0. Then

w(x) :=
∑
r∈R

arnr(x) (1)

is called a general weight function.

Note that when ar = 1, r ∈ R − {0}, w(x) gives the Hamming weight of x.
The following theorem gives a Singleton bound for any finite quasi-Frobenius ring and any weight

function.
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Theorem 3.3. [19] Let C be a code of length n over a finite commutative quasi-Frobenius ring R. Let w(x) be a
general weight function on C, as in (1), and with maximum ar−value A. Suppose the minimum weight of the elements
in C is d. Then⌊

d − 1
A

⌋
≤ n − log

|R| |C| ,

where bbc is the integer part of b.

Since Zps is a finite commutative Frobenius ring by letting w(x) = wL(x), we have ps−1 as the maximum
ar−value. Applying these information to Theorem 3.3 we get the following:

Theorem 3.4. Let C be a code of length n over Zps with minimum distance d. Then⌊
d − 1
ps−1

⌋
≤ n − logps |C| .

Codes meeting this bound are called MLDS (Maximum Lee Distance Separable) codes. In [18], another
bound was found over Zl with a different generalization of the Lee weight. Now we will find a similar
result for codes over Zps with wL(x) by the same method used.

Definition 3.5 (Rank, Free Rank). Let C be any finitely generated submodule of Zn
ps , that is isomorphic to

Zps/pa1Zps ⊕Zps/pa2Zps ⊕ · · · ⊕Zps/pan−1Zps ,

where ai are positive integers with pa1 |pa2 | · · · |pan−1 |ps. Then

rank(C) := |{i |ai , 0 }|

is called the rank of C and

f ree rank(C) := |{i |ai = s }|

is called the free rank of C.

Any linear code overZps has a generator matrix, which is permutationally equivalent to a matrix of the
form:

G =



Iδ0 A0,1 A0,2 A0,3 · · · · · · A0,s
0 pIδ1 pA1,2 pA1,3 · · · · · · pA1,s
0 0 p2Iδ2 p2A2,3 · · · · · · p2A2,s
· · · · · · 0 · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · ps−2Iδs−2 ps−2As−2,s−1 ps−2As−2,s
0 0 0 · · · 0 ps−1Iδs−1 ps−1As−1,s


. (2)

This means that after a finite number of permutations of columns and rows of the generator matrix, we can
get a matrix of the form (2). A generator matrix G, which is of the form (2), is called a generator matrix in
standard form.

Then a code C over Zn
ps is of type (ps)δ0 (ps−1)δ1 · · · (p)δs−1 , and

rank(C) = δ0 + δ1 + · · · + δs−1,
f ree rank(C) = δ0.

Let C⊥, namely the dual of C, be defined as

C⊥ :=
{
v ∈ Zn

ps | 〈v,w〉 = 0 for all w ∈ C
}

,
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where 〈v,w〉 =
∑

viwi (mod ps). The code C⊥ is isomorphic to

Zps/ps−a1Zps ⊕Zps/ps−a2Zps ⊕ · · · ⊕Zps/ps−an−1Zps .

From [18], [15], [7], [8], [6], and the definitions above, the relationship between the rank of a code and its
dual’s free rank can be given as follows:

rank(C) + f ree rank(C⊥) = n. (3)

For a submodule D ⊆ V := (Zps )n and a subset M ⊆ N := {1, 2, . . . ,n}, we define

D(M) :=
{
x ∈ D

∣∣∣supp(x) ⊆M
}

,
D∗ := HomZps (D,Zps ),

where Hom(·, ·) is the hom functor, and

supp(x) := {i ∈ N |xi , 0 } .

From the fundamental theorem of finitely generated abelian groups, we have D∗ � D. Shiromoto also gave
the following basic exact sequence:

Lemma 3.6. [18]Let C be a code of length n over Zl and M ⊆ N. Then there is an exact sequence as Zl-modules

0→ C⊥(M) inc
→ V(M)

f
→ C∗ res

→ C(N −M)∗ → 0

where the maps inc, res denote the inclusion map, the restriction map, respectively, and f is aZl-homomorphism such
that

f : V → D∗

y→ (ŷ : x→
〈
x, y

〉
).

We can adjust Lemma 3.6 to our case:

Lemma 3.7. Let C be a code of length n over Zps and M ⊆ N. Then there is an exact sequence as Zps -modules

0→ C⊥(M) inc
→ V(M)

f
→ C∗ res

→ C(N −M)∗ → 0,

where the maps inc, res denote the inclusion map, the restriction map, respectively, and f is a Zps -homomorphism
such that

f : V → D∗

y→ (ŷ : x→
〈
x, y

〉
).

Note that for any x ∈ V, if supp(x) ⊆M ⊆ N, then for any general weight function we have wt(x) ≤ ar |M|.
In our case:

wL(x) ≤ ps−1
|M| .

So we have the following lemma for wL(x):

Lemma 3.8. Let C be a code of length n over Zps , then C(M)∗ = 0 for any subset M ⊆ N such that |M| < d/ps−1,
where d is the minimum Lee weight of C.
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Proof. For any c , 0 ∈ C∣∣∣supp(c)
∣∣∣ ps−1

≥ wL(c) ≥ d. (4)

If |M| < d/ps−1, then

d > |M| ps−1, (5)

which means∣∣∣supp(c)
∣∣∣ ps−1

≥ d > |M| ps−1

by (4) and (5). But this means
∣∣∣supp(c)

∣∣∣ > |M|, i.e. supp(c) * M. So C ∩ V(M) = {0} and C(M)∗ = HomZps (C ∩
V(M),Zps ) = 0.

By Lemma 3.8, we have the following bound:

Theorem 3.9. Let C be a code of length n over Zps with the minimum Lee weight d. Then⌊
d − 1
ps−1

⌋
≤ n − rank(C).

Proof. We will follow the steps of Shiromoto in [18]. In the exact sequence of Lemma 3.7, replace C with C⊥.
Then the exact sequence transforms into the following one:

0→ C(M) inc
→ V(M)

f
→ (C⊥)∗ res

→ C⊥(N −M)∗ → 0. (6)

Apply ∗ = HomZps (·,Zps ) and take an arbitrary subset M ⊆ N such that

|M| =
⌊

d − 1
ps−1

⌋
.

Since C(M)∗ = 0 by Lemma 3.8 and V(M)∗ � V(M), the exact sequence (6) leads us to the following short
exact sequence:

0→ C⊥(N −M)→ C⊥ → V(M)→ 0. (7)

V(M) � (Zps )|M| is a projective module. Hence (7) is a split, that is,

C⊥ � C⊥(N −M) ⊕ V(M).

Therefore

f ree rank(C⊥) ≥ f ree rank(V(M)) = |M| =
⌊

d − 1
ps−1

⌋
.

From (3) we have

n − rank(C) ≥
⌊

d − 1
ps−1

⌋
.

Codes meeting the bound above are called MLDR (Maximum Lee Distance with respect to Rank) codes.
The following example illustrates a code which is both MLDS and MLDR.

Example 3.10. Let C be the linear code over Zp, whose generator matrix is G = [1]. So C =
{
(0), (1), · · ·, (p − 1)

}
,

log
|R| |C| = logp1 |C| = 1, A = p − 1, d = 1, and n = 1. Hence

⌊
d − 1

A

⌋
= n − log

|R| |C| = 0 and
⌊

d − 1
p1−1

⌋
=

n − logp1 |C| = 0.
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4. Kernel and Independence of φL(C)

For finite fields and vector spaces the notions of kernel and independence are strongly related (see [13]).
In this section, we investigate the same notions for Gray images of linear codes over Zps . The kernel of a
code C over Fp, where p is a prime, denoted by K(C), is defined as the set

K(C) := {v |v ∈ C, v + C = C } .

For further information we refer to [16]. Since φL(C) is a code over Fp (not necessarily linear), we can define

K(φL(C)) :=
{
φL(v)

∣∣∣v ∈ C, φL(v) + φL(C) = φL(C)
}

.

In [6], authors gave some results about K(φL(C)), φL-independence and modular independence over Z2s .
We have similar results for Zps .

First we define modular independence. We say that vectors v1, v2, . . . , vt are modular independent over

Zps if
t∑

i=1
αivi = 0 then αi ∈ 〈p〉 for all i. The Gray images of modularly independent vectors on Zps might

not be linearly independent onZp. For counter example, we refer to [6]. A set of vectors inZps is said to be
φL-independent, if their Gray images are linearly independent over Zp.

Lemma 4.1. Let G be the generating matrix of a linear code of type (ps)δ0 (ps−1)δ1 · · · (p)δs−1 overZps in standard form.
Let vi,1, vi,2, . . . , vi,δi be the vectors of order ps−i. Then the vectors in the set

{
αvi, j|1 ≤ α ≤ ps−i−1

}
are φL-independent

in Fps−1n
p .

Proof. Let G be the generator matrix of the code in standard form. The Gray images of 1, 2, . . . , ps−1 form
an upper triangular matrix and so the Gray image of the vectors in the first δ0 coordinates are linearly
independent. All initial nonzero coordinates of submatrices piIδi form an uppertriangular matrix and their
entries are all less than or equal to ps−1. Therefore the other cases of the form piIδi form submatrix of the
above mentioned upper triangular matrix. Hence they are also linearly independent.

Theorem 4.2. Let v1, v2, . . . , vk be modular independent vectors in Zn
ps . Then there exist modular independent

vectors w1,w2, . . . ,wk which are φL-independent in Fps−1n
p such that 〈v1, v2, . . . , vk〉 = 〈w1,w2, . . . ,wk〉.

Proof. Any set of modular independent vectors over Zps are permutationally equivalent to a set of vectors
that form a generator matrix in standard form as shown in [15]. Therefore by Lemma 4.1 these vectors are
φL-independent.

The following proposition gives a restriction to the order of elements whose Gray images belong to
K(φL(C)).

Proposition 4.3. Let C be a linear code over Zps . If v ∈ C has order greater than p2 then K(φL(C)) does not contain
φL(v).

Proof. For the rest of the proof and the rest of the paper, let aib jck be the codeword of length i + j + k, whose
first i entries are a, the next j entries are b, and the remaining k entries are c.

Since ord(v) > p2, v has a number i as its coordinate with ord(i) > p2. We have the following three cases
for i ∈ Zps with ord(i) > p2:

(i) If 0 < i < ps−1 then ord(i) = pk, k > 2, since ord(i)|
∣∣∣Zps

∣∣∣ = ps. That means i = ps−kui, where (ui, ps) = 1, i.e.,
(ui, p) = 1. Since 0 < i < ps−1

φL(i) = 1i0ps−1−i,
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and since s− k ≤ s− 2, we have pi = ps−k+1ui < ps. We know that i , ps−1u j or i , ps−2u j for any u j such
that (u j, p) = 1. So by using division algorithm we can write

i = qps−2 + r′, 0 < r′ < ps−2,
pi = qps−1 + r, 0 < r = pr′ < ps−1.

Without loss of generality assume that i > r. Then,

φL(i) + φL(pi) = 1i0ps−1−i + qps−1 + 1r0ps−1−r

= q + 2rq + 1i−rqps−1−i < φL(C),

since r , 0, r − i , 0 and ps−1
− i , 0. Now assume i = r. Then,

φL(i) + φL(pi) = 1i0ps−1−i + qps−1 + 1i0ps−1−i

= q + 2iqps−1−i < φL(C),

since i , 0 and ps−1
− i , 0.

(ii) If ps−1 < i < ps
−ps−1 then mps−1 < i < (m+1)ps−1, where m ∈

{
1, 2, 3, · · ·, p − 2

}
. Since ord(i) > p2, i , ps−1u j

or i , ps−2u j for any u j ∈
{
1, 2, 3, · · ·, p − 2, p − 1

}
. Let

i = mps−1 + r, 0 < r < ps−1,
r = qps−2 + r′, 0 < r′ < ps−2.

So

pi = (mps−1 + r)p = pr = qps−1 + pr′.

Without loss of generality assume that r > pr′. Then,

φL(i) + φL(pi) = 1r0ps−1−r + mps−1 + qps−1 + 1pr′0ps−1−pr′

= q + m + 2pr′q + m + 1r−pr′q + mps−1−r < φL(C),

since 0 < pr′ < ps−1, r − pr′ , 0 and ps−1
− r , 0.

(iii) If ps
− ps−1 < i < ps then 0 < −i < ps−1. So φL(−i) +φL(−pi) < φL(C) as we proved in the first case. We see

that for each v ∈ Zn
ps we have either φL(v) + φL(pv) < φL(C) or φL(−v) + φL(−pv) < φL(C). Hence either

φL(v) + φL(C) , φL(C) or φL(−v) + φL(C) , φL(C) when ord(v) > p2.

So the Gray image of the code, which is generated by all vectors of C with order less than or equal to p2

should include K(φL(C)). Then we have the following corollary and lemmas, which generalize the results
in [6]:

Corollary 4.4. Let C be a linear code over Zps with generator matrix of the form (2).Then K(φL(C)) is contained in
the Gray image of the code generated by the matrix:

ps−2Iδ0 ps−2A0,1 ps−2A0,2 ps−2A0,3 · · · · · · ps−2A0,s
0 ps−2Iδ1 ps−2A1,2 ps−2A1,3 · · · · · · ps−2A1,s
0 0 ps−2Iδ2 ps−2A2,3 · · · · · · ps−2A2,s
· · · · · · 0 · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · ps−2Iδs−2 ps−2As−2,s−1 ps−2As−2,s
0 0 0 · · · 0 ps−1Iδs−1 ps−1As−1,s


.
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Lemma 4.5. Let C be a linear code over Zps and v,w ∈ C. Then we have

φL(ps−1v + w) = φL(ps−1v) + φL(w)

for each v,w ∈ C.

Proof. Let vi,wi ∈ Zps be the ith coordinates of v,w respectively. Then by division algorithm we can write

wi = qwps−1 + rw, 0 ≤ qw ≤ p − 1, 0 ≤ rw < ps−1,
vi = qvp + rv, 0 ≤ qv < ps−1, 0 ≤ rv < p.

So ps−1vi = ps−1rv, where 0 ≤ ps−1rv < ps. Therefore

φL(ps−1vi + wi) = φL(ps−1rv + qwps−1 + rw) = φL(ps−1(rv + qw) + rw)

= rv + qwps−1 + 1rw 0ps−1−rw = rvps−1 + qwps−1 + 1rw 0ps−1−rw

= φL(ps−1rv) + φL(qwps−1 + rw) = φL(ps−1vi) + φL(wi).

Applying this method coordinate-wise, the result follows.

Theorem 4.6. Let C be a linear code over Zps with the generator matrix of the form (2). Then the Gray image of the
code C′ generated by

ps−1Iδ0 ps−1A0,1 ps−1A0,2 ps−1A0,3 · · · · · · ps−1A0,s
0 ps−1Iδ1 ps−1A1,2 ps−1A1,3 · · · · · · ps−1A1,s
0 0 ps−1Iδ2 ps−1A2,3 · · · · · · ps−1A2,s
· · · · · · 0 · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · ps−1Iδs−2 ps−1As−2,s−1 ps−1As−2,s
0 0 0 · · · 0 ps−1Iδs−1 ps−1As−1,s


(8)

is a linear subcode of K(φL(C)).

Proof. Let v,w ∈ C, then ps−1v ∈ C′ ⊆ C. Then φL(ps−1v) ∈ φL(C′) and φL(w) ∈ φL(C). By Lemma 4.5

φL(ps−1v + w) = φL(ps−1v) + φL(w) ∈ φL(C),

since ps−1v,w ∈ C. This holds for every w ∈ C, which means φL(ps−1v) + φL(C) ⊆ φL(C). Two different
codewords will have different images. Therefore φL(ps−1v) + φL(C) = φL(C), which tells us that φL(ps−1v) ∈
K(φL(C)).

Lemma 4.7. Let C be a linear code overZps ,λ ∈ Zps and v ∈ C such thatφL(v) < K(φL(C)). ThenφL(λv) ∈ K(φL(C))
if and only if ord(λv) = p.

Proof. (=⇒)Suppose that ord(λv) = p, then φL(λv) ∈ K(φL(C)) by Theorem 4.6.
(⇐=)Now assume φL(v) < K(φL(C)) and φL(λv) ∈ K(φL(C)). We have two cases.

(i) If ord(v) > p2 and v = (v1, v2, · · ·, vn), then there exists vi, 1 ≤ i ≤ n, such that ord(vi) > p2. Let ord(vi) = pk

with k > 2. Then vi = ps−kui, where ui is a unit. By division algorithm, we have

ui = qup + ru, 0 ≤ qu ≤ ps−1
− 1, 0 < ru < p,

vi = qvps−1 + rv, 0 ≤ qv ≤ p − 1, 0 < rv < ps−1,

where ru , 0, since ui is a unit and rv , 0, since ord(vi) > p2. If φL(λvi) ∈ K(φL(C)), then by Proposition
4.3 λ = pk−2uλ or λ = pk−1uλ, where uλ is a unit. For λ = pk−1uλ we have ord(λvi) = p, so φL(λvi) ∈
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K(φL(C)) by Theorem 4.6. If λ = pk−2uλ, then ord(λvi) = p2 and λvi = ps−2uλui = quuλps−1 + ruuλps−2,
where 0 < ruuλps−2 < ps−1. Without loss of generality assume that ruuλps−2 < rv, then we have

φL(λvi) + φL(vi) = (qu + qv + 2)ruuλps−2 (qu + qv + 1)rv−ruuλps−2 (qu + qv)ps−1−rv
< φL(C),

since ruuλps−2 , 0, rv − ruuλps−2 , 0, ps−1
− rv , 0. If ruuλps−2 = rv, then

φL(λvi) + φL(vi) = (qu + qv + 2)rv
(qu + qv)ps−1−rv

< φL(C),

since ps−1
− rv , 0, rv , 0.

(ii) If ord(v) = p2 and v = (v1, v2, · · ·, vn), then there exists vi, 1 ≤ i ≤ n, such that ord(vi) = p2. Then vi = ps−2ui,
where ui is a unit. By division algorithm, we have vi = qvps−1 + rv, 0 ≤ qv ≤ p − 1, 0 < rv < ps−1, since
ord(vi) = p2. If φL(λvi) ∈ K(φL(C)), then by Proposition 4.3 ord(λvi) = p2 or ord(λvi) = p. If ord(λvi) = p,
we have φL(λvi) ∈ K(φL(C)) by Theorem 4.6. If ord(λvi) = p2 then λ is a unit and λvi = ps−1q + r,
0 < r < ps−1, r , 0, since ord(λvi) = p2. Without loss of generality assume that rv > r, then we have

φL(λvi) + φL(vi) = (q + qv + 2)r(q + qv + 1)rv−r(qu + qv)ps−1−rv
< φL(C),

since r , 0, rv − r , 0, ps−1
− rv , 0. If r = rv, then

φL(λvi) + φL(vi) = (qu + qv + 2)rv
(qu + qv)ps−1−rv

< φL(C),

since ps−1
− rv , 0, rv , 0. In both cases φL(λv) + φL(v) < φL(C), whenever ord(λv) , p.

Theorem 4.8. Let C be a linear code over Zps of type (ps)δ0 (ps−1)δ1 · · · (p)δs−1 . If m = dim(K(φL(C))), then

m ∈

 s−1∑
i=0

δi,
s−1∑
i=0

δi + 1,
s−1∑
i=0

δi + 2, · · ·,
s−1∑
i=0

δi + δs−2 − 2,
s−1∑
i=0

δi + δs−2

 .
Proof. By Theorem 4.6, the image of any codeword of order p is in K(φL(C)). If there is a codeword v of order
greater than p2, then φL(v) < K(φL(C)). Moreover, if φL(v) < K(φL(C)), then φL(λv) ∈ K(φL(C)) if and only if
ord(λv) = p by Lemma 4.7. Otherwise φL(λv) +φL(v) < φL(C). So for φL(v) < K(φL(C)) and φL(λv) ∈ φL(C”) ⊆

K(φL(C)) we have ord(λv) = p. This means we have the Gray images of first
s−3∑
i=0
δi vectors of (8) as generators

of K(φL(C)). Furthermore, we can show that the contribution of the Gray images of first
s−3∑
i=0
δi vectors of

(2) to K(φL(C)) is restricted to that. To see this, let v be one these vectors in (2). Then ord(v) > p2 and
φL(v) < K(φL(C)) by Proposition 4.3. For any scalar product of v, say λv, then φL(λv) ∈ K(φL(C)) if and only
if ord(λv) = p by Lemma 4.7. If ord(v) = pk, k > 2, v = uvpk, this happens only when λ = ps−k−1uλ, where uλ
and uv are units. Therefore λv = ps−1u, where u = uvuλ is a unit too. This shows that the only contribution
of the Gray image of v to K(φL(C)) is its scalar products with the ps−1u and their linear combinations. Also
we know that the Gray image of the last δs−1 rows of (8) are generators of K(φL(C)) by Theorem 4.6. We
don’t know whether each of the Gray images of δs−2 remaining vectors generate K(φL(C)) certainly. But we
know that if their Gray images are not included in generators of K(φL(C)), the Gray image of their scalar
products with pu, where u is a unit, are all included in K(φL(C)). Hence we can have at least the Gray image
of the code generated by (8), and at most the Gray image of the code generated by

ps−1Iδ0 ps−1A0,1 ps−1A0,2 ps−1A0,3 · · · · · · ps−1A0,s
0 ps−1Iδ1 ps−1A1,2 ps−1A1,3 · · · · · · ps−1A1,s
0 0 ps−1Iδ2 ps−1A2,3 · · · · · · ps−1A2,s
· · · · · · 0 · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · ps−2Iδs−2 ps−2As−2,s−1 ps−2As−2,s
0 0 0 · · · 0 ps−1Iδs−1 ps−1As−1,s


(9)
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as K(φL(C)). Thus we have the following bound for m:

p
s−1∑
i=0
δi
≤ pm

≤ p
s−1∑

i=0,i,s−2
δi
· p2δs−2 ,

which means
s−1∑
i=0

δi ≤ m ≤
s−1∑
i=0

δi + δs−2.

Let C̃ be the code generated by matrix (9). Since K(φL(C)) is at most φL(C̃), K(φL(C)) ⊆ φL(C̃). So,

K(φL(C)) =
{
c ∈ C̃ : φL(c) + φL(C) = φL(C)

}
.

Let {v0, v1, · · ·, vk} be the set of generators ofφL(C̃), namely 〈v0, v1, · · ·, vk〉 = φL(C̃), which means dim(φL(C̃)) =
k + 1. Assume that dim(K(φL(C))) = k, and without loss of generality let K(φL(C)) = 〈v1, · · ·, vk〉. If
v0 ∈ φL(C̃) ⊆ φL(C), then we have v0 + vi ∈ φL(C) for all i = 1, · · ·, k, since vi ∈ K(φL(C)). But v0 + vi ∈ φL(C̃)
for all i = 1, · · ·, k, that means v0 ∈ K(φL(C̃)) ⊆ K(K(φL(C))) ⊆ K(φL(C)), which is a contradiction. Hence

m ,
s−1∑
i=0
δi + δs−2 − 1. Therefore we have the following

m ∈

 s−1∑
i=0

δi,
s−1∑
i=0

δi + 1,
s−1∑
i=0

δi + 2, · · ·,
s−1∑
i=0

δi + δs−2 − 2,
s−1∑
i=0

δi + δs−2

 .

5. Linearity and Duality of φL(C)

Self-dual codes are important since many of the best codes known are of this type. Numerous researchers
have investigated their Gray images to find (not necessarily linear) codes with optimal or extremal param-
eters. Most of the best codes are nonlinear and they can be viewed as Gray images of linear codes. On
the other hand, linearity makes things easier. Therefore it is also very important to know when the image
φL(C) is nonlinear/linear. Also some researchers looked into when the images of self-dual codes are also
self-dual. The aim of this section is to present some knowledge about these two topics for codes over Zps .

Theorem 5.1. Let C be a linear code over Zps with the generating matrix of the form given in (2). If δi > 0 for any
0 ≤ i ≤ s − 3 then φL(C) is not linear.

Proof. We have elements v ∈ C such that ord(v) > p2 by Proposition 4.3, so by Lemma 4.7 they are not in
K(φL(C)), since ord(v) > p2 > p. Hence φL(C) is not a linear code overFp.

Definition 5.2 (Free Code). A code C over Zps is said to be a free code if rank(C) = f ree rank(C).

Theorem 5.3. Let C be a linear code over Zps . If p > 2 then the Gray image of a free code is not linear.

Proof. If C is a free code, then it has a generating matrix of the form

G =
[

Iδ0 A
]

,

where A is an δ0 × (n− δ0) matrix overZps . Let vi be the ith row of G. Since every row of G is a codeword, if
φL(C) is linear then −φL(v1) must be included in φL(C). But

−φL(v1) = (−φL(1),−φL(v1,2), · · ·,−φL(v1,n)) < φL(C),

because −φL(1) , −φL(x) for any x ∈ Zps .
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The image of a self-dual code C overZps under the Gray map only has the cardinality of a self-dual code
if p = 2 and s = 2, since a self-dual code should include exactly half of the ambient space, which means
sn
2 =

ps−1n
2 . This implies s = ps−1 and hence p = s = 2. So for p > 2 we know that none of the self-dual codes

has self-dual Gray image. However a code might have a self-dual Gray image if it is not self-dual.

Example 5.4. Let C be the linear code over Z27 generated by

G =

[
3 0 6 9
0 3 3 0

]
.

Since 〈(3, 0, 6, 9), (0, 3, 3, 0)〉 = 18 , 0 on Z27, C is not self-dual code over Z27. However〈
φL(3, 0, 6, 9), φL(0, 3, 3, 0)

〉
= 0,〈

φL(3, 0, 6, 9), φL(0, 3, 3, 0)
〉

= 0,〈
φL(0, 3, 3, 0), φL(0, 3, 3, 0)

〉
= 0,

on Z3.

The following theorem gives specific type of linear codes over Zps , whose Gray images are self-
orthogonal codes over Zps .

Theorem 5.5. Any linear code C over Zps of type
(
ps−1

)δ1
(
ps−2

)δ2
· · ·

(
p2

)δs−2 (
p
)δs−1 has a Gray image that is a

self-orthogonal code.

Proof. If C is of type
(
ps−1

)δ1
(
ps−2

)δ2
· · ·

(
p2

)δs−2 (
p
)δs−1 , then it has a generating matrix of the form

G =



pIδ1 pA1,2 pA1,3 · · · · · · pA1,s
0 p2Iδ2 p2A2,3 · · · · · · p2A2,s
0 0 · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

0 0 0 ps−2Iδs−2 ps−2As−2,s−1 ps−2As−2,s
0 0 0 0 ps−1Iδs−1 ps−1As−1,s


.

Let v = (v1, . . . , vn),w = (w1, . . . ,wn) ∈ C are rows of G with order ps−i1 and ps−i2 , where i1 ≥ i2 ≥ 1. So each
vk is in

{
0, pi1 , 2pi1 , . . . , ps

− pi1
}

and each wk is in
{
0, pi2 , 2pi2 , . . . , ps

− pi2
}
, where 1 ≤ k ≤ n. For any element m

in Zps of order ps−e we have

φL(m) = (q + 1)pet(q)(ps−1−e−t)pe ,

where m = ps−1q + r, 0 ≤ r = pet < ps−1, 0 ≤ q ≤ p − 1. We will consider
〈
φL(vk), φL(wk)

〉
instead of〈

φL(v), φL(w)
〉
, sinceφL(v) = (φL(v1), . . . , φL(vn)), φL(w) = (φL(w1), . . . , φL(wn)), and therefore

〈
φL(v), φL(w)

〉
=

n∑
i=1

〈
φL(vi), φL(wi)

〉
. In both Gray images the number of successively repeated coordinates are divisible by

a power of p (at least by p). So in coordinatewise product φL(vk) · φL(wk) = (vk,1wk,1, . . . , vk,ps−1 wk,ps−1 ) the
coordinates will be repeated at least p times successively. So φL(vk) ·φL(wk) = ((a1)p, (a2)p, . . . , (aps−2 )p), where

al is the lth repeating coordinate. Hence

〈
φL(vk), φL(wk)

〉
=

ps−1∑
i=1

(
φL(vk) · φL(wk)

)
i
=

ps−2∑
j=1

pa j = 0,

which means φL(C) ⊆
(
φL(C)

)⊥
.
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