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Extending the Moore-Penrose Inverse

Nebojsa C. Dintié®

?Faculty of Sciences and Mathematics, University of Nis, P.O. Box 224, 18000 Nis, Serbia

Abstract. We show that it is possible to define generalized inverse similar to the Moore-Penrose inverse
by slightly modified Penrose equations. Then we are investigating properties of this, so-called extended
Moore-Penrose inverse.

1. Introduction

Let H and K be arbitrary Hilbert spaces, and let £(H, K) be the set of all bounded linear operators from
H to K. If H = K, then we abbreviate L(H, H) = L(H). For A € L(H, K) by R(A), N(A) and A* we denote the
range space, the null-space and adjoint, respectively.

Throughout the paper direct sum of the subspaces will be denoted by ®, and orthogonal direct sum by
@'. An operator P € £(H) is projection if P> = P, and orthogonal projection if P> = P = P*. If H = M@ N,
then Py denotes projection such that R(Pyn) = M, N(Pmn) = N.If H = M&™* N, then we write Py instead
of Pyn. Operator A € L(H) is Hermitian (or selfadjoint) if A = A", normal if AA* = A*A, and unitary if
AA*=A'A=1

The Moore-Penrose inverse of A € £(H, K), if it exists, is the unique operator A" € £(K, H) satisfying the
following, so-called Penrose equations:

(D AATA = A, (I ATAAT = AT, (II) (AATY = AAT, (IV) (ATA) = ATA.

It is well-known that A" exists for given A if and only if R(A) is closed in K. For detailed introduction to the
theory of generalized inverses, the reader is reffered, for example, to [1], [2], [4].
Closed-range operator A € L(H) is EP ("equal-projection”) if one of the following equivalent conditions
holds: AAT = ATA, or R(A) = R(A%), or N(A) = N(A").
In this paper we consider the following problem: for given closed-range operator A € L(H, K) is there an
operator X € L(K, H) such that the following four Penrose-like equations are satisfied (i, n € IN are given):
(L) (AX)"A = A,
(IL,)  X(AX)" =X,
AX = (AX),
vy  XA=(XA).
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It is obvious that case m = n = 1 reduces to well-known Moore-Penrose inverse.
Now we present some auxiliary results.

Lemma 1.1. Let A € L(X,Y)havea closed range. Then A has the matrix decomposition with respect to the orthogonal
decompositions of spaces X = R(A*) ® N(A) and Y = R(A) & N(A*):

A_[A1 0].[7«&)]%[ R(A)]
0 0| NA NAY) |7

where Ay is invertible. Moreover,

g AT O] R R(A*)
Lo ool Ny | T N |

Lemma 1.2. [3] Let A € L(X,Y) have a closed range. Let X1 and X be closed and mutually orthogonal subspaces of
X, such that X = X1 ® X,. Let Y1 and Y, be closed and mutually orthogonal subspaces of Y, such that Y = Y1 @ Y,.
Then the operator A has the following matrix representations with respect to the orthogonal sums of subspaces
X=X18X =RAYSNA),andY =RA) e NA)=Y18Y,:

(@) :
A:[m Aszl]ﬁ R(A)]
0 0 || X | N(AY) |

where D = A1A] + A2A; maps R(A) into itself and D > 0 (meaning D > 0 invertible). Also,

AD1 0 ]
t _ 1
A [A;D-l 0

(b)
A_[Al o]_[R(A*)] [yl]
Tl A ol NA) | Ty |

where D = A]Aq + AJA maps R(A”) into itself and D > 0 (meaning D > 0 invertible). Also,

D lA* DlA:
t_ 1 2
A _[ 0 0 ]

Here A; denotes different operators in any of these two cases.
Some properties of the Moore-Penrose inverse are collected in the following proposition.

Proposition 1.3. Let A € L(H, K) be closed-range operator. Then:

1. (AA)' = ATAT, where A" = A7V if A £ 0and A' = 0if A = 0;

(AN = A, (A" = (AT);

A= ATAA" = A"AAT, A = AA* (A = (AT AA;

A+ — A*(AA*)-r — (A*A)-rA*’ (AA*)+ — (A*)+A+, (A*A)-I- — A+(A>e)+l.

R(A) = R(AAT) = R(AA"), R(AT) = R(A") = R(ATA) = R(A*A);

R(I - ATA) = N(ATA) = N(A) = R(AY)*;

R(I - AAT) = N(AAT) = N(AT) = N(A") = R(A)*;

(UAV)" = V*"ATU", when U € L(K) and V € L(H) are unitary operators (see for example [3] for some general
reverse order law results).

® NN U W
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Theorem 1.4 ([5], Th. 12.29). Suppose E is the spectral decomposition of a normal T € L(H), Ay € o(T), and
EO = E({/\()}) Then

(@) N(T = Aol) = R(Eo),
(b) Ao is an eigenvalue of T if and only if Eg # 0 and
(c) every isolated point of o(T) is an eigenvalue of T.
(d) Moreover, if o(T) = {A1, A2, A3, ...} is a countable set, then every x € H has a unique expansion of the form
x = i Xi,
i=1
where Tx; = A;x;. Also, x; Lx; whenever i # j.

Theorem 1.5 ([6]). Let M and N be closed subspaces of a Hilbert space H, and let Py and Py be the orthogonal
projections onto M and N, respectively.

(a) WehaveQ < Py < I.

(b) The following statements are equivalent:

(1) Pp < Pw, (ii) PnPy = Py, (iii) M C N, (iv) PPy = Py
Theorem 1.6 ([6]). Let M and N be closed subspaces of a Hilbert space H, and let Py and Py be the orthogonal
projections onto M and N, respectively.

(@) P = PyPy is an orthogonal projection if and only if PPy = PnPa holds; then we have P = Pynn. We have
MLN if and only if PpyPn = 0 (or PxPa = 0).

(b) Q = Py + Py is an orthogonal projection if and only if M_LN, then we have Q = Ppgn.
() R = Py — Py is an orthogonal projection if and only if N C M; then we have R = Ppen.

Remark 1.7. (See [6]) If H is a Hilbert space and T and T, are closed subspaces such that T1 C T, then there exists
exactly one closed subspace Ty such that T, C T, T, LTy and T = Ty @ T». For the uniquely defined subspace T, we
write briefly T, = T © Ty. The subspace T is called the orthogonal complement of Ty with respect to T. For T = H we
obtain that H© Ty = T}

2. Main result
Lemma 2.1. Let H be arbitrary Hilbert space and T € L(H) closed-range operator such that T" = I, n € IN.

i) There exists T™' € L(H) and T™* = T"*, k = 0, n.

ii) If T = T*, then o(T) = {1} for odd n and o(T) = {-1;1}. Moreover, T = I for odd n, and for even n there exist
nontrivial closed subspaces Y1, Y, C H such that Y1 &+ Y, = H and

1 011 Y
o SRR
Proof. i) We have {0} = N(I) = N(T") 2 N(T) 2 N(I), so N(T) = {0} and operator T is injective. Also,
H = R(I) = R(T") € R(T) € H implies R(T) = H, so T is surjective. Therefore, there exists T~.

From [ = T" = T*T"* = Tn=kTk it follows T™* = T"*, k = 0, n.
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ii) Operator T is Hermitian, so its spectrum is real. By the spectral mapping theorem for polynomials,
we have
N=0)=0(T)={A":Aea)}=0T)={AeR: A" =1}.
Therefore, for odd n we have o(T) = {1}, while for even n € IN we have o(T) = {-1;1}.

It is clear that if 6(T) = {1}, then T = I. When the spectrum of the operator is a disjoint union of closed
sets, then by Theorem 1.4.d there exist nontrivial closed subspaces Y1, Y> € H such that Y1 @ Y, = H
(the sum is orthogonal because T is Hermitian!) and

[ R[]

Let H, K be arbitrary Hilbert spaces and A € L(H, K) closed-range operator. Let us consider whether
there is an operator X € £L(K, H) such that the following four Penrose-like equation are satisfied (m, n € IN):
(In)  (AX)"A = A,
(IL)  X(AX)" =X,
I  AX = (AX),
(Iv) XA =(XA).

O

Theorem 2.2. Let H, K be arbitrary Hilbert spaces and A € L(H, K) closed-range operator. Then we have
(In) (AX)"A = A Ia) (AX)'A=A
(L) X(AX)'=X (II;) X(AX)' =X,

where d = GCD(m, n) is the greatest common divisor of m,n € IN.

Proof. (<) : Obvious.
(=) : Without the loss of generality, we may assume that m > n. By the Euclidean algorithm for the
greatest common divisor, we have the finite sequence:

m=gqon+rg, 0<rg<n,
n=qro+ry, 0<r <r,
To = (ol + 17, OSI’Q<7’1,

Tk—2 = Gktk—1 + 16, 0 <7 < 7q,
k-1 = G+17% + 0, d = GCD(m, n) = ry.
So by (I,;) and (II,) we have
A = (AX)"A = (AX)"™1A = (AX)"LAX (AX)"..(AX)" A =

N e’
qo times
= (AX)"TAX (AX)"..(AX)"A = ... = (AX)"1AXA = (AX)"4;
N ———————
qo—1 times
X = X(AX)" = X(AX)T"0T = X (AX)"...(AX)" AX(AX)17! =
N—— —
q1 times
= X(AX)"..(AX)? AX(AX)"! = ... = XAX(AX)"™! = X(AX)".
—————
q1—1 times

By proceeding along the Euclidean algorithm, we have the proof. O
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Therefore, it is enough to investigate the case m = n in the sequel of the paper. Now we will consider
the following four Penrose-like equations (n € IN given):
I,) (AX)"A=A,
(IL,)  X(AX)" =X,
I  AX = (AX),
Iv)  XA=(XA).
By the Lemma 1.1, operator A has the following matrix form according to the space decompositions:
| A 0| | R@A) R(A)
A‘[ 0 0 H NA) |7 Mvay |

We are looking for the operator X of the following form

SERIEANES

X3 X4 N(AY) N(A)
By (I1I), the operator
| AXa AXp
ax=| Ag A |

is Hermitian, so by invertibility of A; it follows that X, = 0 and A;X; is Hermitian. On the similar matter,
from (IV) it follows X3 = 0 and X;A4; is Hermitian. From (II,) we have Xy = 0 and X;(A1X7)" = X3, and
from (I,) it follows (A1X1)"A; = A;. Therefore,

x50 [ Axi 0 [ x4, 0
R e I L]

From (A1 X1)" = Ir), (X1A1)" = Iray, (A1X1) = A1Xy, (X1A1)" = X1A1 by Lemma 2.1 we have for odd n:
A1X1 = IR(A); X1A1 = IR(A*) =X; = Al_l = X= A+.

By the same lemma, for even n we have:

-1 0 S -1 0 T
w [ el 6, om0 ]o el )

=R(A), T+ T7§( 4y = R(AY) (clearly, Sz ) = R(A) O S, Tray = R(A") ©T). Therefore,
A1Xq = Iga) — 2Ps, X1A1 = Igary — 2P,

where S @+ S3

1
R(A) R(A) (A*)

so we have
X1 = A7 (Irwy — 2Ps) = (Igary — 2P7)ATY,

from where we see the relation between the subspaces T and S :
A['Ps = PrA]' & PsA; = Ay Pr,
so those projections are similar. We can put
X1 = AT (Ig) — 2Ps) = (I — 2A7 PsA) AT
When we return to the operator X, we have
X = A'(Pgay — 2Ps) = A" = 2A"Ps = A(I - 2Ps),

and on similar way
X = (Pgasy — 2P1)A" = AT - 2Pr A" = (1 - 2Pr)A".

Also, A'Ps = PrA', or, equivalently, PsA = APr.
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Remark 2.3. If we suppose

[ Ay Ap ] T 1 [ S
A = :
! | A1z Au || Tqﬁ(A*) _H

7

| Sé(!“) i
from PsA1 = A1Pr we have A1p = 0, A1 = 0, so the operator Ay must have the following form

[ A11 0 1 [ T ] [ S
Al = :
1 | O A]4 ] i T;(A*) ] i

1
| S‘R(A) i
where A11 and Ai4 are invertible operators.

We have seen that odd 7 case reduces to n = 1, which coincides with the Moore-Penrose inverse. As an
important result, because (A1 Xq)? = Iy and (X1A1)? = I+, we have that case n = 2k actually reduces to
n = 2. Therefore, we can define new generalized inverse which depends of some subspace(s).

Definition 2.4. Let H, K be arbitrary Hilbert spaces and A € L(H, K) be closed-range operator. For fixed subspace
S € R(A) (or, equivalently, T C R(A*), where S and T are related by

APt = PsA, or, equivalently, AfPs = PrAT. (1)
there exist unique operator denoted by A* = A%S such that the following four Penrose-like equations are satisfied:

(AADA = A, AHAAD? = A, (AAY) = AAT, (ATA)" = ATA. )
Such inverse will be called extended MP inverse, and can be explicitly given by

Al = AY(I-2Ps) = (I - 2Pp)A". 3)

The existence and the uniqueness of extended Moore-Penrose inverse follows immediately by preceding
construction. We use both subspaces in the index although they are uniquely related (Pt = A;'PsA;, where
Ay = Algea), because it is convenient in various identities. Note that for trivial closed subspaces S = {0}

— 1 — At — At s — at — +
and S = R(A) we also have A[O},{O} =A"(I -2Py) =A"and AR(A),,R(A*) = A"(I - 2Pgn)) = —A".

3. Properties of EMP

It is very likely that properties of extended Moore-Penrose inverse strongly resemble to those of Moore-
Penrose inverse. Also, for given orthogonal projections Ps and Pr the operators I — 2Ps and I — 2P are
unitary and they are square roots of unit operators Ig1) and Iz on appropriate Hilbert spaces.

Theorem 3.1. Let A € L(H, K) be closed-range operator, let S C R(A) and T C R(A*) be nontrivial closed subsets.

1. AL Ps = -A'Ps, PrA} = -PrA', PrAl ;P = -PrA'Ps;

2. AA? s = Prea)—2Ps, A:; A = Pgrary —2Pr; those operators are Hermitian, but they are not idempotents. Also
we have:

1 1
Ps = E(PR(A) - AA';S), Pr = E(P‘R(A*) - Aj%,SA);

I _ataal — 4t t_ ataat t.
3. AL = ATAAL = A} AAT = ATAAL AAY
4. AT - AL, = 2A%Ps = 2PrAT, s0 AT - AL || < 20141,

Proof. It follows from (3), with S € R(A) & Pga)Ps = Ps and T € R(A*) & PrPg-y = Pr (Th. 1.5.b). O
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By the definition, for fixed S € R(A) and T C R(A"), related by (1), there exists unique A;S. By the

preceding theorem, part 2, for given Aili 5 one can reconstruct subspaces T and S, and the relation (1) holds.
Some properties of extended Moore-Penrose inverse, similar to those of the ordinary Moore-Penrose
inverse, are presented in the next theorem (cf. Proposition 1.3).

Theorem 3.2. Let A € L(H, K) be closed-range operator, and S C R(A) and T C R(A*) nontrivial closed subspaces.
Then we have:

—_

—_
o

- (AA)kg = ATAL

© 0N o Ul A W N

T’S,whereAJf:)\‘1 ifA#0and AT =0if A =0;

- (AAL )7 = Preay, (AL AV = Py,

* ¥ _ A+ _ (A¥ A % i _ % % t * _ *,
CANAAL G = A = (AL GA)AT, AT = A"AAL g = 2A"Ps, A* = AL AA" = 2PrAS;
AL = (A5

ST’

) A;S = A*(AA*)E/S, A;S = (A*A);TA*;
C (A AL = aa), AL (ANt = @A)

ST*°T,S —
A-AAL A =2PsA =2APr #0;

- RAL ) = RAY), N(AL ) = N(AY);

Ty
- (ATsr =
(At = (1=2P9A = A(L—2Pp) = (AN

Proof. Recall, V. c W & PyPw = PwPy = Py, by Theorem 1.5.b.

. (AA)E = (AA)(I - 2Ps) = ATAT(I - 2Pg) = ATAL ;

T,5"

. We have (AA:;:",S)2 = (AA+(I - 2P5))2 = (Pq{(A) - 2P5)2 = P‘R(A) and (A%SA)2 = (PcR(A*) - ZPT)2 = PcR(A*).

3. By 2. and Proposition 1.3.3, we have A*Pg(4) = A* = Pga)A. The second part is due to A" - A*AA;S =

A* — A*(P'R(A) — 2P5) = ZA*PS and A* — A%SAA* =A* - (PR(A*) - ZPT)A* = ZPTA*.

(AL = (AT = 2Ps))' = (1 = 2Ps)(A")" = (I - 2Ps)(A%)' = (A")}; also A'Ps = (PsA)* = (APy)* = PrA”

5. We have A"(AA")E . = A"(AA")T(I — 2Ps) = AT(I — 2Ps) = A} _, and (A*A)E_A* = (I - 2P7)(A*A)T A" =
S,S T,T

10.

TS
(I - 2P)AT = A} . Note that S € R(AA") = R(A) and T C R(A"A) = R(A").

C(AEALS = (AL AL = (- 2PpATY (I - 2Pp)AT = (ATY(I - 2Pr2AT = (A)TAT = (AA")!, and

ST°°T,S
AL (ANE = AT(I - 2Ps)(AT(I - 2Ps))* = AT(I - 2P5)*(AT) = AT(A) = (AA)".

. SCR(A) = PsA # 0, so this difference cannot be zero.
. The operators I — 2Ps and I — 2Pt are unitary, hence invertible, so R(Ais) = R(AT(I - 2Ps)) = AT((I -

2P5)(K)) = A*(K) = R(AT) = R(A"), N(AL ) = N((I - 2Pr)AY) = N(A") = N(A) = R(A)*.

. Let us note that the reverse order law (A"(I — 2Ps))" = (I — 2Ps)A holds, because I — 2P; is unitary

operator (hence Hermitian and invertible). Now we have
(AL = (A} "1 = 2Pr) = (AN(I - 2P5))"(I - 2Pr) = (I - 2P5)A(I - 2Pr) = 4,

because APy = PsA = APr = PsAPr. Also, At Ps = PrAl . & AY(I-2P5)Ps = Pr(I - 2PpAT &
AtPs = PrA'.

Because of (A} o) = (A"(I - 2Ps))! = (I - 2P5)A, and (A")} . = (A")'(I - 2Pr) = A(I - 2Pr), we have the
proof. Note that 8. implies the existence of (AJT: S)*.

O
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Unlike the ordinary Moore-Penrose inverse, the extended Moore-Penrose inverse depends on some
subspaces, and we present some related properties.

Theorem 3.3. Let A € L(H,K) be closed-range operator, and S,51,S, € R(A), T, T1,T> € R(A*) be nontrivial
closed subsets. Then we have

1. AL  AAL = AY(I-2Ps, — 2P, +4Ps, Ps,).
e SiNS =0} = AL ( AAL o = AT(I-2(Ps, + Ps,));
o S8 5 =R(A) = AL  AAL = -AT;

i I gt
® SlJ_S2 = AT1,51AATZrSZ - AT1€9T2,51€B52.

¥ I _ gt . ; ; i P _oat i .
2. AT1,51 - ATZ,S2 = 2A"(Ps, — Ps,); particularly, if S; C S, then AT1,51 - ATz,Sz =A" - AT26T1,52951’
3. AAL o — AAL o =2(Ps, — Ps,); particularly, if Sy C Sy then AAY, o — AAL o =2Prer, .65,
4. AY S A— AL o A=2Pr, - Pr); particularly, if Ty C T, then AL A= AL ¢ A =2Prer, s,es,;

5. A,B € L(H,K), R(A) = R(B) 2 S, then (A% — B} )T = (A" - BN} .
Proof.

1. AL  AAL = AT(I-2P5,)AAY(I - 2Ps,) = A'(I - 2P5,)Prea(I — 2Ps,) = A*(I - 2Ps, — 2Ps, + 4Ps, Ps,).
If S; N Sy = {0}, then Ps,Ps, = 0, s0 A} ; AA} o = AT(I—2(Ps, + Ps,)). When S; @* S, = R(A), then
A%ISIAA%/SZ = —A". For $1.18S,, by Theorem 1.6 we have Ps Ps, = 0 and Ps, + Ps, = Pg,gs,, therefore
At AA‘J;Z,SZ = AY(I - 2P gs,) = At

T1,51 T186T,,518S,°
2. A} o — AL o = ANI-2Ps) - AY(I - 2Ps,) = 2A%(Ps, - Ps,). When Sy C S, by Theorem 1.6 it follows

Ps, — Ps, = Pg,es, is orthogonal projection, therefore

i I _ gt _ at _ gt i
AT1,51 - AT2/52 =2A P52651 =A (I - (1 - 2PSzeS1)) =A" - AT29T1,52951'

Note that 5 CS5 e P51P52 = P52P51 = P51 =4 PSIPSZA = P52P51A = PslA =4 PSIAPT2 = PSZAPTl =
APT1 (=4 APT1PT2 = APTZPTl = APT1 (=4 A+APT1PT2 = A+APT2PT1 = A+APT1 (=4 PT1PT2 = PTZPTl = PT1 (=4
T, c Ts.

3. AA%,SI - AAi;z/SZ = 2AA"(Ps, — Ps,) = 2(Ps, — Ps,); the rest of the proof as in the second part.

4. Analogous to the proof of part 3.

5. By part 10 of Theorem 3.2 and part 8 of Proposition 1.1, we have

(AT = BN = (AT = BY (1 - 2P)" = (1 - 2Pr)(A* - BY) = A} - B,
0

Theorem 3.4. Let A € L(H, K) be closed-range operator, and S;, i = 1,1, n> 2, be closed subspaces of R(A), such
that R(A) is their orthogonal direct sum (i.e. R(A) = S1 &+ S, &+ ... ®* S,). Then:

n
P +
Y Al =(m-2A"
k=1

Here Ty, k = 1,n, are related to S, k = 1,n, by (1).



N. C. Dincié / Filomat 30:2 (2016), 419-428 427

Proof. Because of
Sl®l Sz@l...@l Sy :R(A)C>P51 +Ps, +...+Pg, = Iga),

we have

n n n-1 n—1
Y AL =AYY (1-2Ps) = A*( Y (1= 2Ps) +1-2(Preay -2 ) | Psk)) = AY(nl — 2Pgay) = (n — 2)A.
k=1 k=1 k=1 k=1

O

In the case when there are just two subspaces, the following corollary holds.

Corollary 3.5. Let A € L(H, K) be closed-range operator and S C R(A) nontrivial closed subspace. Then we have

1 — 1
ATL,SL - _AT,S’
where S;( 4 15 closed subspace such that S &t S;( 4 = R(A). Here T C R(A") is related to S by (1).

Next result establishes the connection between extended Moore-Penrose equation and some other
generalized inverses:

Theorem 3.6. Let A € L(H, K) be closed-range operator, and S C R(A) and T C R(A*) nontrivial closed subspaces.
Then we have:
1. A" = Al (I-2Ps) = (I -2Pp)A
s I _ at.
2. AT AAT g = AF;
3. A%S is EP if and only if A is EP.

i
T,5’

Proof. Recall that V ¢ W & PyPw = PwPy = Py, by Theorem 1.5.b.
1. Operator I - 2Ps is unitary, therefore A} . = A'(I - 2P5) & A" = A} (1 -2Py).
2. AL AAL = AL (Preay — 2Ps) = AY(I = 2Ps)(Pgra) — 2Ps) = ATPriay = AT
3. The proof follows from the following equivalence chain:
Ab(Ab ) = (Aaf )AL & AT - 2Pg)(AT(I - 2Ps))" = (1 - 2P1)AY) (1 - 2PnAT &
o AN - 2Ps)?A = A(I - 2Pr)*At o ATA = AAT.
O

Theorem 3.7. Let A € L(H, K) be closed range operators and S C R(A), T C R(A") nontrivial closed subsets. Then
we have the following norm estimates:

L AL ol = 1A";
2. A - AAL Al < 201
Proof. 1. From (3) we have
IAL Il = IIA*(T - 2Ps)|| < IAT,

while from Theorem 3.6, part 1, it follows

AT = 1A% (1 - 2Ps)|| < AL I

2. It follows from A — AA? ¢A =2PsA, because ||Ps|| = 1.
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Proposition 3.8. Consider the operator equation Ax = b. We have the following possibilities:
o b¢ R(A) : AA} b = (Prea) — 2Ps)b = 0,
o beR(A)\ S : AAL b = (Prey — 2Ps)b = b,
e beS :AA%Sb = (PR(A) - 2P5)b = —b.

Therefore, x = A;Sb is a solution when b € R(A)\ S, and x = —A%Sb is solution for b € S.

4. Some examples
e Itis obvious that A =0 & At = 0.
e For A =1 € L(H) and given subspace S C H we have X* = X and X? = [, so I‘;S =1-2Ps=1-2Py.
e Suppose A € L(H) is invertible, and S, T C H are given. By the equations, we have
(AX)? =1 = (XA)?, (AX)" = AX, (XA)' = XA.
The reasonings similar to those preceding the definition givesus AX = [-2Ps, XA = [-2Pr. Therefore,

A;S = A™YI-2Ps) = (I -2P1)A™!, where A™'Pg = PrA™L.
So, the subspaces S, T are similar Pr = A71PsA. Also in this case we have
_1 1 _1 i
Ps = E(I - AAY), Pr = E(I - AGA).
e Let R and L be the right shift and left shift operator, respectively, defined on separable Hilbert space
% with canonical basis ({e1, e, ...}) on usual way
R(x1,x2,x3,...) = (0,x1,x2,...), L(x1,x2,%3,...) = (x2,X3,X4,...)

It is not hard to see that R* = R* = L and R(R) = lin{e,, e3, .. .}.

Let S1 = linfes, es,...} and Sy = {ey, ey, ...} be given subspaces of R(R) such that S; & S, = R(R). Then
we have for any x € ¢2:

R% s X = RY(I - 2Ps,)x = RT(x —2(0,0,x3,0,x5,0,...)) = L(x1, X2, —X3, X4, =X5, . ..) = (X2, —X3, X4, —X5, ...),
RE o x = R'(I-2Ps)x = R"(x = 2(0,%2,0,x5,0,...) = L(x1, —X2, X3, ~X4, X5, ...) = (=X2, X3, —X4, X5, ...

It is obvious that R, s,x + Rr, 5,x = 0, therefore Ry, s, + R, 5, = 0.
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