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Abstract. In this paper, we introduce the concept of two dimensional pg-convex functions. We establish
several new Hermite-Hadamard inequalities for two dimensional pg-convex functions. Some special cases
are also discussed. Results obtained in this paper can be viewed as significant extensions of the previously
known results.

1. Introduction

Let R be the set of real numbers, I C IR be an interval and f : I — R be a convex function in the classical
sense, i.e. a function that satisfies the inequality

fltx+ (A =Dy) <tf(x)+ (1 =Hf(Yy) (1.1)

whenever x,y € [ and t € [0,1]. Here the domain of the function is a convex set. The notion of convex
functions is very simple and natural and plays an important role in different fields of pure and applied
sciences. Consequently the classical concept of convex functions has been extended and generalized in
different directions using novel and innovative ideas, for example interested readers are referred to [1-
4,7,8,11,13, 14, 16, 17, 19, 20, 29, 30]. It is well known that optimality condition for differentiable convex
(nonconvex) functions can be characterized by some classes of variational inequalities, see for example
[12, 13, 21]. Dragomir [4] considered the Hermite-Hadamard inequalities for convex functions on the
coordinates in rectangle. Thus, it is possible to derive several integral inequalities for two dimensional
(coordinated) convex functions, see [22-29] and the references therein. Many interesting inequalities in
the literature are proved for convex functions. For example extensively studied result which is due to
Hermite [10] and Hadamard [9] that is Hermite-Hadamard’s inequality. This result can be considered as
necessary and sufficient condition for a function to be convex. This inequality has also been extended and
generalized for different classes of generalized convex functions, and refined under additional hypotheses,
see [1, 3-8, 11, 14-20, 22-29].

Motivated and inspired by the research going on in this field, Zhang and Wan [30] introduced and studied
a class of convex function, which is called p-convex functions. Using the concept of p-convex functions,
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we introduce and study some new classes of two dimensional convex functions. This class is called pg-
convex functions. It is shown that the two dimensional pg-convex functions include two dimensional
convex functions [4] as special cases. We also establish several new Hermite-Hadamard inequalities for
two dimensional pg-convex functions. Some special cases are also discussed. Results proved in this paper
continue to hold for these classes of convex functions. The researchers are encouraged to find novel and
innovative applications of pg-convex functions in pure and applied sciences.

2. Preliminaries

In this section, we recall some previously known concepts.

Definition 2.1 ([30]). An interval I is said to be a p-convex set, if

<=

My(x,y;t) = [t + (1 -ty €I, Vx,yel,t€l0,1] (2.1)
wherep =2k+1orp= 1, n=2r+1,m=2t+1andk,r,t€N.

Definition 2.2 ([30]). Let I be a p-convex set. A function f : I — R s said to be p-convex function or belongs to the
class PC(I), if

fMp(x, y;0) < tf () + (1 =)f(y), Yx,y € Lt €[0,1].

It is obvious that for p = 1 Definition 2.2 reduces to the definition for convex functions.

Also note that for = 1 in Definition 2.2, we have Jensen p-convex functions or mid p-convex functions.

AM,(x,1:1/2)) < w Vx,yeLte0,1].

Let us consider a bidimensional interval A = [4,b] X [c,d] € R? witha < band ¢ < d. A function f : A > R
is said to be convex function on A if the following inequality

fitx+ (1 -tz ty+ (1 - tHw) <tf(x, )+ (1 -1 f(z,w),
holds, for all (x, ), (z,w) € A and t € [0, 1]. This is definition is mainly due to Dragomir [4].
A function f : A — Ris said to be convex on A if the partial functions f, : [2,b] = R, f,(u) = f(u, y) and
fr e, d] = R, fi(v) = f(x,v) are convex for all x € [4,b] and y € [c, d].

Definition 2.3 ([4]). Let A = [a,b] X [c,d] C R? be a rectangle. A function f : A — R is said to be two dimensional
(coordinated) convex function, if

fltx+ (1 -ty ru+ (1 -rw)
<trf(x,u) + 1 —n)f(x,w) +r(1 = f(y,u) + A -t)1A -1 f(y,w),
whenever x,y € [a,b], u,w € [c,d] and t,r € [0, 1].

We now introduce the class of two dimensional pg-convex functions, which is one of the main motivations
of this paper.

Definition 2.4. Let A = [a,b] X [c,d] C R? be a rectangle. A function f : A — R, is said to be two dimensional
(coordinated) pq-convex function, if

f(Mp(x1, x2; 1), Mg(y1, y2; 7))
Strf(xg, yn) +H = 1) f(xr, y2) + (1 = ) f(x2, y1) + (1 = (1 = 1) f(x2, ¥2), (2.2)

whenever x1,xy € [a,b], y1,y2 € [c,d] and t,r € [0, 1].
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We now discuss some special cases of Definition 2.4.

L. If p = g, then we have the following new concept.

Definition 2.5. Let A = [a,b] X [c,d] C R? be a rectangle. A function f : A — R, is said to be two dimensional
(coordinated) p-convex function, if

M (x1, x2; 1), Mp(y1, y2; 1)
< trf(xq, y1) + H1 =) f(xn, y2) + (1= 1) f(x2, y1) + (1 = (1 = 1) f(x2, y2).

IL. If p = 1 = g, then Definition 2.4 and Definition 2.5 reduces to Definition 2.3.
This shows that the concept of two dimensional pg-convex functions is quite flexible and unifying one.

3. Main Results

In this section, we discuss our main results.

Theorem 3.1. Let f : A — R be two dimensional pgq-convex function, then

£(Mp(a, b:1/2), My(c, d-1/2))

<—— =@ = —aP) d‘i — ffxp L1 £ (x, y)dydx

< fla,c)+ f(a,d) +f(b,c) + f(b,d)
< 1 .

1

Proof. Let f be two dimensional pg-convex function, then using t = r = 5 and

= (ha? + (1= )VP)F, x5 = (1 = )@ + KbP)7,
= (T + (1= r)d)1, yo = (1 = 1) + r1d?)1,
in (2.2), we have
f(My(a,b;1/2), My(c,d;1/2))
< 7A@ + @ =)}, (net + 1 - ryan?)
+ f((ha” + (1 = 0)B)?, (L = r)e? + rad)7 )

)

+ {((@ = t)a” + 107)F (1 = )t + )]

==

+ £((@ = t)a” + 197, (e + (1= 1))

Integrating above inequality with respect to (t1,71) on [0, 1] X [0, 1], we have

F(Mp(a, b:1/2), My (c, d-1/2))

<—— )@= —aP) dq myry ffxlﬂ Lyi=1 £(x, y)dydx.
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Also for x1 =a, x, = b, y1 = c and y, = d and using the definition of two dimensional pg-convex function,
we have

f(Mp(a, b; 1), My(c,d; 1))
<trf(a,c)+t(l—-nf(a,d)+r(1 =) f(b,c)+ A=) -7r)f(bd),

Integrating both sides of the above inequality with respect to (¢,7) on [0, 1] X [0, 1], we have

f@,0)+ f@a,d + fb,c) + f(b,d)
mffxp Yy f(x, y)dydx < -

This completes the proof. O

Note thatif p = gin Theorem 3.1, then we have the following result for two dimensional p-convex functions.

Corollary 3.1. Let f : A — R be two dimensional p-convex function, then

f (Mp(a, b1 /2), My(c,d;1 /2))

b d
2
p 1 p
<G ) | e v

< fla,c)+ f@a,d)+ f(b,c)+ f(b,d)
< 1 .

Remark 3.1. Ifp =1 = q, then Theorem 3.1 reduces to a result for two dimensional convex functions, see [4].

Lemma 3.2. Let f : A € R?> = R? be partial differentiable function on A = [a, b] X [¢,d] in R?> witha < band ¢ < d.
If 57 € L1(A), then

Wit r;p,9; A)(f)

_ (o —ar) dq‘cq)f f (1-20)(1 - 2152 i = (My(a, b; 1), My(c, d; ),

where
W(t,r;p,q; A)(f)

T A T f(a, 0) + [ ] AT (b, ) + (P17 e T fa, d) + @) ) £ (b, d)
P e 1 e e e T

b b

P ! 2p-2 1 2p-2
_z(bP—a”)[[Cq]—l f R f i f(x,d)dx]

d d

p— L 212 d L 29-2£(p d]
2(bq_aq)[[ i f fla, y)dy + —— ny f,y)dy

b od
2p-22q-2
Y @ =) (o _gp)(dq_cq) ffx P2y 1 f(x, y)dxdy.
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Proof. Consider

1 1
f f (1-20(1-21 55 2f ([mr’+(1—t)bp]%,[rcq+(1—r)dq]%)dtdr.
0 0

This implies

1 1
2
:f(l—Zt){f(l—Zr)ath( taP + (1= HBP]7, [rc" + (1 — 1)d]s )

0 0

Now integrating by parts, we have

1
2
= f =202 L (1 + - o1 e+ (- ) o

Flte + A =010  Fw + (1= HP],d)
Lea]s ™ (@7 - c9) Lan)s ™ @ - 1)

f 3 ([ta” +(1- t)b”]r [red + (1 - r)dq] )
1(dﬂ —cf) [ret + (1 = r)da] "

From (3.1) and (3.2), we have

L f(l 2 at([ta”+( P10

Len) = (7 - 1)

_ 1 [{ fla,c f(b,c) }
LHerpi (@ — LU r —ar) - L[00)7" (o7 — a)

b

2 2
NG _P )2 f S C)dx]'

a

Similarly from (3.1) and (3.2), we have

f(l ot ) at ([tﬂp + ( - t)bp]ﬁ,d)dt
Haa]h @ — )

1 H fad __ fOd }
Lani @ - e LU o —a) - L) 00 — )

b

2 2
NG _p )2 f e d)dx]'

a

&
Il

347

(3.1)

(3.2)

(3.3)

(3.4)
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Also

) ro o B+ (= O [+ (=]
- 1(d'7—C‘7 ff( - [rcq+(1—r)al’4]f1
0 0

— (bP _ﬂp)z dq —cﬂ)q ff 2p-2 2q Zf(x y)dxdy

2pg’ .
- 19,0, o fqu 2f(a, y)dy
[aP] [ (bl’ aP)(d‘i cq) J

2

d
_ 2pq 22 (10 }
[b”]%‘l(bp—ar’)(dq_cq)z ny £, y)dy. o5

(=) (d1=c")

On summation of (3.2), (3.3), (3.4) and (3.5) and multiplying by Ing

completes the proof. [

Remark 3.2. Forp = qin Lemma 3.2, we have a new integral identity for partial differentiable functions on rectangle.
Ifp =1 = gq, then Lemma 3.2 reduces to Lemma 1 [27].

Theorem 3.3. Let f : A € R* — IR? be partial differentiable function on A = [a,b] X [c,d] in R*> with a < b and

c<dand % € Li(A). If % is two dimensional pq-convex function, then
(Wt 7;p, q; A)(f)]
P P
L (O —a)(dT - ) Tgr(a,c)' + Tgr(bfc)| atar(” d)| |9t8r(b d)l
B 16pg 4

2
Proof. Using Lemma 3.2 and the fact that I%I is two dimensional pg-convex, we have

I (t, 7, p, 3; D))

(bP—a”)(dq_Cq)f f (1-26(1 - 2?@5 (M@, b; 1), My(c, d;))ddr

p — 77 q _ M
PG ”)d C)ff|1—2t||1 2 25
P — gP q _ M
Swffu_m_m
4pq X

i
Jtor

o/ ( pla, by 1), My(c, d; r)) didr

92
{tr —f(a c)| + (1 - tyr|=—=

e ®, c)' vid—n|2

tor a D)

Pf
L (1-p- r)’a—(b, d)‘}dtdr

S 0,0) + |55 00| + | @] + |Fhe, d)l]

4

_ (P —aP)(d! - )
B 16pq

This completes the proof. [
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Theorem 3.4. Let f : A C ]R2 — R? be partial differentiable function on A = [a,b] X [c,d] in R* with a < b and
c<dand 2L € Li(A). If

o Mt is two dimensional pg-convex function, where 1 + % =1,a,p>1,then
Wt 75 p,q; A
- (bP — aP)(d? — )
T dpgla+ 1)t
1
Rf 2f B\#
) 220 + |2 w,0f +| 2@ +| 2|

4

Proof. Using Lemma 3.2, Holder’s known inequality and the fact that I%Iﬁ is two dimensional pg-convex
function, we have

[V (t,7;p,q A)(f)l

(bv—avxdq‘cq)f f (1-20(1 - 25 = .l 2 (My(a,b; 1), My(c,d;))dtdr

(bp_ap)d‘?—cq)ffu 2|1 - 2r|
W P) - [ %
—q —C (
(1 -26)(1 - Zr)l“dfd’)
! /

Of ( dtdr

p(a,b;1), My (c, d; 7))

1 NRY
( [taf’+(1—t)bﬂ]ﬁ,[rcuu—r)dﬂ]a) dtdr)ﬁ
(bp_,lp) dq_cq)
e )F
2ao| + || +|m@al + |20, d>\

4
This completes the proof. [J

Theorem 3.5. Let f : A € R? — R? be partial differentiable function on A = [a,b] X [c,d] in R? with a < b and

c<dand % € Li(A). If % ’ is two dimensional pgq-convex function, where p > 1, then
(W (t, 7;p,4; D))
P — gP)(dh — c7) ;1 \1-1
L 114);;71 c )(}1) ;
0.0 + |l + [ f «Jgoof |
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2
Proof. Using Lemma 3.2, power mean inequality and the fact that I%Iﬁ is two dimensional pg-convex
function, we have

[\ (t, 75 p,q; D))

1 1
bP — aP)(d? — ) 7
| EER =D [ =200 - 205 (M0, b0, M i
0 0

W -ad =) _”p) @ = cl) ffu 261 - 2r 5=
1

(bp — ap) (d7 - Cq)(
/

L O —an)d - cq)(
4pq

ol ( p(@,b; 1), My(c, d; r)) dtdr

1-—

=l

I(1-26)(1 - 2r)|dtdr)

o%_

2

1
fl(l 2t)(1 - 2r)| f ([tar’ +(1- t)b”]%, [rc? + (1 - r)dq]%)
0

B B
dtdr)

otar

o%g

1
-5

I(1-26)(1 - Zr)ldtdr)

s
s

1 2f
<[ [1a-200-20{sl5 Lo +a-oiLwof
0

O%H

1

82
+t(1—r)|at @, d)| +(1—t)(1—r)'8 ®, d)| }dtdr)

<W—ww—w@y%
- 4pq 4

atar(“ d)‘ 'atar(b d)’

¢9t¢97 ) ’
16

atar 1, C)’

This completes the proof. [

Remark 3.3. It can be seen that for p = q in Theorems 3.3, 3.4 and 3.5, we have the result for two dimensional
p-convex functions which appears to be new results. Also if p =1 = q, Theorems 3.3, 3.4, 3.5 reduce to the results for
two dimensional convex functions.
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