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Abstract. We derive conditions for the existence and investigate representations of {2, 4} and {2, 3}-
inverses with prescribed range T and null space S. A general computational algorithm for {2, 4} and
{2, 3} generalized inverses with given rank and prescribed range and null space is derived. The algorithm is
derived generating the full-rank representations of these generalized inverses by means of various complete
orthogonal matrix factorizations. More precisely, computational algorithm for {2, 4} and {2, 3}-inverses of
a given matrix A is defined using an unique approach on SVD, QR and URV matrix decompositions of
appropriately selected matrix W.

1. Introduction and Preliminaries

Let Cm×n and Cm×n
r denote the set of all complex m × n matrices and all complex m × n matrices of rank

r, respectively. I denotes the unit matrix of an appropriate order. By A∗, R(A), rank(A) andN(A) we denote
the conjugate transpose, the range, the rank and the null space of A ∈ Cm×n.

The problem of calculating generalized pseudoinverses is narrowly related with the four Penrose equa-
tions

(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA.

It is usual convention to denote by A{S} the set of all matrices obeying the conditions contained inS. In this
regard, any matrix from A{S} is called S-inverse of A and it is denoted by A(S). By A{S}s we denote the set
of all S-inverses of A with rank s. The Moore-Penrose inverse of A is a single element in the set A{1, 2, 3, 4}
and it is denoted by A†. For other important properties of generalized inverses see [1, 21].

The set of outer (or {2}-inverses) with prescribed range and null space is very important and frequently
investigated. If A ∈ Cm×n

r , T is a subspace of Cn of dimension s ≤ r and S is a subspace of Cm of dimension
m− s, then A has a {2}-inverse X such that R(X) = T andN(X) = S if and only if AT ⊕ S = Cm, in which case
X is unique and we denote it by A(2)

T,S.

Full-rank representation of {2}-inverses with prescribed range and null space is determined in the next
proposition, which is originated in [12].
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Proposition 1.1. [12] Let A ∈ Cm×n
r , T be a subspace of Cn of dimension s ≤ r and let S be a subspace of Cm of

dimensions m − s. In addition, suppose that W ∈ Cn×m satisfies R(W) = T,N(W) = S. Let W has an arbitrary
full-rank decomposition, that is W = FG. If A has a {2}-inverse A(2)

T,S, then:
(1) GAF is an invertible matrix;
(2) A(2)

T,S = F(GAF)−1G.

There exist many full-rank representations for different generalized inverses of prescribed rank [4, 6, 11–
14, 17]. A generalization of known representations for {2, 3}, {2, 4}-inverses of prescribed rank from [1] is
introduced in [20]. In Proposition 1.2 we reduce known results from [20] to constant complex matrices.

Proposition 1.2. [20] Let A ∈ Cm×n
r and 0 < s ≤ r, m1,n1 ≥ s be chosen integers. Then the following general

representations for {2, 4} and {2, 3}-inverses of prescribed rank are valid:

(a) A{2, 4}s =
{
(GA)†G| G ∈ Cn1×m, GA ∈ Cn1×n

s

}
.

(b) A{2, 3}s =
{
F(AF)†| F ∈ Cn×m1 , AF ∈ Cm×m1

s

}
.

Proposition 1.3 from [16] exactly distinguishes sets A{2, 4}s and A{2, 3}s as two proper subsets of the set
A{2}s.

Proposition 1.3. [16] Let A∈Cm×n
r be the given matrix and 0< s≤ r a chosen integer. Assume that G ∈ Cs×m

s and
F ∈ Cn×s

s are two arbitrary matrices satisfying rank(GA) = rank(G) and rank(AF) = rank(F). Then the following
statements are valid:

(a) A{2, 4}s =
{
(GA)∗ (GA(GA)∗)−1 G | G ∈ Cs×m

s , GA ∈ Cs×n
s

}
;

(b) A{2, 3}s =
{
F ((AF)∗AF)−1 (AF)∗ | F ∈ Cn×s

s , AF ∈ Cm×s
s

}
;

The Moore-Penrose inverse A†, The weighted Moore-Penrose inverse A†M,N, The Drazin inverse AD and

the group inverse A# are particular appearances of the generalized inverses A(2)
T,S for appropriate choices of

the matrix W which is exploited in Proposition 1.1. More precisely, these pseudo-inverses can be derived in
particular cases W = A∗, W = A] = N−1A∗M, W = Al, l ≥ ind(A) and W = A, respectively (see, for example
[1]). In [16] we investigate representations and computation of {2, 4} and {2, 3}-inverses with prescribed
range and null space.

Proposition 1.4. [16] For arbitrary matrix A ∈ Cm×n
r and arbitrary integer s satisfying 0 < s ≤ r we have

(a) A{2, 4}s =
{
A(2,4)
N(GA)⊥,N(G)| G ∈ C

s×m
s , rank(GA) = rank(G)

}
(1.1)

(b) A{2, 3}s =
{
A(2,3)
R(F),R(AF)⊥ | F ∈ C

n×s
s , rank(AF) = rank(F)

}
. (1.2)

Various representations of {2, 3} and {2, 4}-inverses with prescribed range and null space has been
investigated [2, 5, 12, 24, 25]. The expressions for {2, 3} and {2, 4}-inverses of a normal matrix by its
Schur decomposition are discussed in [26]. But, these representations are not exploited in developing
of some effective computational procedures. Additionally, the general representations of {2, 4} and {2, 3}-
inverses of the form (GA)†G and F(AF)†, respectively, are not widely exploited in the literature. we can
emphasize the effective numerical methods from [13], which are based on several modifications of the
hyper-power method. Effective full-rank representations of the sets A{2, 4}s and A{2, 3}s as particular cases
of the full-rank representation of the set A{2}s are derived in [16]. Introduced full-rank representations
enable adaptation of well-known algorithms for computing outer inverses with prescribed range and null
space into corresponding algorithms for computing {2, 4} and {2, 3}-inverses. Corresponding adaptation of
the successive matrix squaring algorithm from [15] is developed in the paper [16]. In the present paper we
continue and expand the results from [18, 19].
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The results derived in the present paper can be divided in two parts. Firstly, we derive several additional
results concerning representations of {2, 4} and {2, 3}-inverses. Later, using these representations, we derive
numerical algorithms for computing {2, 4} and {2, 3}-inverses. More precisely, we observe that derived
representations are matrix expressions (GA)†G, F(AF)† involving generalized inverse of a matrix product.
For this purpose we define and exploit SVD, QR and URV matrix decompositions adopted for the matrix
product and later compute its generalized inverse. In this way, we define algorithms for computing {2, 4}
and {2, 3}-inverses based on these SVD, QR and URV decompositions.

The paper is organized as follows. Necessary and sufficient conditions which ensure that an arbitrary
{2, 4} and {2, 3}-inverse represents an inverse with prescribed range T and null space S are considered in the
second section. Various representations of {2, 4} and {2, 3}-inverses arising from matrix decompositions are
introduced and investigated in the third section. Algorithm arising from defined representations is given
in Section 4. Numerical examples are presented in the last section.

2. Representations of {2,4} and {2,3}-inverses with Prescribed Range and Null Space

The next statements from [1] are used as auxiliary results.

Proposition 2.1. 1. If the matrix F in the matrix product A = FBG is of full-column rank and G is of full-row rank,
then rank(A) = rank(B).

2. R(AB) = R(A) if and only if rank(AB) = rank(A) andN(AB) = N(B) if and only if rank(AB) = rank(B).
3. A† = (A∗A)† A∗ = A∗ (AA∗)†.
4. N(A) = R(A∗)⊥,N(A∗) = R(A)⊥.

In Lemma 2.1 we derive conditions for the existence and representations of {2, 4} and {2, 3}-inverses
which continue corresponding results from [3, Lemma 3.3].

Lemma 2.1. Let A ∈ Cm×n
r be given m × n matrix of rank r and 0 < s ≤ r is selected integer. Assume that T is a

subspace of Cn of dimension s ≤ r and S is a subspace of Cm of dimensions m − s. Let G ∈ Cs×m
s be an arbitrary

matrix satisfying N(G) = S and rank(GA) = rank(G) = s. Then {2, 4}-inverse X := (GA)†G satisfies X = A(2,4)
T,S

with R(X) = T,N(X) = S if and only ifN(GA) = T⊥ or T = R(A∗G∗).

Proof. According to Proposition 1.3 and Proposition 1.1 we get

(GA)†G = (GA)∗ (GA(GA)∗)−1 G = A(2,4)
N(GA)⊥,N(G).

Now, we conclude X := A(2,4)
N(GA)⊥,N(G) = A(2,4)

T,S if and only if N(GA)⊥ = T or N(GA) = T⊥. The proof can be
completed using part 4 from Proposition 2.1.

The proof of dual Lemma 2.2 is similar and will be omitted.

Lemma 2.2. Let A ∈ Cm×n
r be given m × n matrix of rank r and 0 < s ≤ r is selected integer. Assume that T is

a subspace of Cn of dimension s ≤ r and S is a subspace of Cm of dimensions m − s. Let F ∈ Cn×s
s be an arbitrary

matrix satisfying R(F) = T and rank(AF) = rank(F) = s. Then {2, 3}-inverse X := F(AF)† satisfies X = A(2,3)
T,S with

R(X) = T,N(X) = S if and only if R(AF) = S⊥ or S = N(F∗A∗).

Comparing Proposition 1.1 with Proposition 1.3 we conclude :
- {2, 4}-inverses are subset of outer inverses generated by the choice W = (GA)∗G, i.e. F = (GA)∗.
- {2, 3}-inverses are subset of outer inverses generated by the choice W = F(AF)∗, i.e. G = (AF)∗.

In the next statement it is shown that {2, 4}-inverses can be generated using only the matrix G and
{2, 3}-inverses can be generated using only the matrix F.
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Lemma 2.3. Let A∈ Cm×n
r and W ∈ Cn×m satisfies R(W) = T,N(W) = S.

(a) In the case W = (GA)∗G we have
(WA)†W = (GA)†G.

(b) In the case W = F(AF)∗ we have
W(AW)† = F(AF)†.

Proof. The proof can be derived using the property 3 of the Moore-Penrose inverse from Proposition 2.1.

3. Computing {2,4} and {2,3}-inverses by Matrix Factorizations

In this section we derive numerical methods for computation of {2, 4} and {2, 3}-inverses using their
general representations from the previous section and various matrix factorizations.

A complete orthogonal factorization of an m × n matrix A of rank r is any factorization of the form

A = U
[

T 0
0 0

]
V∗,

where T is r × r square nonsingular matrix [9]. In the present paper we exploit three appearances of the
complete orthogonal factorization: the singular value decomposition (SVD), QR decomposition (QRD) and
the URV decomposition (URVD).

Let A ∈ Cm×n
r be given and 0 < s ≤ r be a chosen integer. Suppose that the matrix W ∈ Cn×m

s is chosen
using the rules from Proposition 1.1. Also, let the SVD factorization of W is of the general form

W = UΣV∗, (3.1)

where U ∈ Cn×n and V ∈ Cm×m are column-orthogonal and Σ ∈ Cn×m
s is a diagonal matrix with the singular

values of W in descent order on the main diagonal. Suppose that the nonzero singular values of W are
ordered as

σ1 ≥ σ2 ≥ · · · ≥ σs. (3.2)

As it is known, SVD decomposition (3.1) is not a full-rank factorization of W. In order to generate the
full-rank factorization of W arising from (3.1), let us consider the matrices U ∈ Cn×n, V ∈ Cm×m and Σ ∈ Cn×m

partitioned in appropriate blocks

U =
[

Us UR

]
, V =

[
Vs VR

]
, Σ =

[
Σs O
O O

]
, (3.3)

where Us ∈ Cn×s, Vs ∈ Cm×s and Σs = diag {σ1, . . . , σs}. Then the compact SVD of W

W = UsΣsV∗s (3.4)

is its full-rank factorization.
Suppose that the QR factorization of W as in Theorem 3.3.11 from [22] is of the form

W = QRP∗, (3.5)

where P is an m × m permutation matrix, Q ∈ Cn×n, Q∗Q = In and R ∈ Cn×m
s is an upper triangular matrix.

Assume that P is chosen so that Q and R can be partitioned as

Q =
[

Qs QR

]
, R =

[
Rs
O

]
, (3.6)
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where Qs (resp. Rs) consists of the first s columns of the matrix Q (resp. R). The columns of Qs form an
orthonormal basis for R(W) and the columns of QR an orthonormal basis forN(W∗) (see [10, 21]).

URV decomposition of the matrix W ∈ Cn×m
s , s ≤ r:

W = URV∗ = U
[

C O
O O

]
V∗, (3.7)

where
U =

[
Us UR

]
∈ Cn×n, V =

[
Vs VR

]
∈ Cm×m

are orthogonal matrices and C ∈ Cs×s is invertible. The matrices Us and Vs is generated from the first s
columns of U and V, respectively. The columns of Us form an orthonormal basis for R(W) and the columns
of UR an orthonormal basis for N(W∗). The columns of Vs form an orthonormal basis for R(W∗) and the
columns of VR an orthonormal basis for N(W) (see [8] pages 406, 407). Therefore, using known properties
of the matrix Qs from the QR decomposition, it is possible to conclude Qs ≡ Us.

Since, as said above, the matrix U satisfies U∗U = I we have[
U∗s
U∗R

] [
Us UR

]
=

[
U∗sUs U∗sUR
U∗RUs U∗RUR

]
= I

and so, U∗sUR = U∗RUs = O, U∗sUs = U∗RUR = I. Similarly, one can verify identities V∗sVR = V∗RVs = O,
V∗sVs = V∗RVR = I.

In this case,

W = Us(CV∗s) = QsCV∗s (3.8)

is a full–rank factorization of W which is based on its URV decomposition (3.7).

3.1. Computing {2,4} and {2,3}-inverses by SVD Factorization

Lemma 3.1. Assume that the matrix A ∈ Cm×n
r is given and 0 < s ≤ r is a selected integer. Assume that T is a

subspace of Cn of dimension s ≤ r and S is a subspace of Cm of dimensions m− s. Let G ∈ Cs×m
s be an arbitrary matrix

satisfyingN(G) = S,N(GA) = T⊥ and rank(GA) = rank(G) = s. Let

GA = UsΣsV∗s , Σs = diag (σ1, . . . , σs) (3.9)

be the compact SVD of GA. Then

A(2,4)
T,S = Vs diag

(
σ−1

1 , . . . , σ
−1
s

)
U∗s G. (3.10)

Proof. Using known SVD representation of the Moore-Penrose inverse we obtain

Vs diag
(
σ−1

1 , . . . , σ
−1
s

)
U∗s G = (GA)†G.

According to Lemma 2.1 we get
(GA)†G = A(2,4)

N(GA)⊥,N(G) = A(2,4)
T,S ,

which is a verification of the identity (3.10).

Lemma 3.2. Assume that the matrix A ∈ Cm×n
r is given and 0 < s ≤ r is a selected integer. Assume that T is a

subspace of Cn of dimension s ≤ r and S is a subspace of Cm of dimensions m− s. Let F ∈ Cn×s
s be an arbitrary matrix

satisfying R(F) = T, R(AF) = S⊥ and rank(AF) = rank(F) = s. Let

AF = UsΣsV∗s , Σs = diag (σ1, . . . , σs) (3.11)

be the compact SVD of AF. Then

A(2,3)
T,S = F Vsdiag

(
σ−1

1 , . . . , σ
−1
s

)
U∗s. (3.12)



B. I. Shaini / Filomat 30:2 (2016), 403–418 408

In Theorem 3.1 we show that {2, 4} and {2, 3}-inverses of prescribed range and null space can be computed
without computation of the SVD of the matrix products GA or AF, respectively.

Theorem 3.1. Let A∈Cm×n
r be the given matrix and s ≤ r be a given integer.

(a) Let G be s × m matrix of rank s satisfying rank((GA)∗G) = s and (3.4) be the full-rank factorization of
W = (GA)∗G∈Cn×m

s implied by the compact SVD of W. Then the following statements hold:

A(2,4)
N(GA)⊥,N(G) = A(2,4)

R(Us),N(V∗s )

= Us(ΣsV∗sAUs)−1ΣsV∗s
= (WA)†W

= (GA)†G ∈ A{2, 4}s.

(3.13)

(b) Let F be n × s matrix of rank s satisfying rank(F(AF)∗) = s. If (3.4) is a full–rank factorization of W =
F(AF)∗∈Cn×m

s the following statements are valid:

A(2,3)
R(F),N(AF)⊥ = A(2,3)

R(Us),N(V∗s )

= Us(ΣsV∗sAUs)−1ΣsV∗s
= W(AW)†

= F(AF)† ∈ A{2, 3}s.

(3.14)

Proof. (a) In this case we have
W = Us(ΣsV∗s) = (GA)∗G,

so that
R(W) = R(Us) = R((GA)∗) = N(GA)⊥,
N(W) = N(ΣsV∗s) = N(V∗s) = N(G).

Later, the identities rank(ΣsV∗s) = rank(ΣsV∗sA) = s are satisfied. Therefore, conditions from the part (3) of
Lemma 3.3 from [3] are satisfied, which implies

A(2)
N(GA)⊥,N(G) = Us(ΣsV∗sAUs)−1ΣsV∗s .

Since ΣsV∗sAUs is a full-rank factorization of the invertible matrix ΣsV∗sAUs the reverse order low of the
Moore-Penrose inverse is applicable, which implies

A(2)
N(GA)⊥,N(G) = (ΣsV∗sA)†ΣsV∗s ∈ A{2, 4}s.

This part of the proof can be completed using

(ΣsV∗sA)†ΣsV∗s = (UsΣsV∗sA)†UsΣsV∗s
= (WA)†W

= ((GA)∗GA)† (GA)∗G

= (GA)†
(
GA(GA)†

)∗
G

= (GA)†GA(GA)†G

= (GA)†G.

(b) This part of the proof can be verified in a similar way, using the part (2) of Lemma 3.3 from [3].
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A combined SVD of two matrices of identical dimensions has been introduced with the motivation to
avoid explicit computation of matrix products and quotients in the computation of the SVD of some matrix
products and quotients. It is possible to use the combined SVD to compute {2, 3}-inverses of A ∈ Cm×n

r of
the form F(AF)†, where F ∈ Cn×s, AF ∈ Cm×s

s . Instead of computation of the matrix product AF it seems
more appropriate to use a proper combination of truncated factorization of A of the order s

As = UA
s ΣA

s V∗s = UA
s diag

(
σA

1 , . . . , σ
A
s

)
V∗s (3.15)

and compact SVD of F∗:

F∗ = UF
s ΣF

s V∗s = UF
s diag

(
σF

1 , . . . , σ
F
s

)
V∗s . (3.16)

In Theorem 3.2 we investigate further properties of the thin Moore-Penrose inverse
(
A†

)
s
, which is

introduced in [7].

Theorem 3.2. Under the assumptions of Theorem 3.1 the following statements are valid:

A†s =
(
A†

)
s

= A(2,3)

R(Vs),R(UF
s )
⊥ ∈ As{2, 3}s.

Proof. Using (3.15) and (3.16) we have

AsF = UA
s ΣA

s

(
ΣF

s

)∗ (
UF

s

)∗
= UA

s diag
(
σG

1 σ
A
1 , . . . , σ

G
1 σ

A
s

) (
UF

s

)∗
.

This further implies

A†s = Vs diag

 1
σA

1

, . . . ,
1
σA

s

 (UA
s

)∗
= Vs diag

(
σF

1 , . . . , σ
F
s

) (
UF

s

)∗
UF

s diag

 1

σF
1σ

A
1

, . . . ,
1

σF
s σ

A
s

 (UA
s

)∗
= F(AsF)†.

The proof can be completed using R(F) = R(Vs), N(F) = N
((

UF
s

)∗)
= R

(
UF

s

)⊥
.

3.2. Computing {2,4} and {2,3}-inverses by QR Factorization
Proposition 3.1. [19] The following two statements are valid:

Qs(RsP∗AQs)−1RsP∗ = A(2)
R(W),N(W) = A(2)

R(Qs),N(RsP∗)
(3.17)

= Qs(Q∗sWAQs)−1Q∗sW. (3.18)

Theorem 3.3. Let A ∈ Cm×n
r be the given matrix, s ≤ r be a given integer and the matrices F,G are chosen as in

Proposition 1.2.
(a) If (3.5) is a full–rank factorization of W = (GA)∗G ∈ Cn×m

s the following is satisfied:

Qs(RsP∗AQs)−1RsP∗ = (GA)†G = A(2,4)
N(GA)⊥,N(G) ∈ A{2, 4}s. (3.19)

(b) If (3.5) is a full–rank factorization of W = F(AF)∗ ∈ Cn×m
s the following holds:

Qs(RsP∗AQs)−1RsP∗ = F(AF)† = A(2,3)
R(F),R(AF)⊥ ∈ A{2, 3}s. (3.20)
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Proof. (a) In this case we have

W = Qs(RsP∗) = (GA)∗G. (3.21)

Therefore, conditions from the part (3) of Lemma 3.3 from [3] are satisfied, which implies

Qs(RsP∗AQs)−1RsP∗ = (RsP∗A)†RsP∗ ∈ A{2, 4}s.

This part of the proof can be completed using

(RsP∗A)†RsP∗ = (QsRsP∗A)†QsRsP∗

= ((GA)∗GA)† (GA)∗G

= (GA)†G

= A(2)
N(GA)⊥,N(G).

(b) This dual statement can be verified in a similar way, using the part (2) of Lemma 3.3 from [3].

3.3. Computing {2,4} and {2,3}-inverses by URV Factorization

Theorem 3.4. Let A ∈ Cm×n
r be the given matrix, s ≤ r be a given integer and the matrices F,G are chosen as in

Proposition 1.2.
(a) If (3.8) is a full–rank factorization of W = (GA)∗G ∈ Cn×m

s the following is satisfied:

A(2,4)
N(GA)⊥,N(G) = Qs(CV∗sAQs)−1CV∗s

= Qs
(
Q∗sWAQs

)−1 Q∗sW

= (GA)†G ∈ A{2, 4}s.

(3.22)

(b) If (3.8) is a full–rank factorization of W = F(AF)∗ ∈ Cn×m
s the following holds:

A(2,3)
N(GA)⊥,N(G) = Qs(CV∗sAQs)−1CV∗s = F(AF)† ∈ A{2, 3}s. (3.23)

Proof. (a) In this case we have
W = Us(CV∗s) = QsCV∗s = (GA)∗G.

Therefore, conditions from the part (3) of Lemma 3.3 from [3] are satisfied, which implies

Qs(CV∗sAQs)−1CV∗s = (UsCV∗sA)†UsCV∗s ∈ A{2, 4}s.

From (3.8) we obtain
CV∗s = Q∗sW

and later
Qs(CV∗sAQs)−1CV∗s = Qs

(
Q∗sWAQs

)−1 Q∗sW,

which confirms the second identity in (3.22).
The second identity in (3.22) can be verified using

Qs(CV∗sAQs)−1CV∗s = (UsCV∗sA)†UsCV∗s
= ((GA)∗GA)† (GA)∗G

= (GA)†G

= A(2)
N(GA)⊥,N(G).

(b) This part of the proof can be verified in a similar way, using the part (2) of Lemma 3.3 from [3].
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4. Algorithm

In the sequel we state the next unique algorithm for generating A(2,4)
T,S and A(2,3)

T,S inverses of a given matrix
A by means of three matrix decompositions.

Algorithm 4.1 Computing the A(2,4)
T,S inverse of the matrix A using the complete orthogonal factorization of

W = (GA)∗G. (Algorithm COFATS24)
or
W = F(AF)∗. (Algorithm COFATS23)
Require: The matrix A of dimensions m × n and of rank r.
Require: The matrix G of dimensions s ×m and of rank s or the matrix F of dimensions n × s and of rank s.

1: Compute the matrix W = (GA)∗G or the matrix W = F(AF)∗.
2: Compute the SVD, QR or URV decomposition of the matrix W in the form (3.1), (3.5) or (3.7), respectively.
3: Generate the full–rank decomposition of the matrix W as in (3.4), (3.21) or (3.8), respectively.
4: Solve one of the following matrix equations:

- In the case of SVD decomposition solve
ΣsV∗sAUsX = ΣsV∗s .
- In the case of QR decomposition solve
RsP∗AQsX = RsP∗

or
Q∗sWAQsX = Q∗sW.
- In the case of URV decomposition solve
CV∗sAQsX = CV∗s .

5: Compute the output:
- In the case of SVD decomposition return the matrix UsX.
- In the case of QR or URV decomposition return the matrix QsX.

We present a comparison of Algorithm 4.1 with the modified Successive Matrix Squaring (SMS) iterative
algorithm for computing {2, 3} and {2, 4}-inverses from [16]. The main difference between the modified SMS
algorithm and Algorithm 4.1 are contained in the following:

1. The modified SMS algorithm is iterative, while Algorithm 4.1 is a direct method for computing
generalized inverses.

2. Moreover, QR variant of Algorithm 4.1 is applicable in exact computation of generalized inverses of
matrices whose entries are rational numbers. More precisely, the programming package Mathematica yields
the QR decomposition for a numerical matrix in the form of a matrix with rational entries. Later, using the
exact computation possibilities in Mathematica, it is possible to produce the exact output of Algorithm 4.1.
About the package Mathematica see, for example [23]. Let us mention that it is possible to force Mathematica
to give an approximate numerical output by ending the user’s input with //N.

3. Roundoff errors accumulate during the iterative steps of the SMS method. Sometimes, these roundoff
errors can endanger its convergence. In these cases, direct methods are appropriate choices.

4. Finally, in our numerical experiments we observed an additional drawback of the modified SMS
algorithm. Namely, the optimal value βC

opt of the parameter β (from [16]) is very small, which causes a very
large number of iterative steps (approximately∞). This choice causes the collapse of the SMS algorithm.

5. Numerical Examples

Numerical examples are performed in the programming package Mathematica.
In both Example 5.1, part (b) and Example 5.2, part (b), we derive exact generalized inverses.
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Example 5.1. The starting matrix in this example is

A =



1 2 3 4 1
1 3 4 6 2
2 3 4 5 3
3 4 5 6 4
4 5 6 7 6
6 6 7 7 8


and the matrix G is equal to

G =

[
1 0 0 0 3 0
0 1 0 0 0 0

]
.

a) The SVD decomposition of the matrix W = (GA)∗G associated with the s = 2 largest singular values of W is
defined by W = U2Σ2V∗2, where

{U2,Σ2,V2} =




0.298885 0.533279
0.391543 0.0126312
0.483791 −0.103401
0.576449 −0.624049
0.437053 0.561538

 ,
[

137.513 0.
0. 2.46756

]
,



0.315726 0.0178024
0.0562962 −0.998414

0. 0.
0. 0.

0.947179 0.0534072
0. 0.




.

The representation (3.13) gives the following {2, 4}–inverse of A:

X1 = A(2,3)
N(GA)⊥,N(G) = U2(Σ2V∗2AU2)−1Σ2V∗2

=


0.0453361 −0.215651 0. 0. 0.136008 0.

0.00990099 −0.0049505 0. 0. 0.029703 0.
0.00364773 0.0420358 0. 0. 0.0109432 0.
−0.0317874 0.252736 0. 0. −0.0953622 0.
0.0505472 −0.227028 0. 0. 0.151641 0.


= (GA)†G.

b) The QR decomposition of W = (GA)∗G is determined by

{Q,R,P} =





√
13
145 −191

√
13

1669530

17
√

1885
−

√
57

380770

21
√

1885
242

√
2

10851945

5
√

5
377 97

√
30

723463

19
√

1885
−1307

√
2

10851945


,


√

1885 336
√

1885
0 0 3

√
1885 0

0
√

11514
1885 0 0 0 0

 , I6


.

The representation (3.17) produces the following {2, 4}–inverse of A:

A(2,4)
N(GA)⊥,N(G) = Qs(RsP∗AQs)−1RsP∗ =


87

1919 −
2483

11514 0 0 261
1919 0

1
101 −

1
202 0 0 3

101 0
7

1919
242

5757 0 0 21
1919 0

−
61

1919
485

1919 0 0 −
183

1919 0
97

1919 −
1307
5757 0 0 291

1919 0

 .
Real approximation of the rational matrix A(2,4)

N(GA)⊥,N(G) is identical to X1.
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Also, simple verification shows that
(WA)†W = (GA)†G = X1.

c) The modification of the SMS method from [16] produces the following approximate outer inverse after 40
iterations:

XSMS =


0.0453336 −0.215638 0. 0. 0.136001 0.

0.00990136 −0.00495131 0. 0. 0.0297041 0.
0.00364769 0.0420319 0. 0. 0.0109431 0.
−0.0317878 0.252739 0. 0. −0.0953633 0.
0.0505491 −0.227036 0. 0. 0.151647 0.

 .
But, after 50 iterative steps we get the wrong result:

0.0428389 −0.203391 0. 0. 0.128517 0.
0.0102711 −0.00575505 0. 0. 0.0308135 0.
0.00360076 0.0382315 0. 0. 0.0108022 0.
−0.0321686 0.256387 0. 0. −0.0965057 0.

0.052478 −0.235296 0. 0. 0.157434 0.

 .
After 60 iterative steps we observed beginning of the divergence:

−27.3097 119.577 0. 0. −81.9255 0.
−460.605 2016.8 0. 0. −1381.75 0.
−9.6306 42.161 0. 0. −28.8905 0.
167.628 −733.808 0. 0. 502.86 0.
220.94 −967.379 0. 0. 662.789 0.

 .
Let us observe that the approximation of the exact outer inverse with 10 decimals is equal to

0.04533611256 −0.2156505124 0 0 0.1360083377 0
0.009900990099 −0.004950495050 0 0 0.02970297030 0
0.003647733194 0.04203578253 0 0 0.01094319958 0
−0.03178738927 0.2527357999 0 0 −0.09536216780 0
0.05054715998 −0.2270279660 0 0 0.1516414799 0

 .
It is easy to observe that the best possible result produced by the modified SMS method, denoted by XSMS, is a much
worse approximation than the approximation X1 produced by the SVD factorization. To verify this statement, we
compute corresponding matrix norms:

‖A(2,4)
N(GA)⊥,N(G) − X1‖ = 9.726792725073938 × 10−15, ‖A(2,4)

N(GA)⊥,N(G) − XSMS‖ = 0.00001827337135490787.

Example 5.2. Let us choose the same matrix A as in Example 5.1 and the matrix F equal to

F =


−3 −2
−7 6
0 0
7 5
−4 0

 .
The matrix W, appropriate to A, is now given by W = F(AF)∗.

a) The SVD decomposition of W = F(AF)∗ is

{U2,Σ2,V2} =




−0.107919 0.35296
0.938716 0.246259

0. 0.
0.289015 −0.841614
0.15374 0.326285

 ,
[

1025.55 0.
0. 400.128

]
,



0.180315 −0.432229
0.279943 −0.644462
0.296222 −0.235186
0.393255 −0.137902
0.509162 0.0591417
0.622475 0.565702




.
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The representation (3.14) gives the following {2, 3}–inverse of A:

X2 = A(2,3)
N(GA)⊥,N(G) = Us(ΣsV∗sAUs)−1ΣsV∗s

=


−0.0397756 −0.059307 −0.0216562 −0.012713 0.00540651 0.0520006
−0.0395358 −0.0581092 −0.00651577 0.0128002 0.0458202 0.11673

0. 0. 0. 0. 0. 0.
0.0944746 0.140892 0.0519066 0.0309905 −0.0115775 −0.121479
−0.0397157 −0.0590075 −0.0178711 −0.00633466 0.0155099 0.0681828

 .
Let us mention that F(AF)† is the rational matrix

−
837851

21064424 −
312317

5266106 −
456175

21064424 −
267791

21064424
113885

21064424
547681

10532212

−
832799

21064424 −
306009

5266106 −
137251

21064424
269629

21064424
965177

21064424
1229421
10532212

0 0 0 0 0 0
995027

10532212
370975
2633053

546691
10532212

326399
10532212 −

121937
10532212 −

639719
5266106

−
209147
5266106 −

155370
2633053 −

94111
5266106 −

33359
5266106

81677
5266106

179529
2633053


whose approximation is just the matrix X2.

b) The QR decomposition of W = F(AF)∗ is given by

{Q2,R2,P} =





−
27
√

7123
1389

√
56941262

131
3
√

7123
18587

3
√

56941262
0 0

199
3
√

7123
−

4723
√

2
28470631

3

−
28

3
√

7123

3886
√

2
28470631

3


,

 3
√

7123 97688
3
√

7123
24151
√

7123
28041
√

7123
30823
√

7123
78904

3
√

7123

0
22
√

7994
7123

3 131
√

7994
7123 222

√
7994
7123 353

√
7994
7123

1703
√

7994
7123

3

 , I6

 .
The representation (3.17) gives the following exact {2, 3}–inverse of A:

A(2,3)
N(GA)⊥,N(G) = Q2(R2P∗AQ2)−1R2P∗ =


−

837851
21064424 −

312317
5266106 −

456175
21064424 −

267791
21064424

113885
21064424

547681
10532212

−
832799

21064424 −
306009
5266106 −

137251
21064424

269629
21064424

965177
21064424

1229421
10532212

0 0 0 0 0 0
995027

10532212
370975

2633053
546691

10532212
326399

10532212 −
121937

10532212 −
639719

5266106
−

209147
5266106 −

155370
2633053 −

94111
5266106 −

33359
5266106

81677
5266106

179529
2633053

 .
Again, simple verification shows that X2 is a real approximation of Q2(R2P∗AQ2)−1R2P∗.

Example 5.3. In this example we consider outer inverses of the invertible 8 × 8 matrix, generated applying a = 1
and n = 8 on the test matrix Sn from [27].

A =



2 1 1 1 1 1 1 2
1 0 1 1 1 1 1 1
1 1 2 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 2 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 2 1
2 1 1 1 1 1 1 0


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initiated by the randomly generated 2 × 8 matrix

G =

[
0.840945 0.538775 0.305695 0.225754 0.997242 0.695873 0.409878 0.0989846
0.183869 0.538072 0.721692 0.109286 0.728451 0.627618 0.247737 0.799947

]
.

The matrix W = (GA)∗G should be used in construction of corresponding {2, 4}-inverse of A.

a) SVD decomposition W = U2Σ2V∗2 of W is defined by

{U2,Σ2,V2} =





−0.415962 −0.168585
−0.291191 −0.063356
−0.378075 −0.410255
−0.321869 −0.163915
−0.408221 0.0581344
−0.280822 −0.105142
−0.363613 0.0090359
−0.343399 0.870558


,

[
36.7405 0.

0. 0.771884

]
,



−0.342289 0.563382
−0.351771 −0.0370266
−0.330844 −0.415312
−0.110778 0.0944943
−0.566792 0.184763
−0.433113 0.0159507
−0.216673 0.124863
−0.28562 −0.670697




.

The representation (3.17) produces the following {2, 4}–inverse of the invertible matrix A:

X3 =



−0.0561094 0.0230657 0.0715567 −0.00664794
−0.0151947 0.0147109 0.0325671 −0.000593331
−0.164248 0.0277175 0.147448 −0.0251358
−0.0581621 0.0187273 0.0660998 −0.00763009
0.0434484 0.0167623 −0.00146126 0.0100848
−0.0340591 0.0153441 0.0455284 −0.0038439
0.0198662 0.0160537 0.0124039 0.00580735
0.398583 −0.00748643 −0.264674 0.0695208

0.0051328 0.0203345 −0.00514498 0.102684
0.01167 0.015083 0.00179136 0.0434828
−0.0333136 0.0144951 −0.0300357 0.226874
−0.000973076 0.0152156 −0.00728292 0.0968433

0.0380744 0.0234245 0.0170104 −0.0153941
0.00474666 0.0138626 −0.00261781 0.0648173
0.0275976 0.0202017 0.0109341 0.00849762
0.153439 0.0324514 0.0953776 −0.439858


.

b) On the other hand, QR decomposition of W is defined by the triple of matrices

{Q,R,P} =





−0.414798 −0.29075 −0.375257 −0.320739 −0.408609 −0.280095 −0.363667 −0.349353
−0.17143 −0.0653488 −0.412835 −0.166115 0.0553373 −0.107063 0.00654552 0.868186
0.766079 0.212335 −0.149937 −0.456384 −0.354179 −0.0180863 −0.103023 0.0297519
0.241165 −0.178279 0.203815 −0.0282679 0.517042 −0.661777 −0.402783 0.0141814
−0.362132 0.353185 0.540532 −0.660523 0.0670047 0.0452746 −0.0385762 0.0873309
−0.0899308 0.395851 −0.0761581 0.0897057 −0.182705 −0.665358 0.581887 −0.0818038
0.0980838 −0.664458 0.491088 −0.0469233 −0.398228 −0.122557 0.301896 0.201888
−0.0683294 0.33374 0.29255 0.4625 −0.490657 −0.109714 −0.513453 0.260848


,



−20.8247 −10.49 −15.9125 −12.5785 −12.9238 −7.96114 −12.1529 −4.07043
0. −0.5896 −0.0966653 0.3487 −0.117 0.04186 −0.4038 0.04506
0. 0. 2.2527×10−15 1.3215×10−16 7.7206×−16 4.1133−16 4.3718×10−16 8.8256×10−17

0. 0. 0. −1.4092×10−15 2.542×10−16
−4.156×10−16

−3.111×10−16
−8.971×10−17

0. 0. 0. 0. −8.834×10−16
−1.875×10−16 2.296×10−17

−1.717×10−16

0. 0. 0. 0. 0. 6.966×10−16
−4.533×10−17 7.938×10−17

0. 0. 0. 0. 0. 0. 6.346×10−17 4.927×10−17

0. 0. 0. 0. 0. 0. 0. −6.214×10−18


, I8


.
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The matrix R2P∗AQ2, equal to

4.62211 −3.23702 −60.8101 134.471 132.254 178.293 68.296 −86.2181
−0.308102 0.23398 −0.0152944 1.55327 0.651791 1.40038 0.145 −0.376974

6.198×10−16
−6.0623×10−16 2.701×10−15

−4.884×10−15
−5.0062×10−15

−6.327×10−15
−3.492×10−15 3.818×10−15

4.695×10−16
−3.965×10−17

−9.306×10−16 2.223×10−15 3.931×10−15 4.358×10−15 2.152×10−15
−2.220×10−15

−1.092×10−16
−7.632×10−17

−1.052×10−15 1.221×10−15 1.662×10−15 2.155×10−15 5.255×10−16
−5.253×10−16

1.351×10−17
−3.8797×10−16 7.081×10−16

−8.330×10−16
−1.175×10−15

−1.434×10−15
−1.412×10−16 8.914×10−16

3.659×10−17 3.311×10−17 3.836×10−17
−1.546×10−16

−1.827×10−16
−1.849×10−16

−4.657×10−17 1.174×10−16

1.507×10−18
−1.706×10−18

−1.926×10−18 6.826×10−18 1.064×10−17 7.815×10−18 7.978×10−19
−6.319×10−18


,

is almost singular and its inversion produces computational errors which cause that the generated approximation
(3.19) of outer inverse does not satisfy the matrix equation (2).

Example 5.4. In this example we verify the results of Theorem 3.2. Consider the matrix

As =



0.572082 2.04881 2.98051 4.45724 0.939071
1.3795 2.92615 4.01624 5.56289 2.05963

2.09302 3.11513 4.00852 5.03063 2.99024
2.81009 3.93239 4.98831 6.11061 3.98929
4.33103 4.99871 6.01632 6.684 6.04046
5.76162 6.00495 6.98839 7.23172 7.97013


defined by As = UA

2 ΣA
2 V∗2, where



−0.222859 −0.573902
−0.3093 −0.513042
−0.319292 −0.205769
−0.400374 −0.168183
−0.496807 0.19995
−0.58788 0.54481


,

[
1. 0.
0. 1.

]
,


−7.88638 2.06563
−9.94431 0.291642
−12.2808 −0.424493
−14.3388 −2.19848
−11.0847 2.66816




and the matrix F defined by F = V2

(
ΣF

2

)∗ (
UF

2

)∗
, where



0. 0.
0. 0.
−1. 0.
0. 0.
0. 0.
0. 1.


,

[
0.999233 0.

0. 1.

]
,


−7.88638 2.06563
−9.94431 0.291642
−12.2808 −0.424493
−14.3388 −2.19848
−11.0847 2.66816




.

After a verification we get

(As)† =


−0.0654337 −0.057383 −0.021043 −0.0157914 0.0285993 0.0701909
−0.000266749 0.00145754 0.00359279 0.00508443 0.00894397 0.0125709

0.0275701 0.0268407 0.0146572 0.0147588 0.00184593 −0.0102359
0.092737 0.0856812 0.039293 0.0356346 −0.0178094 −0.0678559
−0.0836078 −0.0731491 −0.0265137 −0.0196538 0.0374403 0.0909355


= F(AF)†.

Example 5.5. In this example we compare Algorithm 4.1 and the modified SMS algorithm with 10 iterative steps.
Matrices A of the order m×n, where m = 30 ∗ k,n = 10 ∗ k, and of rank r = n/2. Matrices A of the order n×m and of
rank sr = n/3. By XSVD,XQR,XSMS we denote outer inverses produced by the SVD decomposition, QR decomposition
and the modified SMS iterative process. The strike − in Table 1 means that the modified SMS method produces the
incorrect zero matrix in the output XSMS = 0.
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Dimensions ‖XSVDAXSVD − XSVD‖ ‖XQRAXQR − XQR‖ ‖XSMSAXSMS − XSMS‖

20 × 10 5.867783065059582 × 10−15 1.54799100168391 × 10−14 2.113921195787184 × 10−9

40 × 20 7.062781516703317 × 10−15 4.082564210023391 × 10−14 4.31108324776876 × 10−12

80 × 40 1.315758645995428 × 10−14 1.04151672512349 × 10−13
−

160 × 80 8.332624649753079 × 10−15 1.100200054051695 × 10−13
−

320 × 160 1.320514308782867 × 10−14 2.996279369089772 × 10−13
−

640 × 320 1.352323356362689 × 10−14 4.304300513903187 × 10−13
−

1280 × 640 1.011325773008253 × 10−14 7.864989586776998 × 10−13
−

Table 1: CPU times on the test block matrix Vn

6. Conclusion

In the current paper we further investigate conditions for the existence, representations and algorithms
for computing {2, 4} and {2, 3}-inverses with prescribed range and null space. We also derive corresponding
representations arising from SVD, QR and URV matrix decomposition. An unique algorithm for computing
{2, 4} and {2, 3}-inverses is defined.

Our numerical experience shows that direct methods defined in 4.1 produce results with significantly
better precision than the iterative method proposed in [16].
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[14] P.S. Stanimirović, Block representations of {2}, {1,2} inverses and the Drazin inverse, Indian J. Pure Appl. Math. 29 (1998), 1159–1176.
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[18] P.S. Stanimirović, D. Pappas, V.N. Katsikis, V.N., I.P. Stanimirović, Computation of A(2)
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