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On Generalized Lorentz Sequence Space
Defined by Modulus Functions

Oguz Ogur?, Cenap Duyar?

*Ondokuz Mayis University, Art and Science Faculty, Department of Mathematics, Kurupelit campus, Samsun, TURKEY

Abstract. The object of this paper is to introduce generalized Lorentz sequence spaces L(f, v, p) defined
by modulus function f. Also we study some topologic properties of this space and obtain some inclusion
relations.

1. Introduction

Throughout this work, IN, R and C denote the set of positive integers, real numbers and complex
numbers, respectively. The concept of modulus function was introduced by Nakano [11] . We recall that a

function f : [0, 00) — [0, o) is said to be a modulus function if it satisfies the following properties
1) f(x) =0if and only if x = 0;

2) f(x+y) < f(x)+ f(y) forallx, y € [0, 00) ;

3) f is increasing;
4) f is continuous from right at 0.

It follows that f is continuous on [0, c0). The modulus function may be bounded or unbounded. For
example, if we take f(x) = x/(x + 1), then f(x) is bounded. But, for 0 < p <1, f(x) = x” is not bounded.

By the condition 2), we have f(nx) < nf(x) for alln € N and so f(x) = f (nxl) <nf (ﬁ) , and hence
1 x
— < =
~fe < £ (%)
for alln € IN.
The FK-spaces L (f), introduced by Ruckle in [14], is in the form

L(f) = {xe w: Zf(lxk|) < oo},
k=1
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where f is a modulus function and w is the space of all complex sequences. This space is closely related to
the space ¢; which is an L (f) — space with f(x) = x for all real x > 0. Later on, this space was investigated
by many authors in [1], [4], [8], [9], [15].

The notion of paranorm is closely related to linear metric spaces. Let X be a linear space. A function
p: X — Ris called paranorm, if

i) p(0) =0,

if) p(x) > 0 for all x € X,

iif) p(—=x) = p(x) for all x € X,

iv) p(x +y) < p(x) + p(y) forall x, y € X,

v) (A,) be a sequence in C, A be an element in C, {x,} be a sequence in X and x be an element in X.
If[A,—Al > 0asn — coand p(x, —x) = 0as n — oo, then p(A,x, —Ax) = 0 asn — oo (continuity of
multiplication by scalars).

A paranorm p for which p(x) = 0 implies x = 0 is called total [7].

The Lorentz space was introduced by G. G. Lorentz in [5], [6]. This space play an important role in the
theory of Banach space. Many authors studied these spaces and explored their many properties.

Let (E, |I]) be a Banach space. The Lorentz sequence space I(p,q, E) (or lp,q(E)) for1 < p,q < oo is the
collection of all sequences {a;} € co(E) such that

1/q

(o) i - q
ity = | (B loll) - sor1spson 12g<o
/ 1=

sup; '/ [|ag|| forlsp<eo, g=00

is finite, where {”“‘i’(i)H} is non-increasing rearrangement of {||z;]|} (We can interpret that the decreasing

rearrangement { A (i |} is obtained by rearranging {||a;||} in decreasing order). This space was introduced by
Miyazaki in [10] and examined comprehensively by Kato in [3].
A weight sequence v = {v(i)} is a positive decreasing sequence such that v(1) = 1, lim;,. v(i) = 0 and

lim;_, V(i) = oo, where V(i) = ), v(n) for every i € IN. Popa [13] defined the generalized Lorentz sequence
n=1
space d(v, p) for 0 < p < oo as follows

o 1/p
d(v,p) = x={xi}ew:||x||v,p=sup[2 |xn<,»)1’“v(i>] <oop,

i=1

where 7t ranges over all permutations of the positive integers and v = {v(i)} is a weight sequence. It is know
that d(v, p) C cp and hence for each x € d(v, p) there exists a non-increasing rearrangement {x*} = {xj} of x
and

1

’ v(i))p

Il = [Z %
n=1
(see [12], [13]).
Let (X, ||]l) be a Banach space, f be a modulus function and v = {v(n)} be a weight sequence. We

introduce the generalized Lorentz sequence space L(f, v, p) for 0 < p < oo using a modulus function f. The
space L(f, v, p) is the collection of all X—valued 0—sequences {x,} ({x,} € ¢ {X}) such that

90 = [z [ (leanl)] m)];’
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is finite, where { |} is non-increasing rearrangement of {||x,||}. If we take f(x) = x, then L(f, v, p) = d(v, p)

([13]).

We shall need the following lemmas.

Xep(n)

Lemma 1.1. (Hardy, Littlewood and Pélya [2] ). Let {c,} and {*c;} be the non-increasing and non-decreasing
rearrangements of a finite sequence {ci}1<;<, Of positive numbers, respectively. Then for two sequences {a;}1 <<, and
{bit1<i<n Of positive numbers we have

Y@ bi<) abi<) ab
i i i

Lemma 1.2. (Kato [3]) Let { (“)} be an X—valued double sequence such that lim;_, x = 0 for each u € IN and let
) _

{xi} be an X—valued sequence such that lim, . x."" = x; (uniformly in i). Then lim; e x; = 0 and for each i € N
(1)
||x¢(, |< }}g‘;” qb}(z)“

() ;
where {“xQ ,)”} and {H X ()”} are the non-increasing rearrangements of {||x;||} and {H H}i, respectively.

Lemma 1.3. Let f be any modulus function and 0 < 6 < 1. Then

fx) < @x

forallx >0 [9].

Lemma 1.4. For any modulus f there exists lim;_,o & [9].

Lemma 1.5. Let f be any modulus with lim;_,« & = a > 0. Then there is a constant § > 0 such that

f(6) = pt
forallt >0 [9].

2. Main Results

Theorem 2.1. The space L(f,v,p) for 0 < p < oo is a linear space over the field K = R or C.

Proof. Let x,y € L(f,v,p) and let {qu;(,,)“} {“yn(n)“} and {”an) + yw,)“} be the non-increasing rearrange-

ments of the sequences {||x,|}, {”yn”} and {Hxn + yn”}, respectively. Since v is non-increasing and f is
increasing, by the Lemma 1 we have

Z [f (wa) + %/z(n)”)]p v(n)

IA

2 LF (besoll + lywenll)] 00

n

IA

Y1 (ol + £ (lvswl)] otn

Dﬁ ([ s} o+ [l <00)
5 1l 0+ 3 [l 0]

=1
1

=

IA

IA
-]
/—"“\

n=
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where D = max {1,2”‘1}. Let o € K, then there exists M,, € IN such that |a| < M,. Hence we get

Ll (lslll o< 25150 s 00
< MZZ[f (ooll)] o)
< 09,

This shows that x + y € L(f,v,p), ax € L(f,v,p) and so L(f, v,p) is a linear space. [

Theorem 2.2. The space L(f,v,p) for 1 < p < oo is paranormed space with the paranorm

g(x) = [i [ (Ibeoinl)] v(n)]; ,

where {”x(p(n)”} denotes the non-increasing rearrangements of {||x,||}.

Proof. Itis clear that g(x) = g(—x) and g(0) = 0. Let x, y € L(f, v, p). Since f is increasing and weight sequence
v is decreasing, by Lemma 1 we have

g(x +y) F([lepem + ywn)”)]p v(”)]

1

(o] v<n>] Sl el |

1

IA

Y.
Y.

ol o) +(5 [ )

=1

IN

g(x) + g(y)

I

Now we show the continuity of scalar multiplication. Let A be an element in K, {)\(’”)} be a sequence in

where H|x¢(y,)”} {”y,, ,,)”} and {”le + }/lp(n)H} denote the non-increasing rearrangements of {||x,|l}, {
and {”xn + y,,“}, respectively.

K such that |/\(m) - /\| — 0 as m — oo, x be an element in L(f, v,p) and {x(”')} be a sequence in L(f, v, p) such
that g(x™ — x) — 0 as m — 0. Using triangle inequality we have

gAMRm — Ax) < g(AM K — Ax) + g(AMx — Ax). (1)

By monotonity of modulus function

o)

1
P

8

gAx™ — A [f (“/\(’”)x:;’:(n) = A",

[ni[ (|A(m)|” Xy ~ Xm0 )]p v(n)]

([

A g(x™ —x)

[y

A-

IA
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where A = (“supm |/\(’”)||] + 1) and {HA(W)XE;:)(”) = A"xy, )
{“A(’")x;’") - /\(m)xn”}n . Thus we get

} denotes the non-increasing rearrangement of
n

gAMx™ — Ay — 0 2)

as m — oo.
Since |)L(”’) - /\| — 0 as m — oo, there exists T € IN such that |/\(”’) - /\| < T for each m € IN. Let us
take any ¢ > 0. Since x € L(f, v, p), there exists 19 € IN such that

Y U = loll] o0 < 3 (ol oo
< Y [F(lxowl)] o
. n=ng
< =
2
and hence we get
3 [~ )] o< & ®

for all m € IN. Also by the continuity of f, we have

i’l()—l

21000 = Axgenl])] 2) < % 4)

n=1

asm — oo, where {ll)\("’)x¢,(n) - Ax¢(n)||}n isnon-increasing rearrangement of {“/\(’“)xn - /\xn”}n . Consequently,
by (3) and (4) we have

(e8]

Y [ (00 = Axgin)] i) > 0 (5)

n=1
as m — 0. By (1),(2) and (5), we get g(A™x(™ — Ax) — 0 as m — o0.This completes the proof. [

Theorem 2.3. The space L(f,v,p) for 1 < p < oo is complete with respect to its paranorm.

Proof. Let =x(s)} be an arbitrary Cauchy sequence in L(f, v, p) with x©® = {x;s)}:’:l for all s € N. For any ¢ > 0
and a fixed n € IN, there exists 1y € IN such that

g(x(s) _ x(t)) = (i [f(

whenever s, t > ny. Here, {

P

x:‘fs)/t(m) - x::,(m)”)]p v(m)] < f(e) (v(n))% ©)

) _ 0

ns,l(m) ns,l(m)
we indicate that 7, ,(m) is a permutation for IN. Thus we have

g

whenever s, t > ny. Therefore we get

x H} denotes non-increasing rearrangement of {”xf;? - x,(f,)H}m and
m

(s _ 0
xﬂs,t(”) xns,t(n)

Jeo?| < (fe) @on?Y

® .
Yroim ™ Frun)

<ée&
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whenever s, t > ng. Then { } for a fixed n € N, is a Cauchy sequence in X .

Then, there exists x, € X such that xn — X, as s — oo. Let x = {x,}. Since hmnﬁoox = 0 for
each s € N, by Lemma 2 we have lim,,_, X, = 0. Therefore we can choose the non-increasing rearrangement

Xr () — x? of ||xn - x(t)” . Also, for an arbitrary ¢ > 0 there exists N € N such that
t( ) nf(n)
2 PPN ’ o(n) < & 7)
nst(") Tls (n)
n=1

fors,t > N. Let t be an arbitrary positive integer with ¢ > N and fixed. If we put

O

9 = x& —x® and Yn =Xn— Xy,

v
then we have

) —

hm 0 Yy =0 for eachs € N and hm yn) = y, (uniformly in n).

Thus by Lemma 2 we get

ool < tim [l

s>

for each n € IN, that is,

6 _ 0

< lim Xroan) ™ Frgs(n)

S§—00

(®)

®
xT[[(H) - xn[(n)

for each n € IN. Hence, by (7), (8) and continuity of f we get

1

glx—x9) = [g‘ [f ( xn,m)-xg(n) )]pv(n)]p
S [i [f(slg?" X0 ™ X )]p v(n)]p
S (Z [ =l U(n)]
<

Also, since L(f, v, p) is a linear space we have {x,} = {x,1 - x,(1N)} + { (N)} € L(f,v,p). Hence the space L(f, v, p)
is complete with respect to its paranorm. [J

Theorem 2.4. Let f and h be two modulus functions. Then

(1) lim sup &3 < oo implies L(1, v, p) € L(f, v, p),
L(f,v,p) N L(h,v,p) SL(f + h,v,p) for1 <p < co.
Proof. (i) By the hypothesis there exists K > 0 such that f(t) < Kh(t) for all t > 0. Let x € L(h, v, p). Then we
have
1

[Z |x¢n)|| v(n)] <[Z K h |x¢(n)” v(n) < 00,
n=1

n=1



O. Ogur, C. Duyar / Filomat 30:2 (2016), 497-504 503

Hence we get x € L(f, v, p).
(i) Let x € L(h,v,p) N L(f, v, p). Hence we have

Z f+h |X¢(n)H U(Tl)]p

n=1

1

(5 1ol o

=1

(; [f (”%(n)”)]p U(n)]
i [; [h<||x¢<n>||)]p U(n)]; < 0.

Therefore we get x € L(f + I, v, p) and this completes the proof. [J

IA

Theorem 2.5. Let f be modulus function. Then
(@) If lim; @ > 0 then L(f,v,p) C d(v,p),
(b) d(v,1) C L(f,v,1).
Proof. (a) Let x € L(f, v, p). By Lemma 5, there is > 0 such that f(f) > gt for all t > 0. Hence we have

g[”an))l o(n) < maX{ }Z[f (lroenl)] o)

< 09,

This completes the proof.
(b) Let x € d(v, 1). Then there exists 1y € IN such that

(e8]

),

n=nop

|v(n) <e

Xp(n)

for all n > ny. Since f is continuous on [0, ), we have for all € > 0 there exists 0 < 6 < 1 such that f() < ¢
forall t € [0,6]. Also, by Lemma 3 we have

2£(1
F(lroml) < f( ) o0

for ”xq)(n)“ > 0, where {“x(p(n)”} is the non-increasing rearrangement of {||x,||} . Hence we get

nZ;f(llx¢<n>)1)v<n> Y F (o) o)

[|xo0n]|<0
+ ) Fllrowml) ot
[[x60][>0
2f(1
+ 2D ot
|00 |>6
< o

and so we getx € L(f,v,1). O

Corollary 2.6. Iflim;_e 22 > 0 then L(f,0,1)  d(v,1).
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