
Filomat 30:2 (2016), 429–440
DOI 10.2298/FIL1602429I

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this work, the problem of the approximation by certain polynomials is addressed. A new type
operators sequence including generalized Appell polynomials are defined, qualitative and quantitative ap-
proximation theorems are proved. Some explicit examples of our operators involving Hermite polynomials
of ν variance, Gould-Hopper polynomials and Miller-Lee polynomials are given. Also, we present some
numerical examples to confirm our theoretical results.

1. Introduction

In mathematics, approximation theory is related to how functions can be approximated with uncompli-
cated functions such as polynomials, wavelets or special functions and to quantitatively characterizing the
errors. The essence of the theory of approximation of functions is a theorem proved by Weierstrass which
is great significance in the advancement of the whole of mathematical analysis.

In 1950, Szasz [16] introduced and investigated the following operators known as Szasz-Mirakjan
operators

Sn
(

f ; x
)

:= e−nx
∞∑

k=0

(nx)k

k!
f
(

k
n

)
(1)

where n ∈N, x ≥ 0 and f ∈ C [0,∞) whenever the above sum converges. These operators are generalizations
of Bernstein polynomials to the infinite interval. Some approximation properties of the operators (1) are
discussed by many authors.

Cheney and Sharma [3] presented the operators including orthogonal polynomials as follows

Pn
(

f ; x
)

= (1 − x)n+1 exp
( tx

1 − x

) ∞∑
k=0

f
(

k
k + n

)
L(n)

k (t) xk

where t ≤ 0 and L(n)
k (t) denotes the Laguerre polynomials. After this construction, the notion of orthogonal

polynomials has appeared in the positive approximation processes.
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Later, Jakimovski and Leviatan [12] constructed a generalization of Szasz operators with Appell polyno-

mials. Let 1 (z) =
∞∑

k=0
akzk (a0 , 0) be an analytic function in the disc |z| < R (R > 1) and assume that 1 (1) , 0.

The Appell polynomials pk (x) have the generating functions of the form

1 (u) eux =

∞∑
k=0

pk (x) uk . (2)

Under the assumption pk (x) ≥ 0 for x ∈ [0,∞), Jakimovski and Leviatan introduced the linear positive
operators Pn

(
f ; x

)
via

Pn
(

f ; x
)

:=
e−nx

1 (1)

∞∑
k=0

pk (nx) f
(

k
n

)
, for n ∈N (3)

and gave the approximation properties of these operators with the help of Szasz’s method.
Then, Ismail [11] obtained another generalization of Szasz operators (1) and also Jakimovski and Leviatan

operators (3) through the instrument of Sheffer polynomials. Let A (z) =
∞∑

k=0
akzk (a0 , 0) and H (z) =

∞∑
k=1

hkzk (h1 , 0) be analytic functions in the disc |z| < R (R > 1) where ak and hk are real. The Sheffer

polynomials pk (x) have the generating functions of the type

A (t) exH(t) =

∞∑
k=0

pk (x) tk, |t| < R .

By the help of following assumptions

(i) for x ∈ [0,∞) , pk (x) ≥ 0,
(ii) A (1) , 0 and H′ (1) = 1,

Ismail investigated the convergence properties of linear positive operators given by

Tn
(

f ; x
)

:=
e−nxH(1)

A (1)

∞∑
k=0

pk (nx) f
(

k
n

)
, for n ∈N .

Brenke type polynomials [4] have the generating functions of the form

A (t) B (xt) =

∞∑
k=0

pk (x) tk (4)

where A and B are analytic functions

A (t) =

∞∑
r=0

artr, a0 , 0, (5)

B (t) =

∞∑
r=0

brtr, br , 0 (r ≥ 0) (6)

and have the following explicit expression

pk (x) =

k∑
r=0

ak−rbrxr, k = 0, 1, 2, ... . (7)
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With the help of following assumptions
(i) A (1) , 0, ak−rbr

A(1) ≥ 0, 0 ≤ r ≤ k, k = 0, 1, 2, ...,
(ii) B : [0,∞) −→ (0,∞) ,
(iii) (4) and the power series (5) and (6) converge for |t| < R (R > 1) ,

(8)

Varma et al. [18] introduced the following linear positive operators involving the Brenke type polynomials

Ln
(

f ; x
)

:=
1

A (1) B (nx)

∞∑
k=0

pk (nx) f
(

k
n

)
(9)

where x ≥ 0 and n ∈ N. There have also been many remarkable contributions to Szasz type operators
([1],[9],[10]).

Motivated by the above mentioned works, we consider the linear operators as follows

Mn
(

f ; x
)

:=
1

A
(
1 (1)

)
B
(
nx1 (1)

) ∞∑
k=0

pk (nx) f
(

k
n

)
(10)

where pk (x) are generalized Appell polynomials [15] having the generating functions of the following form

A
(
1 (t)

)
B
(
x1 (t)

)
=

∞∑
k=0

pk (x) tk (11)

and A, B and 1 are analytic functions such that

A (t) =

∞∑
k=0

aktk (a0 , 0) , B (t) =

∞∑
k=0

bktk (bk , 0) , 1 (t) =

∞∑
k=1

1ktk (
11 , 0

)
. (12)

We shall restrict ourselves to the generalized Appell polynomials (11) satisfying
(i) A

(
1 (1)

)
, 0, 1

′ (1) = 1, pk (x) ≥ 0 k = 0, 1, 2, ...,
(ii) B : R −→ (0,∞) ,
(iii) (11) and the power series (12) converge for |t| < R (R > 1) .

(13)

By virtue of the above restrictions,Mn linear operators defining by (10) are positive.

Remark 1.1. Let 1 (t) = t. The operators (10)
(
resp. (11)

)
reduce to the operators given by (9)

(
resp. (4)

)
.

Remark 1.2. Let 1 (t) = t and B (t) = et. It is obvious that one can get the operators (3) from the operators (10). In
addition, if we choose A (t) = 1, we meet again well-known Szasz operators (1).

The outline of this paper is as follows. Section 2 contains qualitative and quantitative results obtained by
classical modulus of continuity and Peetre’s K functional for the operators (10) . In section 3, some examples
are provided to illustrate the main ideas given in Section 2 and also, we give some numerical examples to
confirm our theoretical results.

2. Approximation to Functions UsingMn Operators

In this section, we get qualitative convergence result by means ofMn operators with the help universal
Korovkin-type property with respect to positive linear operators. Next, we state quantitative results for
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estimating the error of approximation using the classical approach, the second modulus of continuity and
Peetre’s K functional in the continuous functions space and the Lipschitz class.

Let us define the class of E as follows

E :=
{

f : x ∈ [0,∞) ,
f (x)

1 + x2 is convergent as x→∞
}

.

For the proof of our theorems, the following lemmas are required.

Lemma 2.1. For the operatorsMn, we have

Mn (1; x) = 1

Mn (s; x) =
B′

(
nx1 (1)

)
B
(
nx1 (1)

) x +
A′ (
1 (1)

)
nA

(
1 (1)

)
Mn

(
s2; x

)
=

B′′
(
nx1 (1)

)
B
(
nx1 (1)

) x2 +

[
2A′ (

1 (1)
)

+ A
(
1 (1)

) (
1
′′ (1) + 1

)]
B′

(
nx1 (1)

)
nA

(
1 (1)

)
B
(
nx1 (1)

) x

+
A′ (
1 (1)

) (
1 + 1

′′ (1)
)

+ A′′ (
1 (1)

)
n2A

(
1 (1)

) ,

for any x ∈ [0,∞).

Proof. Using the generating functions of the generalized Appell polynomials given by (11) , we have
∞∑

k=0

pk (nx) = A
(
1 (1)

)
B
(
nx1 (1)

)
∞∑

k=0

kpk (nx) = A
′ (
1 (1)

)
B
(
nx1 (1)

)
+ nxA

(
1 (1)

)
B
′ (

nx1 (1)
)

∞∑
k=0

k2pk (nx) =
(
A
′ (
1 (1)

) (
1
′′

(1) + 1
)

+ A
′′ (
1 (1)

))
B
(
nx1 (1)

)
+nxB

′ (
nx1 (1)

) (
A

(
1 (1)

) (
1
′′

(1) + 1
)

+ 2A
′ (
1 (1)

))
+ (nx)2 A

(
1 (1)

)
B
′′ (

nx1 (1)
)

.

In accordance with the above equalities, the proof of lemma follows.

Theorem 2.2. Let f be in C [0,∞) ∩ E and assume that the following conditions

lim
y→∞

B′
(
y
)

B
(
y
) = 1 and lim

y→∞

B′′
(
y
)

B
(
y
) = 1 (14)

are satisfied. Then,

lim
n→∞
Mn

(
f ; x

)
= f (x)

uniformly on each compact subset of [0,∞).

Proof. Considering the assumptions (14) in Lemma 2.1, we find

lim
n→∞
Mn

(
si; x

)
= xi, i = 0, 1, 2

uniformly on each compact subset of [0,∞) .Applying the universal Korovkin-type property (vi) of Theorem
4.1.4 from [2], the proof is completed.



G. İçöz et al. / Filomat 30:2 (2016), 429–440 433

In order to estimate the order of approximation, we will give some definitions and lemmas.

Definition 2.3. Let f ∈ C̃ [0,∞) and δ > 0. The modulus of continuity ω
(

f ; δ
)

of the function f is defined by

ω
(

f ; δ
)

:= sup
x,y∈[0,∞)

|x−y|≤δ

∣∣∣ f (x) − f
(
y
)∣∣∣

where C̃ [0,∞) is the space of uniformly continuous functions on [0,∞).

Let us denote the CB [0,∞) space of all bounded and continuous functions on [0,∞).

Definition 2.4. The second modulus of continuity of the function f ∈ CB [0,∞) is defined by

ω2
(

f ; δ
)

:= sup
0<t≤δ

∥∥∥ f (. + 2t) − 2 f (. + t) + f (.)
∥∥∥

CB[0,∞)

where
∥∥∥ f

∥∥∥
CB[0,∞) = sup

x∈[0,∞)

∣∣∣ f (x)
∣∣∣.

Definition 2.5. ([6]) The Peetre’s K functional of function f ∈ CB [0,∞) is defined by

K
(

f ; δ
)

= inf
{∥∥∥ f − h

∥∥∥
CB[0,∞) + δ ‖h‖C2

B[0,∞)

}
where C2

B [0,∞) =
{
h ∈ CB [0,∞) : h′ , h′′ ∈ CB [0,∞)

}
with the norm

‖h‖C2
B[0,∞) = ‖h‖CB[0,∞) +

∥∥∥h
′
∥∥∥

CB[0,∞) +
∥∥∥h
′′
∥∥∥

CB[0,∞) .

It is known that there exists a constant C > 0 such that

K
(

f ; δ
)
≤ Cω2

(
f ;
√

δ
)

. (15)

Lemma 2.6. For x ∈ [0,∞) , the following identities

Mn (s − x; x) =
A′ (
1 (1)

)
nA

(
1 (1)

) +

(
B′

(
nx1 (1)

)
B
(
nx1 (1)

) − 1
)

x

Mn

(
(s − x)2 ; x

)
=

(
1 + 1

′′ (1)
)

A′ (
1 (1)

)
+ A′′ (

1 (1)
)

n2A
(
1 (1)

)
+

2A′ (
1 (1)

) (
B′

(
nx1 (1)

)
− B

(
nx1 (1)

))
nA

(
1 (1)

)
B
(
nx1 (1)

) x

+
B′

(
nx1 (1)

) (
1 + 1

′′ (1)
)

nB
(
nx1 (1)

) x

+
B′′

(
nx1 (1)

)
− 2B′

(
nx1 (1)

)
+ B

(
nx1 (1)

)
B
(
nx1 (1)

) x2

are satisfied.

Proof. Using the linearity property of Mn operators and applying Lemma 2.1, we obtain the equalities
stated in the lemma.

The error of approximation can be obtained as the estimation of the difference of
∣∣∣Mn

(
f ; x

)
− f (x)

∣∣∣. In
order to get the quantitative results, we investigate this difference in some function spaces.
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Theorem 2.7. Let f ∈ C̃ [0,∞) ∩ E, then∣∣∣Mn
(

f ; x
)
− f (x)

∣∣∣ ≤ 2ω
(

f ; δn (x)
)

where δn (x) :=
√
Mn

(
(s − x)2 ; x

)
.

Proof. With the help of Lemma 2.1, monotonicity properties of operatorsMn and property of modulus of
continuity, one can write∣∣∣Mn

(
f ; x

)
− f (x)

∣∣∣ ≤ Mn

(∣∣∣ f (s) − f (x)
∣∣∣ ; x

)
≤ ω

(
f ; δ

) (
1 +

1
δ
Mn (|s − x| ; x)

)
.

According to the Cauchy-Schwarz inequality, we get∣∣∣Mn
(

f ; x
)
− f (x)

∣∣∣ ≤ ω (
f ; δ

) (
1 +

1
δ

√
Mn

(
(s − x)2 ; x

))
.

By taking δ := δn (x) =
√
Mn

(
(s − x)2 ; x

)
, we obtain the desired result.

Lipschitz class of order α, LipM (α) (0 < α ≤ 1, M > 0) , is defined as follows

LipM (α) :=
{

f ∈ CB [0,∞) :
∣∣∣ f (t) − f (x)

∣∣∣ ≤M |t − x|α , t, x ∈ [0,∞)
}
.

The following result provides an estimate for the approximation error of Mn operators to function f ∈
LipM (α) .

Theorem 2.8. Let f be in LipM (α) . For x ≥ 0 we have∣∣∣Mn
(

f ; x
)
− f (x)

∣∣∣ ≤Mδαn (x)

where δn (x) :=
√
Mn

(
(s − x)2 ; x

)
.

Proof. From the monotonicity properties of operatorsMn, we get∣∣∣Mn
(

f ; x
)
− f (x)

∣∣∣ ≤MMn (|s − x|α ; x) . (16)

Applying the Hölder inequality, one can deduce from (16)∣∣∣Mn
(

f ; x
)
− f (x)

∣∣∣ ≤M
(
Mn

(
(s − x)2 ; x

))α/2
.

Thus, we complete the proof of theorem.

The Peetre’s K functional turned out to be a very instrumental tool in approximation theory for estimating
the error. For this purpose, we are going to evaluate the degree of approximation with Peetre’s K-functional
in the following theorem.

Theorem 2.9. For every f ∈ CB [0,∞) and x ∈ [0,∞) , the following statement holds∣∣∣Mn
(

f ; x
)
− f (x)

∣∣∣ ≤ 2K
(

f ;λn (x)
)
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where

λn (x) =
B′′

(
nx1 (1)

)
− 2B′

(
nx1 (1)

)
+ B

(
nx1 (1)

)
4B

(
nx1 (1)

) x2

+

(
A′ (
1 (1)

)
+ nA

(
1 (1)

)) (
B′

(
nx1 (1)

)
− B

(
nx1 (1)

))
2nA

(
1 (1)

)
B
(
nx1 (1)

) x

+
B′

(
nx1 (1)

) (
1 + 1

′′ (1)
)

4nB
(
nx1 (1)

) x +

(
2n + 1 + 1

′′ (1)
)

A′ (
1 (1)

)
+ A′′ (

1 (1)
)

4n2A
(
1 (1)

) .

Proof. Let h ∈ C2
B [0,∞). By the Taylor’s expansion and linearity property ofMn operators, we have

Mn (h; x) − h (x) = h
′

(x)Mn (s − x; x) +
h′′

(
η
)

2
Mn

(
(s − x)2 ; x

)
, η ∈ (x, s) .

From the above equality, one can write

|Mn (h; x) − h (x)| ≤
{

B′′
(
nx1 (1)

)
− 2B′

(
nx1 (1)

)
+ B

(
nx1 (1)

)
2B

(
nx1 (1)

) x2

+

(
A′ (
1 (1)

)
+ nA

(
1 (1)

)) (
B′

(
nx1 (1)

)
− B

(
nx1 (1)

))
nA

(
1 (1)

)
B
(
nx1 (1)

) x

+
B′

(
nx1 (1)

) (
1 + 1

′′ (1)
)

2nB
(
nx1 (1)

) x

+

(
2n + 1 + 1

′′ (1)
)

A′ (
1 (1)

)
+ A′′ (

1 (1)
)

2n2A
(
1 (1)

)  ‖h‖C2
B[0,∞) .

(17)

On the other hand, using Lemma 2.1 and expression (17), we get∣∣∣Mn
(

f ; x
)
− f (x)

∣∣∣ ≤ ∣∣∣Mn
(

f − h; x
)∣∣∣ + |Mn (h; x) − h (x)| +

∣∣∣ f (x) − h (x)
∣∣∣

≤ 2
∥∥∥ f − h

∥∥∥
CB[0,∞) + |Mn (h; x) − h (x)|

≤ 2
(∥∥∥ f − h

∥∥∥
CB[0,∞) + λn (x) ‖h‖C2

B[0,∞)

)
. (18)

If we take the infimum on the right-hand side of (18) over all h ∈ C2
B [0,∞) ,we obtain the following desired

result∣∣∣Mn
(

f ; x
)
− f (x)

∣∣∣ ≤ 2K
(

f ;λn (x)
)

.

Theorem 2.10. For the operators (10) , if f ∈ CB [0,∞), then we have∣∣∣Mn
(

f ; x
)
− f (x)

∣∣∣ ≤ Cω2

(
f ;

√
νn (x)

)
+ω

(
f ;

A′ (
1 (1)

)
nA

(
1 (1)

) +

(
B′

(
nx1 (1)

)
B
(
nx1 (1)

) − 1
)

x
)

(19)

where C is constant and

νn (x) =
1
4

Mn

(
(s − x)2 ; x

)
+

(
A′ (
1 (1)

)
nA

(
1 (1)

) +

(
B′

(
nx1 (1)

)
B
(
nx1 (1)

) − 1
)

x
)2
 .
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Proof. Let us define an operator Fn by

Fn
(

f ; x
)

=Mn
(

f ; x
)
− f

(
A′ (
1 (1)

)
nA

(
1 (1)

) +
B′

(
nx1 (1)

)
B
(
nx1 (1)

) x
)

+ f (x) .

We deduce from Lemma 2.6

Fn (s − x; x) = 0. (20)

By the Taylor formula with integral reminder term for h ∈ C2
B [0,∞), we can write

h (s) = h (x) + (s − x) h
′

(x) +

s∫
x

(s − u) h
′′

(u) du.

Through the instrumentality of the above equality and (20), one gets

|Fn (h; x) − h (x)| =

∣∣∣∣∣∣∣∣Fn


s∫

x

(s − u) h
′′

(u) du; x


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣Mn


s∫

x

(s − u) h
′′

(u) du; x


∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣
A
′ (1(1))

nA(1(1)) +
B
′ (nx1(1))

B(nx1(1)) x∫
x

(
A′ (
1 (1)

)
nA

(
1 (1)

) +
B′

(
nx1 (1)

)
B
(
nx1 (1)

) x − u
)

h
′′

(u) du

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

{
Mn

(
(s − x)2 ; x

)
+

(
A′ (
1 (1)

)
nA

(
1 (1)

) +

(
B′

(
nx1 (1)

)
B
(
nx1 (1)

) − 1
)

x
)2
 ∥∥∥h

′′
∥∥∥

CB[0,∞)

≤ 4νn (x) ‖h‖C2
B[0,∞) . (21)

Taking into account of the definition of Fn operator, Lemma 2.1 and (21), we deduce that∣∣∣Mn
(

f ; x
)
− f (x)

∣∣∣ ≤ ∣∣∣Fn
(

f − h; x
)
−

(
f − h

)
(x)

∣∣∣
+ |Fn (h; x) − h (x)| +

∣∣∣∣∣∣ f
(

A′ (
1 (1)

)
nA

(
1 (1)

) +
B′

(
nx1 (1)

)
B
(
nx1 (1)

) x
)
− f (x)

∣∣∣∣∣∣
≤ 4

∥∥∥ f − h
∥∥∥

CB[0,∞) + 4νn (x) ‖h‖C2
B[0,∞)

+ω

(
f ;

A′ (
1 (1)

)
nA

(
1 (1)

) +

(
B′

(
nx1 (1)

)
B
(
nx1 (1)

) − 1
)

x
)

.

Using the above inequality and considering (15) , we conclude that∣∣∣Mn
(

f ; x
)
− f (x)

∣∣∣ ≤ 4K
(

f ; νn (x)
)

+ ω

(
f ;

A′ (
1 (1)

)
nA

(
1 (1)

) +

(
B′

(
nx1 (1)

)
B
(
nx1 (1)

) − 1
)

x
)

≤ Cω2

(
f ;

√
νn (x)

)
+ ω

(
f ;

A′ (
1 (1)

)
nA

(
1 (1)

) +

(
B′

(
nx1 (1)

)
B
(
nx1 (1)

) − 1
)

x
)

.

This completes the proof.
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3. Examples

In this section, we will give some explicit examples of operators (10) including generalized Appell
polynomials satisfying all restrictions (13) and assumptions (14).

Example 3.1. The Hermite polynomials H(ν)
k (x) of variance ν [14] have the following generating functions of the

form

e−
νt2
2 +xt =

∞∑
k=0

H(ν)
k (x)

k!
tk (22)

and the explicit representations

H(ν)
k (x) =

[ k
2 ]∑

r=0

(
−
ν
2

)r k!
r! (k − 2r)!

xk−2r

where, as usual, [.] denotes the integer part. It is obvious that the Hermite polynomials of variance ν are the generalized
Appell polynomials for

A (t) = e−
νt2
2 , B (t) = et and 1 (t) = t.

Under the assumption ν ≤ 0; the restrictions (13) and assumptions (14) for the operators Mn given by (10) are
satisfied. With the help of the generating functions (22), we get the explicit form of Mn operators involving the
Hermite polynomials H(ν)

k (x) of variance ν by

M
∗

n
(

f ; x
)

= e−nx+ ν
2

∞∑
k=0

H(ν)
k (nx)

k!
f
(

k
n

)
(23)

where x ∈ [0,∞).

The estimates found by Algorithm 3.5 are given in Table 1. In the following Table 1, we establish error
estimates for the approximation with M∗n operators including Hermite polynomials of variance ν. If we
pay attention to Table 1, we see that the approximation ofM∗n operators to function f (x) = x2

√

1+x2
depends

on ν parameter.

n Estimation for ν = −0.001 Estimation for ν = −3 Estimation for ν = −5
10 0.6423802906 0.9669999676 1.2083613350
102 0.2100791236 0.2250970464 0.2436322218
103 0.0668967314 0.0673950602 0.0680538580
104 0.0211952608 0.0212111354 0.0212322864
105 0.0067064286 0.0067069314 0.0067076008
106 0.0021211434 0.0021211592 0.0021211806
107 0.0006708028 0.0006708034 0.0006708044

Table 1. The error estimation of function f by using modulus of continuity

Example 3.2. Gould-Hopper polynomials [8] have the generating functions of the type

ehtd+1
exp (xt) =

∞∑
k=0

1d+1
k (x, h)

tk

k!
(24)
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and their explicit representations are

1d+1
k (x, h) =

[ k
d+1 ]∑
s=0

k!
s! (k − (d + 1) s)!

hsxk−(d+1)s .

Gould-Hopper polynomials 1d+1
k (x, h) are d-orthogonal polynomial set of Hermite type [7]. Van Iseghem [17]

and Maroni [13] discovered the notion of d-orthogonality. Gould-Hopper polynomials are the generalized Appell
polynomials with

A (t) = ehtd+1
, B (t) = et and 1 (t) = t .

Under the assumption h ≥ 0; the restrictions (13) and assumptions (14) for the operators Mn given by (10) are
satisfied. With the help of the generating functions (24), we obtain the explicit form of Mn operators including
Gould-Hopper polynomials by

M
∗∗

n
(

f ; x
)

= e−nx−h
∞∑

k=0

1d+1
k (nx, h)

k!
f
(

k
n

)
(25)

where x ∈ [0,∞).

The following table gives a bound the error of the approximation of function f (x) = x2
√

1+x2
by M∗∗n

operators involving Gould-Hopper polynomials. Each of the estimates depending on h and d parameters
list in the following table as follows:

n Estimation for h = 0.00001 Estimation for h = 1 Estimation for h = 1.8
10 0.6423250428 1.1805569940 1.4096205150
102 0.2100772120 0.2409468484 0.2812002468
103 0.0668966700 0.0679554484 0.0695336528
104 0.0211952592 0.0212291148 0.0212804728
105 0.0067064284 0.0067075012 0.0067091310
106 0.0021211432 0.0021211772 0.0021212294
107 0.0006708028 0.0006708042 0.0006708056

Table 2. The error estimation of function f by using modulus of continuity

Remark 3.3. It is worthy to note that for h = 0 and ν = 0, respectively, we obtain that

1d+1
k (nx, 0) = (nx)k and H(0)

k (nx) = (nx)k .

Substituting H(0)
k (nx) = (nx)k for ν = 0 in the operators (23) and similarly 1d+1

k (nx, 0) = (nx)k for h = 0 in the
operators (25), we get the well-known Szasz operators given by (1).

Example 3.4. Miller-Lee polynomials G(m)
k (x) [5] have the generating functions of the form

1

(1 − t)m+1 exp (xt) =

∞∑
k=0

G(m)
k (x) tk , |t| < 1 . (26)

From the generating relation (26), the Miller-Lee polynomials are the generalized Appell polynomials for

A (t) =
1

(1 − t)m+1 , B (t) = et and 1 (t) = t



G. İçöz et al. / Filomat 30:2 (2016), 429–440 439

and have the explicit expression

G(m)
k (x) =

k∑
r=0

(m + 1)r

r! (k − r)!
xk−r

where (α)k is the Pochhammer’s symbol given by

(α)0 = 1, (α)k = α (α + 1) ... (α + k − 1) k = 1, 2, ... .

For ensuring the restrictions (13) , we have to modify the generating function (26) by t→ t
2 and x→ 2x

1(
1 − t

2

)m+1 exp (xt) =

∞∑
k=0

G(m)
k (2x)

2k
tk , |t| < 2 .

By the help of the above generating function, we can construct the following linear and positive operator as an example
of the operatorMn when m > −1 and x ∈ [0,∞)

M
∗∗∗

n
(

f ; x
)

= e−nx
∞∑

k=0

G(m)
k (2nx)

2m+k+1
f
(

k
n

)
.

The results obtained by a similar algorithm with Algorithm 3.5 are shown in Table 3. We derive error
estimates depending on m for the convergence to the function f (x) = x2

√

1+x2
withM∗∗∗n operators including

Miller-Lee polynomials as follows:

n Estimation for m = −0.01 Estimation for m = 1 Estimation for m = 2.1
10 0.7242273912 0.8396862662 0.9798716350
102 0.2131282788 0.2182214998 0.2258785894
103 0.0669953140 0.0671629400 0.0674218672
104 0.0211983934 0.0212037278 0.0212119932
105 0.0067065276 0.0067066968 0.0067069578
106 0.0021211464 0.0021211524 0.0021211606
107 0.0006708028 0.0006708032 0.0006708034

Table 3. The error estimation of function f by using modulus of continuity

Algorithm 3.5. restart;
f:=x->(xˆ2)*(1/sqrt(xˆ2+1));
n:=1:
v1:=-0.001: v2:=-3: v3:=-5:
for i from 1 to 7 do
n:=10*n;
delta1:=evalf(sqrt((1/n)+(v1ˆ2-2*v1)/(nˆ2))):
delta2:=evalf(sqrt((1/n)+(v2ˆ2-2*v2)/(nˆ2))):
delta3:=evalf(sqrt((1/n)+(v3ˆ2-2*v3)/(nˆ2))):
omega1(f,delta1):=evalf(maximize(expand(f(x+h)-f(x)),x=0..1-delta1,h=0..delta1)):
omega2(f,delta2):=evalf(maximize(expand(f(x+h)-f(x)),x=0..1-delta2,h=0..delta2)):
omega3(f,delta3):=evalf(maximize(expand(f(x+h)-f(x)),x=0..1-delta3,h=0..delta3)):
error1:=evalf(2*omega1(f,delta1));
error2:=evalf(2*omega2(f,delta2));
error3:=evalf(2*omega3(f,delta3));
end do;
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