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Structure of Weighted Hardy Spaces in the Plane

Nihat Gökhan Göğüşa

aSabanci University, Tuzla , Istanbul 34956 Turkey

Abstract. We characterize certain weighted Hardy spaces on the unit disk and completely describe their
dual spaces.

1. Introduction and Preliminaries

By a recent paper of Poletsky and Stessin [5] to each subharmonic function on a bounded regular domain
G which is continuous near the boundary corresponds a space Hp

u of analytic functions in G with a certain
growth condition. These are namely Poletsky-Stessin Hardy spaces. They include and generalize the
well-known classical Hardy spaces. This new theory unifies the standpoints of various analytic function
spaces into one.

The first generalizations in this direction of the theory of Hardy spaces on hyperconvex domains in
Cn was suggested and studied in [1]. More recently the theory is extended to hyperconvex domains in
[5]. Boundedness and compactness of the composition operators on these new Poletsky-Stessin Hardy and
Bergman type spaces were investigated there. After this motivating work more investigation [2], [12], [10]
revealed the structure and first examples of these Hardy type spaces in the plane.

In [2] to understand the scale of weighted Hardy spaces u → Hp
u Alan and the author completely

characterized Hp
u spaces in the plane domains by their boundary values or by possessing a harmonic

majorant with a certain growth (see also [12], [10]). Basically the version of the Beurling’s theorem proved
in [2] states that when G is the unit disk in the plane, to each subharmonic exhaustion G corresponds an
outer function ϕwhich belongs to the class Hp

u so that Hp
u isometrically equals toMϕ,p for p > 0, whereMϕ,p

is the space ϕ2/pHp endowed with the norm

‖ f ‖Mϕ,p := ‖ f/ϕ2/p
‖p, f ∈ Mϕ,p.

This result is especially useful to construct examples of analytic function spaces enjoying certain desired
properties. The spaceMϕ,2, when ‖ϕ‖∞ ≤ 1, was studied as a tool to understand certain sub-Hardy Hilbert
spaces in the unit disk in [11]. Two problems were not answered in [2]:

1. Can we go back? That is, given analyticϕ can one find a subharmonic exhaustion u so that Hp
u =Mϕ,p?
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2. For the space Hp
u, consider the class of all representatives, i.e., subharmonic exhaustions v so that

Hp
u = Hp

v. What kind of ”good” representatives are there?

In this note we give answers for both questions. We show under certain growth conditions on the
analytic functionϕ on the disk that it is possible to construct a subharmonic exhaustion u on the disk so that
Hp

u equals toMϕ,p. Moreover, by the construction, u is a decreasing limit of subharmonic exhaustions which
are smooth on the closure of the unit disk. In specific cases u is real analytic and satisfies the bi-Laplacian
in the unit disk. This is a new information related to the second question.

In addition, using the boundary value characterization from [2] we completely characterize the dual
space of Hp

u and discuss the corresponding extremal and dual extremal problems.
After several months of submission of this paper there appeared a preprint [7]. Theorem 3.3 in this

paper is similar to Theorem 2.1 below. In Theorem 2.1 we do not require any integrability condition on the
subharmonic exhaustion u, however the authors in [7] require u to be intagrable.

Let us start to recall basic definitions. A function u ≤ 0 on a bounded open set G ⊂ C is called an
exhaustion on G if the set

Bc,u := {z ∈ G : u(z) < c}

is relatively compact in G for any c < 0. When u is an exhaustion and c < 0, we set

uc := max{u, c}, Sc,u := {z ∈ G : u(z) = c}.

Let u ∈ sh(G) be an exhaustion function which is continuous with values in R ∪ {−∞}. Following Demailly
[3] we define

µc,u := ∆uc − χG\Bc,u∆u,

where χω is the characteristic function of a set ω ⊂ G. We denote the class of negative subharmonic
exhaustion functions on G by E(G). The class of all functions u ∈ E(G) for which

∫
∆u < ∞ is denoted by

E0(G).
If u ∈ E(G), then the Demailly-Lelong-Jensen formula ([3]) takes the form∫

Sc,u

v dµc,u =

∫
Bc,u

(v∆u − u∆v) + c
∫

Bc,u

∆v, (1)

where µc,u is the Demailly measure which is supported in the level sets Sc,u of u and v ∈ sh(G). Let us recall
that by [3] if

∫
G ∆u < ∞, then the measures µc,u converge as c→ 0 weak-∗ in C∗(G) to a measure µu supported

in the boundary ∂G.
Following [5] we set

shu(G) := shu :=
{

v ∈ sh(G) : v ≥ 0, sup
c<0

∫
Sc,u

v dµc,u < ∞

}
,

and

Hp
u(G) := Hp

u :=
{
f ∈ hol(G) : | f |p ∈ shu

}
for every p > 0. We write

‖v‖u := sup
c<0

∫
Sc,u

v dµc,u =

∫
G

(v∆u − u∆v) (2)

for a nonnegative function v ∈ sh(G) and set

‖ f ‖u,p := sup
c<0

(∫
Sc,u

| f |p dµc,u

)1/p

(3)
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for a holomorphic function f on G. We will use ‖ f ‖u = ‖ f ‖u,p when p = 1. By Theorem 4.1 of [5], Hp
u is a

Banach space when p ≥ 1. It is clear that the function f ≡ 1 belongs to Hp
u if and only if the Demailly measure

µu has finite mass. If G is a regular bounded domain in C and w ∈ G, then the Green function v(z) = 1G(z,w)
is a subharmonic exhaustion function for G. For example, when G is the unit disk and v(z) = log |z|, then
µv is the normalized arclength measure on the unit circle. We denote by PG(z,w) the Poisson kernel for the
domain G.

The following Theorems are recollections from [2].

Theorem 1.1. [2, Theorem 2.3] Let G be a bounded domain, v ≥ 0 be a function on G, p > 0, and u ∈ E(G). The
following statements are equivalent:

i. v ∈ shu(G).

ii. The least harmonic majorant h = PG(v) of ϕ in G belongs to the class shu.

Furthermore,

‖v‖u =

∫
G

h∆u = ‖h‖u.

We will denote by Hp(G) the space of analytic functions f in G for which | f |p has a harmonic majorant in
G (see for example [4]). We always have Hp

u ⊂ Hp by [5]. We will denote by ν the usual arclength measure
on ∂G normalized so that ν(∂G) = 1.

Theorem 1.2. [2, Theorem 2.10] Let G be a Jordan domain with rectifiable boundary or a bounded domain with C2

boundary, p > 1, and u ∈ E(G). The following statements are equivalent:

i. f ∈ Hp
u(G).

ii. f ∈ Hp(G) and | f ∗| ∈ Lp(Vuν), where

Vu(ζ) :=
∫

G
PG(z, ζ)∆u(z), ζ ∈ ∂G. (4)

iii. f ∈ Hp(G) and there exists a positive measure µ̃u on ∂G such that | f ∗| ∈ Lp(µ̃u). Moreover, if E is any Borel
subset of ∂G with measure ν(E) = 0, then µ̃u(E) = 0 and we have the equality∫

∂G
γ dµ̃u =

∫
G

PG(γ)∆u (5)

for every γ ∈ L1(ν).

In addition, if f ∈ Hp
u(G), then ‖ f ‖u,p = ‖ f ∗‖Lp(µ̃u) and dµ̃u = Vudν.

Remark 1.3. i. Theorem 1.2 is valid when p > 0 and G is the unit disk or more generally a Jordan domain with
rectifiable boundary. In this case the Poisson integral of an Lp(dν) function u has non-tangential limits equal to u on
ν-almost every boundary point. This is indeed what is needed in the proof of Theorem 1.2.

ii. By replacing the function u by a suitable positive multiple tu, t > 0, we may assume that Vu ≥ 1 on ∂G. To do
this it is enough to take a compact set K ⊂ G so that ∆u(K) > r > 0. Let m := minζ∈∂G minz∈K PG(z, ζ). Then take
t := 1/(rm). We will use the assumption that Vu ≥ 1 when convenient.

iii. The weight function Vu is lower semicontinuous. To see this, suppose ζ j ∈ ∂G, ζ j → ζ. By Fatou’s lemma

lim inf
j

Vu(ζ j) = lim inf
j

∫
G

PG(z, ζ j)∆u(z) ≥
∫

G
PG(z, ζ)∆u(z) = Vu(ζ).

Note that Vu is the balayage of the measure ∆u on ∂G.
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iv. Suppose G is a bounded domain with C2 boundary or a Jordan domain with rectifiable boundary and u ∈ E0(G).
Then

u(z) =

∫
G
1G(z,w)∆u(w), z ∈ G.

Since

∂1G(ζ,w)
∂n

= PG(w, ζ)

when ζ ∈ ∂G and w ∈ G, ∂u
∂n (ζ) exists for every ζ ∈ ∂G, where ∂

∂n denotes the normal derivative in the outward
direction on ∂G and

∂u(ζ)
∂n

= Vu(ζ) =

∫
G

PG(w, ζ)∆u(w), ζ ∈ ∂G.

By property (5) in Theorem 1.1∫
∂G

Vu(ζ)dν(ζ) =

∫
G

∆u =

∫
∂G

∂u
∂n

(ζ)dν(ζ).

To obtain Fatou’s type results we would like to compute the Radon-Nikodym derivative of the Demailly
measures with respect to the usual arclength measure on the level sets. In the next result we provide this.
Let νc denote the arclength measure on Sc,u. Define

Vc,u(ζ) :=
∫

Bc,u

PBc,u (z, ζ)∆u(z), ζ ∈ Sc,u,

where PBc,u (z, ζ) denotes the Poisson kernel for Bc,u.

Proposition 1.4. Let u ∈ E(G), where G is a bounded regular domain. Suppose that u is Lipschitz in every compact
subset of G. Then the measures νc and µc,u are mutually absolutely continuous and µc,u = Vc,uνc with Vc,u ∈ L1(νc).
Moreover, for each c < 0 there is a constant kc > 0 so that Vc,u ≥ kc on Sc,u.

Proof. Let ϕ be a continuous function on Sc,u and let h(z) be the harmonic function in Bc,u with boundary
values equal to ϕ. By equality (1) we have∫

Sc,u

ϕ(ζ)dµc,u(ζ) =

∫
Bc,u

h(z)∆u(z)

=

∫
Sc,u

(∫
Bc,u

PBc,u (z, ζ)∆u(z)
)
ϕ(ζ) dνc(ζ)

=

∫
Sc,u

ϕ(ζ)Vc,u(ζ) dνc(ζ).

Hence µc,u = Vc,uνc. Another observation using Fubini’s theorem gives∫
Sc,u

Vc,u(ζ)dνc(ζ) =

∫
Bc,u

∆u(z) = ‖µc,u‖ < ∞.

Thus Vc,u ∈ L1(νc). Note that νc ≤ k′cµc,u for some positive constant k′c by [3]. Hence Vc,u ≥ kc on Sc,u for some
kc > 0. This completes the proof.

Remark 1.5. The requirement that u is Lipschitz is only needed to write the harmonic measure on Bc,u of the form
PBc,u dνc. There are much weaker conditions on domains for which the harmonic measure is absolutely continuous.
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The next auxiliary result allows one to compare the Demailly measures on Sc,u with a measure on an
arbitrary level set.

Proposition 1.6. Let u be a subharmonic exhaustion function on a bounded regular domain G in C. Let G j be
relatively compact regular open sets in G so that G j ⊂ G j+1 and ∪G j = G. Then for each j there is a u j ∈ E(G j) and
for each c < 0 there is a number s with c < s < 0 so that for any nonnegative function v ∈ sh(G), the integrals µu j (v)
are increasing and

µc,u(v) ≤ µu j (v) = ‖v‖u j ≤ µs,u(v).

This means ‖v‖u = lim j µu j (v) for every nonnegative subharmonic function v on G.

Proof. Set u j := u − PG j u. Clearly u j ∈ E(G j). Take an integer j0 ≥ 1 and a number s < 0 with c < s so that
Bc,u ⊂ G j0 ⊂ Bs,u. The comparison follows from (1) and (2) if we note that c ≤ PG j u on Bc,u and PG j u ≤ s on
Bs,u.

If ϕ is a nonzero analytic function onD, letMϕ,p denote the space ϕ2/pHp endowed with the norm

‖ f ‖Mϕ,p := ‖ f/ϕ2/p
‖p, f ∈ Mϕ,p.

We will call a function ϕ ∈ H2
u a u-inner function if |ϕ∗(ζ)|2Vu(ζ) equals 1 for almost every ζ ∈ ∂D. If,

moreover, ϕ(z) is zero-free, we will say that ϕ is a singular u-inner function. The next result is Theorem 3.2
and Corollary 3.3 from [2].

Theorem 1.7. Let Y , {0} be a closed Mz-invariant subspace of H2
u(D). Then there exists a function ϕ ∈ H2

u so that
|ϕ∗(ζ)|2Vu(ζ) = 1 for almost every ζ ∈ ∂D and Y =Mϕ,2. In particular, there exists a u-inner and an outer function
ϕ ∈ H2

u so that H2
u =Mϕ,2 and these spaces are isometric.

This function ϕ is determined uniquely up to a unit constant. Note that

Vu(eiθ) =
1

|ϕ(eiθ)|2
=

1
ϕ2(eiθ)

sgn
1

ϕ2(eiθ)
, (6)

where we set s1nα := |α|/α for any complex number α , 0 and s1n0 := 0. If V ≥ 1 on ∂D, then |ϕ(ζ)| ≤ 1 for
almost every ζ. Suppose that

∫
∆u < ∞. Then the function 1 belongs to Hp

u. Hence ϕ−1 belongs to H2. Then
it is an easy exercise to show that ϕ is an outer function.

Theorem 1.8. The set Lp(Vudθ) coincides with ϕ2/pLp(dθ) and the map f 7→ ϕ−2/p f is an isometric isomorphism
from the space Lp(Vudθ) onto Lp(dθ).

Theorem 1.9. [2, Theorem 3.4] Suppose 0 < p < ∞, f ∈ Hp
u(D), f . 0, and B is the Blaschke product formed with

the zeros of f . Then there are zero-free ϕ ∈ H2
u ∩H∞, S ∈ H∞ and F ∈ Hp so that ϕ is outer and singular u-inner, S

is singular inner, F is outer, and

f = BSϕ2/pF. (7)

Moreover, ‖ f ‖p,u = ‖F‖p and Hp
u(D) =Mϕ,p.

Corollary 1.10. The map f 7→ ϕ−2/p f is an isometric isomorphism from the space Hp
u onto Hp.

The following Lemma will be useful in the next section. Its proof is a simple calculation and we outline
it here.

Lemma 1.11. Let c be a number with −1 < c < 0. Then there exists a function κ = κc defined on (−∞, 0] with the
following properties:
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i. κ : (−∞, 0]→ (−∞, 0] is non-decreasing, convex and C∞,

ii. κ is real-analytic in (c, 0],

iii. κ(t) ≡ c when t ≤ c, κ(0) = 0, and κ′(0) = 1.

Proof. Let a := − ln(−c)
e , b := −1

ln(−c) , and

κ(t) :=

c + e
−a

(t−c)b , t > c,
c, t ≤ c.

Then

κ′(t) =
1

e(t − c)b+1
e
−a

(t−c)b

and

κ′′(t) =
1

e(t − c)2b+2
(1/e − (b + 1)(t − c)b+1)e

−a
(t−c)b

for t > c. For t ≤ c, κ′(t) = κ′′(t) = 0. It can be checked that κ′′(t) > 0 for c < t ≤ 0, and κ satisfies all
properties in i., ii. and iii.

2. Finding Subharmonic Exhaustion

Theorem 1.2 describes the weight function Vu corresponding to the Hardy space Hp
u when the Laplacian

of u is known. In Theorem 1.9 we obtain a canonical factorization for functions in Hp
u and we see that this

space is a certain multiple ϕ2/pHp of Hp. The singular u-inner function ϕ appearing in this factorization is
related to the weight Vu by

Vu(eiθ) =
1

|ϕ(eiθ)|2
, a.e. θ. (8)

In this section we seek a converse to these results.
Let G be a Jordan domain with rectifiable boundary and ψ be a given analytic function in H1(G). The

problem is to find a subharmonic exhaustion u on G so that Vu(ζ) = |ψ(ζ)|when ζ ∈ ∂G. Taking a conformal
map of G onto D we can always suppose that G = D. This is a type of inverse balayage problem. We solve
this next.

Theorem 2.1. Let ψ be a lower semicontinuous function on ∂D so that ψ ≥ c for some constant c > 0. Then there
exists a function u ∈ E so that ψ = Vu. Moreover we have the following properties:

a. u is the decreasing limit of functions in E0 ∩ C∞(D) converging uniformly to u onD.

b. u ∈ E0(D) if and only if ψ ∈ L1(dν).

c. If ψ is Ck, 0 ≤ k ≤ ∞, on ∂D, then u is Ck onD. If ψ is real-analytic, then there exists a compact K so that u is
real-analytic onD\K.

Proof. Suppose first thatψ is C2 on ∂D and let ρ(reiθ) := 1
2 (r2
−1)ψ(eiθ) for reiθ

∈ D. Computing the Laplacian
of ρ we get

∆ρ(reiθ) = 2ψ(eiθ) +
r2
− 1

2r2

d2ψ(eiθ)
dθ2 .
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By assumption ∆ρ(eiθ) = 2ψ(eiθ) ≥ 2c > 0. Hence there exists a compact B ⊂ D so that ∆ρ(z) > 0 on the open
set Ω := D\B. Hence ρ is a non-positive subharmonÅc function on Ω and ρ|∂D ≡ 0. Since ρ is continuous
onD, there exists a constant c < 0 so that the set Bc,ρ is relatively compact inD and Sc,ρ ⊂ Ω. Let κ = κc be
the function proivided in Lemma 1.11. Define u(z) := κ(ρ(z)) for z ∈ D. Now u = κ(ρ) is subharmonic in Ω,
u ≡ c on Bc,ρ and u ≥ c onD\Bc,ρ ⊂ Ω. Hence u ∈ E and Vu = ∂u

∂r = κ′(0) ∂ρ∂r = ψ on ∂D.
Now let ψ be lower semicontinuous. There exists ψn, all C∞ on ∂D so that c ≤ ψn(ζ) ≤ ψn+1(ζ), and

ψ(ζ) = limn ψn(ζ) for every ζ ∈ ∂D. We let ψ0 ≡ 0. Replacing ψn by ψn − 2−n we may assume that
dn := ψn+1−ψn ≥ 2−n−1. As in the first part of the proof we let ρn(z) := 1

2 (r2
−1)dn(eiθ). There exists a compact

Bn ⊂ D so that ∆ρn(z) > 0 on the open set Ωn := D\Bn. This time we choose constants −2−n
≤ cn < 0 so that

Bcn,ρn is relatively compact inD, Scn,ρn ⊂ Ωn, and Bcn,ρn ⊂ Bcn+1,ρn+1 . Let un(z) := κcn (ρn(z)) so that as proved in
the first part, Vun = dn and un ∈ C∞(D).

Let

u(z) :=
∞∑

n=0

un(z).

Since |un| ≤ |cn| ≤ 2−n for all n, the sum converges uniformly onD. This shows that u ∈ E and properties in
a. and c. are satisfied. Using (4) in Theorem 1.2,

Vu(ζ) =

∫
D

P(z, ζ)∆u(z) =

∞∑
n=0

∫
D

P(z, ζ)∆un(z) =

∞∑
n=0

dn(ζ) = ψ(ζ).

Due to an equality in Remark 1.3,∫
D

∆u(z) =

∫
∂D

Vudν =

∫
∂D
ψdν.

Hence u ∈ E0 if and only if ψ ∈ L1(dν). The proof is completed.

We have now the following converse to Theorem 1.9 to answer the first question in the introduction.

Theorem 2.2. Let ϕ be a zero free analytic function on D so that |ϕ∗| equals ν-almost everywhere to an upper
semicontinuous function on ∂D. Then there exists a u ∈ E(D) so that Hp

u =Mϕ,p and we have isometric isomorphism
of two spaces.

Proof. It is enough to prove the theorem when p = 2. Since |ϕ∗| is upper semicontinuous on ∂D, there exists
a constant m so that |ϕ∗| ≤ m. Hence the function ψ := 1/|ϕ∗|2 is lower semicontinuous and ψ ≥ 1/m. Let
u ∈ E(D) be the exhaustion provided by Theorem 2.3 for the function ψ so that Vu = 1/|ϕ∗|2. If f ∈ H2

u, we
write f = ϕ f0, where f0 = f/ϕ. Then

‖ f ‖22,u =

∫ 2π

0
| f (eiθ)|2Vu(eiθ) dθ = ‖ f ‖2

Mϕ,2
= ‖ f0‖22 < ∞.

Thus f0 ∈ H2 and we have shown that H2
u ⊂ Mϕ,2. Conversely, if f ∈ Mϕ,2, then clearly f ∈ H2

u from
the same equality above. The mapping f 7→ ϕ f0 is clearly an isomorphism of H2

u onto Mϕ,2 which is an
isometry.

When the weight function Vu is smooth enough, there is a connection with the corresponding subhar-
monic exhaustions and the bi-Laplacian equation ∆2u = 0. This is explained in the next result.

Theorem 2.3. Let ψ ∈ C1(∂D) be a nonnegative function. Then there exists a function u and a constant M with the
following properties:

a. u ∈ E0(D) and u is real analytic onD.
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b. Vu(ζ) = ∂u
∂n (ζ) = ψ(ζ) + M for every ζ ∈ ∂D.

c. u satisfies the bi-Laplacian equation ∆2u = 0 onD.

Proof. Let u(z) := 1
2 (|z|2 − 1)[Pψ(z) + M], where Pψ(z) is the harmonic extension of ψ onD. Then using polar

coordinates ∆u(z) = 2[Pψ(z) + M] + 2|z| ∂Pψ(z)
∂r . Note that Pψ ∈ C1(D). Now take M large enough so that

∆u(z) ≥ 0 onD. Again taking the Laplacian it can be checked that ∆2u(z) = 0. Hence ∆u is harmonic onD
and since∫

D

∆u = c(Pψ(0) + M) ≤ c‖ψ‖∞ + cM < ∞,

u ∈ E0. Clearly u is real analytic onD. On ∂Dwe have

Vu(ζ) =
∂u
∂r

(ζ) = ψ(ζ) + M

for every ζ ∈ ∂D.

Remark 2.4. Equality in (5) shows also that

2
∫ 2π

0
log |z − eiθ

|

[
ψ(eiθ) +

∂Pψ(eiθ)
∂r

+ M
]

dθ =

∫
D

log |1 − wz|∆u(w)

for every z ∈ D. Therefore, in fact, u can be written as the difference of two potentials

u(z) =
1

2π

∫
D

log |z − w|∆u(w)dw −
1
π

∫ 2π

0
log |z − eiθ

|

ψ(eiθ) +
∂Pψ̃(eiθ)
∂r

+ M

 dθ

for every z ∈ D. Here ∆u is harmonic.

When v ∈ E(D), let R(v) denote the class of all functions u ∈ E(D) which generates the same space
Hp

v = Hp
u. We know a ”good” representative in R(v) for certain cases as a consequence of Theorem 2.3.

Theorem 2.5. Let v ∈ E0(D) so that Vv is bounded and PVv + |z| ∂PVv
∂r ≥ 0 on D. Then R(v) contains a function

u ∈ E0 which is real analytic and satisfies the bi-Laplacian equation ∆2u = 0 on D. Moreover, Vu = Vv and the
weight function Vu can be found by using the equation

Vu(eiθ) =
1
2

∫ 1

0
∆u(seiθ)ds.

Proof. Let u(z) := 1
2 (|z|2 − 1)PVv(z). Then ∆u(z) = 2PVv(z) + 2|z| ∂PVv(z)

∂r ≥ 0 by assumption. Hence u ∈ E0, u
is real analytic and satisfies the bi-Laplacian equation ∆2u = 0 onD. Let h(z) := ∆u(z) and hs(z) := h(sz) for
0 < s < 1. By (4) of Theorem 1.2

Vu(eiθ) =

∫
D

P(z, eiθ)h(z)dz = lims→1

∫
D

P(z, eiθ)hs(z)dz

= lims→1

∫ 1

0
r
∫ 2π

0
P(reit, eiθ)

[
1

2π

∫ 2π

0
hs(eiη)P(reit, eiη)dη

]
dtdr

= lims→1

∫ 1

0
r
∫ 2π

0
hs(eiη)

[
1

2π

∫ 2π

0
P(reit, eiη)P(reiθ, eit)dt

]
dηdr

= lims→1

∫ 1

0
r
∫ 2π

0
hs(eiη)P(r2eiθ, eiη)dηdr

= lims→1

∫ 1

0
rhs(r2eiθ)dr =

1
2

∫ 1

0
∆u(reiθ)dr.
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3. Representation of Linear Functionals

First we describe the the space of annihilators of Hp
u in Lq(Vdθ), where 1/p + 1/q = 1. Let G ∈ Lq(dθ) and

f = ϕ2/pF ∈ Hp
u. Define

LG( f ) = LG(ϕ2/pF) :=
∫ 2π

0
F(eiθ)G(eiθ)dθ.

Then LG belongs to (Hp
u)∗ since |LG( f )| ≤ ‖F‖p‖G‖q = ‖ f ‖u,p‖G‖q. We denote by Hq

u,0 the class of functions 1 in
Hq

u with 1(0) = 0. Then Hq
u,0 is isometrically isomorphic to Hq

0 which is the space of functions 1 ∈ Hq with
1(0) = 0.

Theorem 3.1. For 1 ≤ p < ∞, (Hp
u)⊥ is isometrically isomorphic to Hq

0 which is isometrically isomorphic to Hq
u,0 or

Hq
u.

Proof. Suppose 1 ∈ Lq(Vdθ) is an annihilator of Hp
u. Then∫ 2π

0
ϕ2/p(eiθ)1(eiθ)V(eiθ)einθdθ = 0

for every n = 0, 1, 2, . . .. Therefore ϕ2/p1V is the boundary function of some G ∈ H1 with G(0) = 0. In fact G
is determined uniquely by 1. From the equality

|1|qV = |ϕ|2|G|qV = |G|q

we see that G ∈ Hq and ‖1‖u,q = ‖G‖q. Take any f = ϕ2/pF ∈ Hp
u. Then∫ 2π

0
f (eiθ)1(eiθ)V(eiθ)dθ =

∫ 2π

0
F(eiθ)G(eiθ)dθ = 0.

Conversely, take any G ∈ Hq. Now from [4, Sec. 7.2] if G ∈ Hq
0, then LG ∈ (Hp

u)⊥. Hence the map G 7→ LG

from Hq
0 onto (Hp

u)⊥ is an isometric isomorphism.

Theorem 3.1 gives a canonical representation of (Hp
u)∗ as in the next statement which can be compared to

the classical case (see [4, Theorem 7.3] for example).

Theorem 3.2. For 1 ≤ p < ∞, (Hp
u)∗ is isometrically isomorphic to Lq(Vdθ)/Hq

u. Furthermore, if 1 < p < ∞, for
each L ∈ (Hp

u)∗ there exists a unique G ∈ Hq
u so that L( f ) = LG( f ) for every f ∈ Hq

u. For each L ∈ (H1
u)∗ there exists a

function G ∈ H∞u so that L( f ) = LG( f ) for every f ∈ H1
u.

The next theorem describes the preduals of Hp
u.

Theorem 3.3. Let u be a subharmonic exhaustion function onD. If 1 < p ≤ ∞ and 1/p + 1/q = 1, then:

i. Hp
u =

(
Lq

u/H
q
u,0

)∗
.

ii. Hp
u,0 =

(
Lq

u/H
q
u

)∗
.

Proof. Let Γ be a bounded linear functional on Lq
u/H

q
u,0. Then, by composing Γ with the canonical projection

of Lq
u onto Lq

u/H
q
u,0, Γ gives a linear functional on Lq

u with the same norm as on Lq
u/H

q
u,0. So, for any f ∈ Lq

u,
using equation (6), Theorem 1.8 and Corollary 1.10 we have

Γ( f ) = Γ( f + Hq
u,0) =

∫ 2π

0
[ f (eiθ)ϕ−2/q(eiθ)][G(eiθ)ϕ−2/p(eiθ)]dθ, (9)

where G ∈ Lp
u with ‖G‖p,u = ‖Γ‖. We have Γ(einθϕ2/q) = 0 for every integer n ≥ 1. Hence G ∈ Hp

u. Conversely,
any function G ∈ Hp

u gives rise to a linear functional Γ on Lq
u/H

q
u,0 by formula (9). This proves the first

assertion. The second part is proved by a similar argument.
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4. Extremal Problems

We are now ready to discuss the related extremal problems. For fixed 1 ∈ Lq(Vdθ) the extremal problem
is to find

Λ(1) := sup
{
|λ( f )| : f ∈ Hp

u, ‖ f ‖p,u ≤ 1
}
, (10)

where

λ( f ) :=
1

2πi

∫
|z|=1

F(z)G(z)dz =
1

2π

∫ 2π

0
f (eiθ)1(eiθ)V(eiθ)eiθdθ (11)

and we use the correspondence f = ϕ2/pF, 1 = ϕ2/qs1n(ϕ2)G provided by Theorem 1.8 and Corollary 1.10.
The related dual extremal problem is to find the function 10 ∈ Hq

u so that

Γ(1) := inf
{
‖1 − h‖q,u : h ∈ Hq

u

}
= ‖1 − 10‖q,u. (12)

The proof of the following existence and uniqueness theorem for the extremal problems follows in view
of Theorem 1.8, Corollary 1.10 and [4, Theorem 8.1].

Theorem 4.1. Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1 and 1 ∈ Lq(Vdθ).

i. The duality relation Λ(1) = Γ(1) holds.

ii. If p > 1, there is a unique extremal function f ∈ Hp
u for which λ( f ) > 0. The dual extremal problem has a

unique solution.

iii. If p = 1 and G(eiθ) is continuous, at least one solution to the extremal problem exists. If p = 1, the dual extremal
problem has at least one solution; it is unique if the extremal problem has a solution.
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