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Abstract. Let R be a commutative ring with identity. Let M be an R-module and T(M)∗ be the set of
nonzero torsion elements. The set T(M)∗ makes up the vertices of the corresponding torsion graph, ΓR(M),
with two distinct vertices x, y ∈ T(M)∗ forming an edge if Ann(x) ∩ Ann(y) , 0. In this paper we study the
case where the torsion graph ΓR(M) is planar.

1. Introduction

The idea of associating a graph with the zero-divisors of a commutative ring was introduced by Beck
in [10], where the author talked about the colorings of such graphs. He lets every elements of R is a vertex
in the graph, and two vertices x, y are adjacent if and only if xy = 0. In [6], Anderson and Livingston
introduced and studied the zero-divisor graph whose vertices are non-zero zero-divisors while x−y is an
edge whenever xy = 0. Anderson and Badawi also introduced and investigated total graph of commutative
ring in [2, 3]. The concept of zero-divisor graph has been extended to non-commutative rings by Redmond
[18], and has been extended to module by Ghalandarzadeh and Malakooti in [13]. The zero-divisor graph
of a commutative ring and has been studied extensively by several authors [4, 5, 7, 9, 14–16].

Let x ∈M. The residual of Rx by M denoted by [x : M] = {r ∈ R| rM ⊆ Rx}. The annihilator of an R-module
M, denoted by AnnR(M) = [0 : M]. If m ∈M, then Ann(m) = {r ∈ R|rm = 0}. Let T(M) = {m ∈M|Ann(m) = 0}.
It is clear that if R is an integral domain, then T(M) is a submodule of M, which is called torsion submodule
of M. If T(M) = 0, then the module M is said torsion-free, and it is called a torsion module if T(M) = M.

An R-module M is a multiplication module if for every R-submodule K of M there is an ideal I of R such
that K = IM. Note that I ⊆ [N : M], hence N = IM ⊆ [N : M]M ⊆ N. So N = [N : M]M. An R-module M is
called a cancellation module if IM = JM for any ideals I and J of R implies that I = J. Also, an R-module M
is a weak-cancellation module if IM = JM for any ideals I and J of R implies that I + Ann(M) = J + Ann(M).
Finitely generated multiplication modules are weak cancellation, Theorem 3 [1].

Let R be a commutative ring with identity and M be a unitary R-module. In this paper, we investigate
the concept of torsion-graph for module that was introduced by Malakooti and Yassemi in [17]. Here the
torsion graph ΓR(M) of M is a simple graph whose vertices are non-zero torsion elements of M and two
different elements x, y are adjacent if and only if Ann(x)∩Ann(y) , 0. Thus ΓR(M) is an empty graph if and
only if M is a torsion-free R-module. Clearly if R is a domain or Ann(M) , 0, then ΓR(M) is complete. This
study helps to illuminate the structure of T(M), for example, let M � M1 ×M2, if ΓR(M) is a planar graph,
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then |T(M)| = 4. Also, If M is a torsion module and ΓR(M) is a planar graph, then M is both Noetherian and
Artinian.

Recall that a simple graph is finite if its vertices set is finite, and we use the symbol |ΓR(M)| to denote
the number of vertices in graph ΓR(M). Also, a graph G is connected if there is a path between any two
distinct vertices. The distance, d(x, y) between connected vertices x, y is the length of the shortest path from
x to y, (d(x, y) = ∞ if there is no such path). An isolated vertex is a vertex that has no edges incident to
it. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same
subset. The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by Km,n. A graph
in which each pair of distinct vertices is joined by an edge is called a complete graph. We use Kn for the
complete graph with n vertices. The complement G of G is the graph with vertex set V(G) = V(G), and
E(G) = {uv : uv < E(G)}. The complement of a complete graph is the null graph. A graph is said to be
planar if it can be drawn in the plane so that its edges intersect only at their ends. A remarkably simple
characterization of planar graphs was given by Kuratowski in [11], p.153. Kuratowski’s Theorem says that
a graph is planar if and only if it contains no subdivision of K5 or K3,3.

One may address two major problems in this area: characterization of the planar torsion graphs and
realization of the connection between the structures of a module and the corresponding graph. The
organization of this paper is as follows:

In section 2, we study the planar torsion graph of multiplication module, and show that if the torsion
graph of multiplication R-module M is planar, then M is both Noetherian and Artinian.

In section 3, we study the number of maximal submodule of multiplication modules. It is shown that
if ΓR(M) is a planar graph, then |Max(M)| ≤ 4. Also, we show that, if M be a multiplication R-module with
|Max(M)| , 1 and ΓR(M) is a planar graph, then M � M1 ⊕M2

Throughout the paper, Max(M) is a set of the maximal submodules H of M, we use symbol |Max(M)| to
denote the number of maximal submodule of M. As a consequence of Theorem 2.5 [12], for any non-zero
multiplication R-module Max(M) , ∅. Also, let J(R) be the Jacobson radical of R and

J(M) := ∩H∈Max(M)H.

We follow standard notation and terminology from graph theory [11] and module theory [8].

2. Planar Torsion Graph

This section is concerned with some basic and important results in the theory of planar torsion graphs
over a module.

Lemma 2.1. Let M be a multiplication R-module. If ΓR(M) is a planar graph, then Ann(N) , 0 for all prime
submodules N of M.

Proof. Let N be a prime submodule of M such that Ann(N) = 0. So there exists 0 , x ∈ M such that
x < H. If x = αx for some α ∈ [N : M], then (1 − α)x = 0 ∈ N. Thus (1 − α) ∈ [N : M], which is a
contradiction. Hence x , αx for all α ∈ [N : M]. Suppose [N : M]ix = [N : M] jx for all integer 0 < i < j, then
R = [N : M] j−i + Ann([N : M]ix). Let r[N : M]ix = 0, thus r[N : M]i−1[x : M]N = 0. Since [N : M]M = N and
Ann(N) = 0, we have r[x : M] = 0. Therefore

Rx = [N : M] j−ix + Ann([N : M]ix)x = [N : M] j−ix ⊆ [N : M]x ⊆ Rx.

Which is a contradiction, and so [N : M]ix , [N : M] jx for all 0 < i < j. Hence

[N : M]4x ⊂ [N : M]3x ⊂ [N : M]2x ⊂ [N : M]x ⊂ Rx,

then there are five distinct vertices that form K5 as an induced subgraph, which is a contradiction. This
contradiction leads to the conclusion that Ann(N) , 0.
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Proposition 2.2. Let M be an R-module with [x : M] , 0 for some x ∈ T(M)∗. ΓR(M) is null if and only if
M � M1 ⊕M2 with |M| ≤ 4.

Proof. Let x be a vertex of ΓR(M) such that [x : M] , 0. Since ΓR(M) is null, one can easily check that
Rx = {0, x}. Hence x = αx or αx = 0 for all non-zero elements α ∈ [x : M]. If x = αx, then R = Rα + Ann(x).
Thus M = Rx + Ann(x)M. Suppose that y ∈ Rx ∩ Ann(x)M. Then y = rx =

∑n
i=1 αimi for some r ∈ R,

αi ∈ Ann(x) and mi ∈M. Hence

y = rx = rαx =

n∑
i=1

αimiα ⊆ Ann(x)x = 0.

Therefore M = Rx ⊕ Ann(x)M with |Rx| = 2. Let y, z ∈ Ann(x)M. So 0 , α ∈ Ann(z) ∩ Ann(y), implies
that y = z or y = 0 or z = 0. Therefore |Ann(x)M| = 2. Suppose αx = 0 and 0 , m ∈ M. If αm = 0,
then α ∈ Ann(x) ∩ Ann(m). Hence m = x ∈ Rx. Now if αm , 0, since αm ∈ Rm = {0,m}, we have
m = αm ∈ Rx = {0, x}, so M = Rx with |Rx| = 2.

Corollary 2.3. Let M be a multiplication R-module. ΓR(M) is null if and only if M � M1 ⊕M2 with |M1| ≤ 2 and
|M2| ≤ 2.

Let M1 be an R1-module and M2 an R2-module; then M = M1 ×M2 is an R = R1 × R2 module with this
multiplication R ×M −→M, defined by (r1, r2)(m1,m2) = (r1m1, r2m2).

Theorem 2.4. ΓR(M1 ×M2) is planar if and only if one of ΓR(M1) or ΓR(M2) is empty and another is null.

Proof. Let ΓR(M1) not be null and ΓR(M2) not be empty. So there exist x1, x2 ∈ T(M1)∗ and y ∈ T(M2)∗ such
that x1 is adjacent to x2. Hence there is 0 , s ∈ Ann(x1) ∩ Ann(x2). It follows that

(0, s) ∈ Ann((x1, 0)) ∩ Ann((x2, 0)) ∩ Ann((x1, y)) ∩ Ann((x2, y)) ∩ Ann((0, y)).

So ΓR(M1 ×M2) has a K5 as an induced subgraph, which is a contradiction. Therefore one of ΓR(M1) or
ΓR(M2) is empty and another is null.

As an immediate consequence, we obtain the following results.

Corollary 2.5. If ΓR(M1 ×M2) is planar, then |T(M)| = 4.

Corollary 2.6. ΓR(M1 ×M2 ×M3) is planar if and only if Mi is a simple Ri module for i ∈ {1, 2, 3}.

Proof. Let ΓR(M1 × M2 × M3) be a planar graph and M3 not be a simple R3- module. So there exists
0 , N < M3. Suppose 0 , x ∈ M3 such that x < N and let y ∈ N. By Theorem 2.4, ΓR(M2 ×M3) is null or
empty. But (1, 0) ∈ Ann((0, x)) ∩ Ann((0, y)), which is a contradiction. Therefore Mi is a simple Ri module
for i ∈ {1, 2, 3}.

Theorem 2.7. Let M be a multiplication R-module. If ΓR(M) is a planar graph, then M is both Noetherian and
Artinian.

Proof. Let N1 ⊂ N2 ⊂ N3 ⊂ N4 ⊂ N5 be a chine of nontrivial proper submodule of M. Then there is distinct
element xi ∈ Ni, 1 ≤ i ≤ 5. By Theorem 2.5 of [12], M has a maximal submodule H such that N5 ⊆ H.
Then Ann(H) ⊆ Ann(N5) and by Lemma 2.1, 0 , Ann(H) ⊆ Ann(N5). Thus Ann(xi) ∩ Ann(x j) , 0 for all
distinct element i, j ∈ {1, 2, . . . , 5}. So xi, 1 ≤ i ≤ 5 form K5 as an induced subgraph, which is a contradiction.
Therefore M is both Noetherian and Artinian.

Corollary 2.8. Let M be a multiplication R-module. If ΓR(M) is a planar graph, then M is cyclic.

Proof. Let ΓR(M) be a planar graph. By Proposition 2.7, M is an Artinian module. And so by Corollary 2.9
of [12], M is a cyclic R-module.
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3. ΓR(M) and Maximal Submodules of Multiplication Module

Our theorems in this section are somewhat more delicate in their characterization of a multiplication
R-module.

Proposition 3.1. Let M be a multiplication R-module. If ΓR(M) is a planar graph, then 1 ≤ |Max(M)| ≤ 4.

Proof. Let ΓR(M) be a planar graph. Suppose |Max(M)| ≥ 5 and H1,H2, . . .H5 be distinct maximal submodules
of M, such that H1 ∩ H2 ∩ H3 ∩ H4 = 0. Then [H1 : M][H2 : M][H3 : M]H4 = 0 ⊆ H5. Sine every maximal
submodule of multiplication modules is prime, we have [H1 : M][H2 : M][H3 : M] ⊆ [H5 : M]. One can
easily check that [H5 : M] is a prime ideal of R. Hence [Hi : M] = [H5 : M] for some i ∈ {1, 2, 3, 4}. It follows
that Hi = H5 for some i ∈ {1, 2, 3, 4}, which is a contradiction. Therefore H1 ∩H2 ∩H3 ∩H4 , 0. Hence

H1 ∩H2 ∩H3 ∩H4 ⊂ H1 ∩H2 ∩H3 ⊂ H1 ∩H2 ⊂ H1

and
H1 ∩H2 ∩H3 ∩H4 ⊂ H1 ∩H2 ∩H4 ⊂ H1 ∩H2 ⊂ H1.

Thus there are distinct elements x1 ∈ H1, x2 ∈ H1 ∩ H2, x3 ∈ H1 ∩ H2 ∩ H3, x4 ∈ H1 ∩ H2 ∩ H4 and
x5 ∈ H1 ∩ H2 ∩ H3 ∩ H4. By Lemma 2.1, Ann(H1) , 0. It implies that xi, 1 ≤ i ≤ 5 form K5 as an induced
subgraph, which is a contradiction. Therefore |Max(M)| ≤ 4.

Proposition 3.2. Let M be a multiplication R-module with |Max(M)| = 4 and ΓR(M) be planar then M � M1 ⊕M2.

Proof. Let Hi, 1 ≤ i ≤ 4 be distinct maximal submodules of M. Suppose that H1 ∩ H2 ∩ H3 ∩ H4 , 0. It is
clear that

H1 ∩H2 ∩H3 ∩H4 ⊂ H1 ∩H2 ∩H3 ⊂ H1 ∩H2 ⊂ H1

and
H1 ∩H2 ∩H3 ∩H4 ⊂ H1 ∩H2 ∩H4 ⊂ H1 ∩H2 ⊂ H1.

Thus there are distinct elements x1 ∈ H1, x2 ∈ H1 ∩ H2, x3 ∈ H1 ∩ H2 ∩ H3, x4 ∈ H1 ∩ H2 ∩ H4 and
x5 ∈ H1 ∩ H2 ∩ H3 ∩ H4. By Lemma 2.1, Ann(H1) , 0. It follows that xi, 1 ≤ i ≤ 5 form K5 as an induced
subgraph, which is a contradiction. So H1 ∩ H2 ∩ H3 ∩ H4 = 0. Let H1 ∩ H2 ∩ H3 ⊆ H4. It follows that
[H1 : M][H2 : M]H3 ⊆ H4. Since H3 is a maximal submodule of M, we have [H1 : M] ⊆ [H4 : M] or
[H1 : M] ⊆ [H4 : M]. Therefore H1 = H4 or H2 = H4, which is a contradiction. Hence H1 ∩ H2 ∩ H3 * H4.
Consequently M = H1 ∩H2 ∩H3 ⊕H4.

Corollary 3.3. Let M be a multiplication R-module with |Max(M)| = 4. Then ΓR(M) is a planar graph if and only if
M � M1 ×M2 ×M3 where Mi is a simple R module for i ∈ {1, 2, 3}

Proof. Let ΓR(M) is a planar graph. By Proposition 3.7, M � M1 ×M2. And by Theorem 2.4, M1 or M2 is
empty another is null. Then by Corollary 2.3, M � M1×M2×M3 and by Corollary 2.6, the result follows.

Theorem 3.4. Let M be a multiplication R-module with |Max(M)| = 3. Then ΓR(M) is a planar graph if and only if
M � M1 ⊕M2 such that ΓR(M1) or ΓR(M2) is empty another is null.

Proof. Let Hi, 1 ≤ i ≤ 3 be distinct maximal submodules of M. First suppose that [H1 : M]H1 ∩ [H2 :
M]H2 ∩ [H3 : M]H3 , 0. Then H1 ∩ H2 ∩ H3 , 0. It is clear that H1 ∩ H2 ∩ H3 ⊂ H1 ∩ H2 ⊂ H1 and
H1 ∩ H2 ∩ H3 ⊂ H1 ∩ H3 ⊂ H1. So there are distinct elements x1 ∈ H1, x2 ∈ H1 ∩ H2, x3 ∈ H1 ∩ H3 and
x ∈ H1 ∩ H2 ∩ H3 such that x1, x2, x3 < H1 ∩ H2 ∩ H3. If [x : M]x = Rx, then R = [x : M] + Ann(x). One
can easily check that M = Rx ⊕ Ann(x)M and by Theorem 2.4, ΓR(Rx) or ΓR(Ann(x)M) is empty another is
null. Let [x : M]x , Rx. Then x , αx for all α ∈ [x : M]. It follows that αx < {x, x1, x2, x3}. By Lemma
2.1, Ann(H1) , 0. Therefore x, αx, x1, x2, x3 form K5 as an induced subgraph, which is a contradiction. So
[H1 : M]H1∩ [H2 : M]H2∩ [H3 : M]H3 = 0. Assume [H1 : M]H1 + [H2 : M]H2∩ [H3 : M]H3 , M. By Theorem
2.5 of [12], M has a maximal submodule H such that [H1 : M]H1 + [H2 : M]H2 ∩ [H3 : M]H3 ⊆ H. One can
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easily check that H , H2 and H , H3. Let H = H1. Then [H1 : M]H1 + [H2 : M]H2 ∩ [H3 : M]H3 ⊆ H1, that
is [H2 : M]2[H3 : M]2

⊆ [H1 : M]. Since [H1 : M] is a prime ideal of R, we have [H2 : M] ⊆ [H1 : M] or
[H3 : M] ⊆ [H1 : M], that is H2 = H1 or H3 = H1, which is a contradiction. So [H1 : M]H1 + [H2 : M]H2 ∩ [H3 :
M]H3 = M. Consequently M � M1 ⊕M2 and by Theorem 2.4, the result follows.

Lemma 3.5. Let M be a faithful finitely generated multiplication R-module. Then J(R)M = J(M).

Proof. Let M be a faithful finitely generated multiplication R-module and H be a maximal submodule of
M. By Theorem 3.1 of [12], hM , M for all maximal ideal h of M. Also, by Theorem 2.5 of [12], H = hM for
some maximal ideal h of M. On the other hand by Lemma 3.5,

J(M) = ∩H∈Max(M)H = ∩h∈Max(R)(hM) = (∩h∈Max(R)h)M = J(R)M

Theorem 3.6. Let M be a multiplication R-module with |Max(M)| = 2. Then ΓR(M) is a planar graph if and only
if M � [H1 : M]4M ⊕ [H2 : M]4M such that ΓR([H1 : M]4M) or ΓR([H1 : M]4M) is empty another is null, where
H1,H2 are maximal submodule of M.

Proof. Let H1 and H2 be distinct maximal submodules of M. Suppose that [H1 : M]4M + [H2 : M]4M , M.
By Theorem 2.5 of [12], there is a maximal submodule H of M such that [H1 : M]4M + [H2 : M]4M ⊆ H.
Since |Max(M)| = 2, we have H = H1 or H = H2. It follows that [H1 : M]4M ⊆ H2 or [H2 : M]4M ⊆ H1. Thus
H1 = H2, which is a contradiction. So M = [H1 : M]4M + [H2 : M]4M. Assume [H1 : M]4M∩ [H2 : M]4M , 0.
Hence H1 ∩ H2 , 0. If M is not a faithful. Then ΓR(M) is a complete graph and by Corollary 2.8, there
are non-zero distinct elements x, y, z,w ∈ M such that M = Rx, H1 = Ry, H2 = Rz and H1 ∩ H2 = Rw. It is
clear that y + w < {x, y, z,w}, thus x, y, z,w, y + w form K5 as an induced subgraph, which is a contradiction.
Therefore M is a faithful R-module. On the other hand By Theorem 1.6 [12],

[H1 : M]iM ∩ [H2 : M]iM = ([H1 : M]i
∩ [H2 : M]i)M,

for all positive integer i. Since M is a cyclic faithful multiplication module, by Lemma 3.5, we have
J(R)M = J(M). Now Nakayama’s lemma follows that

([H1 : M]4
∩ [H2 : M]4)M ⊂ . . . ⊂ ([H1 : M] ∩ [H2 : M])M ⊂ H1.

Hence there exist distinct elements x1 ∈ H1, x2 ∈ [H1 : M]M ∩ [H2 : M]M, x3 ∈ [H1 : M]2M ∩ [H2 : M]2M,
x4 ∈ [H1 : M]3M ∩ [H2 : M]3M and x5 ∈ [H1 : M]4M ∩ [H2 : M]4M. By Lemma 2.1, Ann(H1) , 0. It follows
that xi, 1 ≤ i ≤ 5 form K5 as an induced subgraph, which is a contradiction. Therefore [H1 : M]4M ∩ [H2 :
M]4M = 0. Consequently M � [H1 : M]4M ⊕ [H2 : M]4M and by Theorem 2.4, the result follows.

Proposition 3.7. Let M be a multiplication R-module with |Max(M)| = 1. If ΓR(M) is a planar graph then |M| ≤ 5
or [H : M]5M = 0 where H is a maximal submodule of M.

Proof. Suppose M be a faithful multiplication R-module. By Lemma 3.5, R is a local ring with unique
maximal ideal [H : M]. By Nakayama’s lemma, we have [H : M]iM , [H : M] jM for all positive integer
i , j. Since ΓR(M) is a planar graph then [H : M]5M = 0. If M is not faithful, then ΓR(M) is a complete graph.
Hence |M| ≤ 5.

Now we obtain the central results of this section.

Corollary 3.8. Let M be a multiplication R-module with |Max(M)| , 1. If ΓR(M) is a planar graph, then M �
M1 ⊕M2
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