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Abstract. In this paper we prove the strong and4-convergence theorems of an iteration process of Khan et
al. (J. Appl. Math. Comput. 35 (2011) 607-616) for three finite families of total asymptotically nonexpansive
nonself mappings in a hyperbolic space. Moreover we obtain the data dependence result of this iteration
for contractive-like mappings under some suitable conditions. Also we present some examples to support
the results proved herein. Our results extend and improve some recent results announced in the current
literature.

1. Introduction

Most of the problems in various disciplines of science are nonlinear in nature, whereas fixed point theory
proposed in the setting of normed linear spaces or Banach spaces majorly depends on the linear structure
of the underlying spaces. A nonlinear framework for fixed point theory is a metric space embedded with a
“convex structure”. The class of hyperbolic spaces, nonlinear in nature, is prominent among non-positively
curved spaces and provides rich geometrical structures for different results with applications in topology,
graph theory, multivalued analysis and metric fixed point theory. The study of hyperbolic spaces has been
largely motivated and dominated by questions about hyperbolic groups, one of the main objects of study
in geometric group theory.

Khan et al. [18] considered the following iteration process in a Banach space:
x1 ∈ K,
xn+1 = (1 − αn)Txn + αnSyn,

yn = (1 − βn)xn + βnQxn, n ∈N,
(1)

where K is a nonempty subset of a real Banach space X and T,S,Q are three self-mappings on K and {αn} ,
{
βn

}
are real sequences in [0, 1]. It is worth mentioning that the iteration process (1) coincides with the iteration
process of Khan et al. [18] when Q = T. Moreover, this iteration is reduced to the S-iteration process of
Agarwal et al. [1] when T = S = Q. It is also reduced to Ishikawa iteration in [17] when T = I,S = Q, Mann
iteration in [23] when T = Q = I and Picard iteration when T = S,Q = I (where I is the identity mapping).
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In this paper, we study the convergence and the data dependence of the iteration process (1) in a
hyperbolic space. This paper contains four sections. In Section 2, we recollect basic definitions and a
detailed overview of the fundamental results. In Section 3, we prove some results related to the strong
and 4-convergence of the iteration process (1) for three finite families of total asymptotically nonexpansive
nonself mappings and also give some illustrative examples in support of our theorems. In Section 4, we
prove the data dependence result of the iteration process (1) for contractive-like mappings. Our results can
be viewed as refinement and generalization of several well-known results in CAT(0) and uniformly convex
Banach spaces.

2. Preliminaries and Lemmas

We start this section with the concept of hyperbolic space introduced by Kohlenbach [20] which is more
restrictive than the hyperbolic type introduced in Goebel and Kirk [11] and more general than the concept
of hyperbolic space in Reich and Shafrir [26].

A hyperbolic space [20] is a triple (X, d,W) where (X, d) is a metric space and W : X ×X × [0, 1]→ X is a
function satisfying

(W1) d(z,W(x, y, λ)) ≤ (1 − λ)d(z, x) + λd(z, y),
(W2) d(W(x, y, λ1),W(x, y, λ2)) = |λ1 − λ2| d(x, y),
(W3) W(x, y, λ) = W(y, x, (1 − λ)),
(W4) d(W(x, z, λ),W(y,w, λ)) ≤ (1 − λ)d(x, y) + λd(z,w)

for all x, y, z,w ∈ X and λ, λ1, λ2 ∈ [0, 1].
If a space satisfies only (W1), it coincides with the convex metric space introduced by Takahashi [32].

A subset K of a hyperbolic space X is convex if W(x, y, λ) ∈ K for all x, y ∈ K and λ ∈ [0, 1]. The class of
hyperbolic space in [20] contains all normed linear spaces and convex subsets thereof, R-trees in the sense
of Tits, the Hilbert ball with the hyperbolic metric (see [12]), Cartesian products of Hilbert balls, Hadamard
manifolds (see [26, 27]) and CAT(0) spaces in the sense of Gromov (see [5]).

A hyperbolic space (X, d,W) is said to be uniformly convex [28] if for all u, x, y ∈ X, r > 0 and ε ∈ (0, 2],
there exists a constant δ ∈ (0, 1] such that

d(x,u) ≤ r
d(y,u) ≤ r
d(x, y) ≥ εr

 =⇒ d
(
W

(
x, y,

1
2

)
,u

)
≤ (1 − δ)r.

A mapping η : (0,∞) × (0, 2] → (0, 1] is called modulus of uniform convexity if δ = η(r, ε) for given r > 0
and ε ∈ (0, 2]. The function η is monotone if it decreases with r (for a fixed ε).

Imoru and Olantinwo [16] gave the following contractive definition.

Definition 2.1. Let T be a self mapping on a metric space X. The mapping T is called a contractive-like
mapping if there exist a constant a ∈ [0, 1) and a strictly increasing and continuous function ϕ : [0,∞) →
[0,∞) with ϕ(0) = 0 such that, for all x, y ∈ X,

d(Tx,Ty) ≤ ad(x, y) + ϕ(d(x,Tx)). (2)

This mapping is more general than those considered by Berinde [2, 3], Harder and Hicks [15], Zamfirescu
[35], Osilike and Udomene [24].

A contractive-like mapping need not have a fixed point, even if X is a complete. For example, let
X = [0,∞), d(x, y) =

∣∣∣x − y
∣∣∣ and define T by

Tx =

1, if 0 ≤ x ≤ 0.8,
0.6, if 0.8 < x < +∞.

It is proved in [14] that T is a contractive-like mapping. But the mapping T has no fixed point.
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By using (2), it is obvious that if a contractive-like mapping has a fixed point then it is unique.
Let K be a nonempty subset of a metric space (X, d) and T : K → X be a nonself mapping. Denote by

F(T) = {x ∈ K : Tx = x}, the set of fixed points of T. A nonself mapping T is said to be nonexpansive if

d(Tx,Ty) ≤ d(x, y), ∀x, y ∈ K.

Recall that K is said to be a retract of X, if there exists a continuous mapping P : X → K such that
Px = x,∀x ∈ K. A mapping P : X → K is said to be a retraction if P2 = P. If P is a retraction, then Py = y for
all y in the range of P.

Definition 2.2. ([34]) Let K be a nonempty subset of a metric space (X, d) and P be a nonexpansive retraction
of X onto K. A nonself mapping T : K→ X is said to be

(i) asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,+∞) with kn → 1 such that

d(T(PT)n−1x,T(PT)n−1y) ≤ knd(x, y), ∀n ≥ 1, x, y ∈ K;

(ii) ({vn} ,
{
µn

}
, ζ)-total asymptotically nonexpansive if there exist nonnegative real sequences {vn} ,

{
µn

}
with

vn → 0, µn → 0 and a strictly increasing continuous function ζ : [0,∞)→ [0,∞) with ζ(0) = 0 such that

d(T(PT)n−1x,T(PT)n−1y) ≤ d(x, y) + vnζ(d(x, y)) + µn, ∀n ≥ 1, x, y ∈ K; (3)

(iii) uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(T(PT)n−1x,T(PT)n−1y) ≤ Ld(x, y), ∀n ≥ 1, x, y ∈ K.

Remark 2.3. From the above definitions, it is known that each nonexpansive nonself mapping is an asymp-
totically nonexpansive nonself mapping with kn = 1, ∀n ≥ 1 and each asymptotically nonexpansive nonself
mapping is a total asymptotically nonexpansive nonself mapping with vn = kn − 1, µn = 0, ∀n ≥ 1, ζ(t) = t,
∀t ≥ 0. Moreover, each asymptotically nonexpansive nonself mapping is a uniformly L-Lipschitzian nonself
mapping with L = supn∈N{kn}. However, the converse of these statements is not true, in general.

The concept of 4-convergence in a metric space was introduced by Lim [22] and its analogue in a
CAT(0) space has been investigated by Dhompongsa and Panyanak [9]. In order to define the concept of
4-convergence in the general setup of hyperbolic space, we first collect some basic concepts.

Let {xn} be a bounded sequence in a hyperbolic space X. For x ∈ X, we define a continuous functional
r(., {xn}) : X→ [0,∞) by

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf {r(x, {xn}) : x ∈ X}.

The asymptotic radius rK({xn}) of {xn}with respect to a subset K of X is given by

rK({xn}) = inf {r(x, {xn}) : x ∈ K}.

The asymptotic center of A({xn}) of {xn} is the set

A ({xn}) = {x ∈ X : r (x, {xn}) = r({xn})}.

The asymptotic center of AK({xn}) of {xn}with respect to K ⊂ X is the set

AK ({xn}) = {x ∈ K : r (x, {xn}) = rK({xn})}.

Recall that a sequence {xn} in X is said to be 4-convergent to x ∈ X if x is the unique asymptotic center of
{un} for every subsequence {un} of {xn}. In this case, we write 4-limn→∞ xn = x and call x as 4-limit of {xn} .
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Remark 2.4. (i) Let K be a nonempty closed convex subset of a hyperbolic space X and {xn} be a bounded
sequence in K. In what follows, we define

{xn}⇀ w ⇔ Φ(w) = inf
x∈K

Φ(x),

where Φ(x) = lim supn→∞ d(xn, x).
(ii) It is easy to see that {xn}⇀ w if and only if AK ({xn}) = {w} .

It is well known that one of the fundamental and celebrated results in the theory of nonexpansive
mappings is Browder’s demiclosedness principle [6] which states that if K is a nonempty closed convex
subset of a uniformly convex Banach space X and T : K → X is a nonexpansive mapping, then I − T
is demiclosed at 0, that is, for any sequence {xn} in K if xn → x weakly and (I − T)xn → 0 strongly, then
(I − T)x = 0. Chang et al. [7] proved the demiclosedness principle for total asymptotically nonexpansive
nonself mappings in a CAT(0) space. Very recently, Wan [33] proved the demiclosedness principle for these
mappings in a hyperbolic space as follows.

Lemma 2.5. ([33, Theorem 1]) Let (X, d,W) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity η and K be a nonempty closed convex subset of X. Let T : K → X be a uniformly
L-Lipschitzian and total asymptotically nonexpansive nonself mapping and P be a nonexpansive retraction of X onto
K. Let {xn} be a bounded sequence in K such that limn→∞ d(xn,Txn) = 0 and xn ⇀ p. Then Tp = p.

In the sequel, we shall need the following results.

Lemma 2.6. ([21, Proposition 3.3]) Let (X, d,W) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity η and K be a nonempty closed convex subset of X. Then every bounded sequence {xn}

in X has a unique asymptotic center with respect to K.

Lemma 2.7. ([19, Lemma 2.5]) Let (X, d,W) be a uniformly convex hyperbolic space with monotone modulus of
uniform convexity η. Let x ∈ X and {αn} be a sequence in [a, b] for some a, b ∈ (0, 1). If {xn} and {yn} are sequences in
X such that

lim sup
n→∞

d (xn, x) ≤ r, lim sup
n→∞

d
(
yn, x

)
≤ r, lim

n→∞
d
(
W(xn, yn, αn

)
, x) = r

for some r ≥ 0, then

lim
n→∞

d
(
xn, yn

)
= 0.

Lemma 2.8. ([25, Lemma 2]) Let {an}, {bn} and {δn} be sequences of nonnegative real numbers such that

an+1 ≤ (1 + δn)an + bn, ∀n ≥ 1.

If
∑
∞

n=1 δn < ∞ and
∑
∞

n=1 bn < ∞, then limn→∞ an exists.

Lemma 2.9. ([31]) Let {an} be a nonnegative sequence for which one assumes that there exists an n0 ∈ N such that,
for all n ≥ n0,

an+1 ≤ (1 − rn)an + rntn

is satisfied, where rn ∈ (0, 1) for all n ∈N,
∑
∞

n=0 rn = ∞ and tn ≥ 0,∀n ∈N. Then the following holds:

0 ≤ lim sup
n→∞

an ≤ lim sup
n→∞

tn.
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3. Some Strong and 4-Convergence Theorems for Total Asymptotically Nonexpansive Nonself Map-
pings

First, we define the iteration process (1) for three finite families of nonself mappings in a hyperbolic
space:

x1 ∈ K,
xn+1 = PW(Tn(PTn)n−1xn,Sn(PSn)n−1yn, αn),
yn = PW(xn,Qn(PQn)n−1xn, βn), n ∈N,

(4)

where Tn = Tn(mod N),Sn = Sn(mod N) and Qn = Qn(mod N) (here the function mod N takes values in {1, 2, ...,N}.)
and for each i = 1, 2, ...,N,Ti : K→ X is a uniformly Li-Lipschitzian and ({v(i)

n }, {µ
(i)
n }, ζ

(i))-total asymptotically
nonexpansive mapping, Si : K → X is a uniformly L′i-Lipschitzian and ({v

′(i)
n }, {µ

′(i)
n }, ζ

′(i))-total asymptoti-
cally nonexpansive mapping and Qi : K → X is a uniformly L′′i -Lipschitzian and ({v

′′(i)
n }, {µ

′′(i)
n }, ζ

′′(i))-total
asymptotically nonexpansive mapping.

Remark 3.1. In fact, letting

L = max{Li,L
′

i ,L
′′

i ; i = 1, 2, ...,N}, vn = max{v(i)
n , v

′(i)
n , v

′′(i)
n ; i = 1, 2, ...,N},

µn = max{µ(i)
n , µ

′(i)
n , µ

′′(i)
n ; i = 1, 2, ...,N}, ζ = max{ζ(i), ζ

′(i), ζ
′′(i); i = 1, 2, ...,N},

then {Ti}
N
i=1, {Si}

N
i=1 and {Qi}

N
i=1 are three finite families of uniformly L-Lipschitzian and ({vn} ,

{
µn

}
, ζ)-total

asymptotically nonexpansive nonself mappings.

From now on for three finite families {Ti}
N
i=1, {Si}

N
i=1 and {Qi}

N
i=1, we set F = ∩N

i=1(F(Ti) ∩ F(Si) ∩ F(Qi)) , ∅.
We prove the 4-convergence theorem of the iterative sequence {xn} defined by (4) for three finite families

of total asymptotically nonexpansive nonself mappings in a hyperbolic space.

Theorem 3.2. Let K be a nonempty closed convex subset of a complete uniformly convex hyperbolic space X with
monotone modulus of uniform convexity η. Let {Ti}

N
i=1, {Si}

N
i=1 and {Qi}

N
i=1 be three finite families of uniformly

L-Lipschitzian and ({vn} ,
{
µn

}
, ζ)-total asymptotically nonexpansive nonself mappings and P be a nonexpansive

retraction of X onto K. If the following conditions are satisfied:
(i)

∑
∞

n=1 vn < ∞ and
∑
∞

n=1 µn < ∞;
(ii) there exist constants a, b ∈ (0, 1) such that {αn} ,

{
βn

}
⊂ [a, b];

(iii) there exists a constant M > 0 such that ζ(r) ≤Mr,∀r ≥ 0;
(iv) d(xn,Sn(PSn)n−1xn) ≤ d(Tn(PTn)n−1xn,Sn(PSn)n−1xn),

then the sequence {xn} defined by (4), 4-converges to a point in F.

Proof. We divide our proof into three steps.
Step 1. First we prove that for each p ∈ F,

lim
n→∞

d(xn, p) exists. (5)

In fact, by (W1), (3), (4) and the condition (iii), we get

d(yn, p) = d(PW(xn,Qn(PQn)n−1xn, βn), p)
≤ d(W(xn,Qn(PQn)n−1xn, βn), p)
≤ (1 − βn)d(xn, p) + βnd(Qn(PQn)n−1xn, p)
≤ (1 − βn)d(xn, p) + βn{d(xn, p) + vnζ(d(xn, p)) + µn}

≤ (1 + βnvnM)d(xn, p) + βnµn (6)
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and

d(xn+1, p) = d(PW(Tn(PTn)n−1xn,Sn(PSn)n−1yn, αn), p)
≤ d(W(Tn(PTn)n−1xn,Sn(PSn)n−1yn, αn), p)
≤ (1 − αn)d(Tn(PTn)n−1xn, p) + αnd(Sn(PSn)n−1yn, p)
≤ (1 − αn){d(xn, p) + vnζ(d(xn, p)) + µn} + αn{d(yn, p) + vnζ(d(yn, p)) + µn}

≤ (1 − αn)(1 + vnM)d(xn, p) + αn(1 + vnM)d(yn, p) + µn. (7)

By substituting (6) into (7) and simplifying it, we have

d(xn+1, p) ≤ (1 + σn)d(xn, p) + ξn, ∀n ≥ 1, (8)

where σn = vnM(1 + αnβn(1 + vnM)) and ξn = µn
(
1 + αnβn(1 + vnM)

)
. Furthermore, using the condition (i),

we obtain
∞∑

n=1

σn < ∞ and
∞∑

n=1

ξn < ∞.

By Lemma 2.8, we get limn→∞ d(xn, p) exists for each p ∈ F.
Step 2. Next we prove that

lim
n→∞

d(xn,Tixn) = lim
n→∞

d(xn,Sixn) = lim
n→∞

d(xn,Qixn) = 0 for each i = 1, 2, ...,N. (9)

In fact, it follows from (5) that limn→∞ d(xn, p) exists for each given p ∈ F. We may assume that

lim
n→∞

d(xn, p) = r ≥ 0. (10)

By (6) and (10), we have

lim sup
n→∞

d(yn, p) ≤ r. (11)

Noting

d(Sn(PSn)n−1yn, p) ≤ d(yn, p) + vnζ(d(yn, p)) + µn

≤ (1 + vnM)d(yn, p) + µn, ∀n ≥ 1,

by (11) we have

lim sup
n→∞

d(Sn(PSn)n−1yn, p) ≤ r. (12)

Similarly, by (10) we obtain

lim sup
n→∞

d(Tn(PTn)n−1xn, p) ≤ r. (13)

In addition, by (7) and (8) we get

d(xn+1, p) ≤ d(W(Tn(PTn)n−1xn,Sn(PSn)n−1yn, αn), p) ≤ (1 + σn)d(xn, p) + ξn

which yields that

lim
n→∞

d(W(Tn(PTn)n−1xn,Sn(PSn)n−1yn, αn), p) = r. (14)

With the help of (12)-(14) and Lemma 2.7, we have

lim
n→∞

d(Tn(PTn)n−1xn,Sn(PSn)n−1yn) = 0. (15)
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On the other hand, since

d(xn+1, p) ≤ (1 − αn)d(Tn(PTn)n−1xn, p) + αnd(Sn(PSn)n−1yn, p)
≤ (1 − αn){d(Tn(PTn)n−1xn,Sn(PSn)n−1yn) + d(Sn(PSn)n−1yn, p)} + αnd(Sn(PSn)n−1yn, p)
≤ (1 − αn)d(Tn(PTn)n−1xn,Sn(PSn)n−1yn) + (1 + vnM)d(yn, p) + µn,

for all n ≥ 1, we have lim infn→∞ d(yn, p) ≥ r. Combined with (11), it yields that limn→∞ d(yn, p) = r. Then it
follows from (6) and (10) that

lim
n→∞

d(W(xn,Qn(PQn)n−1xn, βn), p) = r. (16)

Noting

d(Qn(PQn)n−1xn, p) ≤ d(xn, p) + vnζ(d(xn, p)) + µn

≤ (1 + vnM)d(xn, p) + µn, ∀n ≥ 1,

by (10) we have

lim sup
n→∞

d(Qn(PQn)n−1xn, p) ≤ r. (17)

With the help of (10), (16), (17) and Lemma 2.7, we have

lim
n→∞

d(xn,Qn(PQn)n−1xn) = 0. (18)

By virtue of (18), we get

d(xn, yn) = d(xn,PW(xn,Qn(PQn)n−1xn, βn))
≤ d(xn,W(xn,Qn(PQn)n−1xn, βn))
≤ βnd(xn,Qn(PQn)n−1xn)→ 0 as n→∞.

Hence

d(Sn(PSn)n−1xn,Sn(PSn)n−1yn) ≤ d(xn, yn) + vnζ(d(xn, yn)) + µn

≤ (1 + vnM)d(xn, yn) + µn

→ 0 as n→∞. (19)

From the condition (iv), we have

d(xn,Sn(PSn)n−1xn) ≤ d(Tn(PTn)n−1xn,Sn(PSn)n−1xn)
≤ d(Tn(PTn)n−1xn,Sn(PSn)n−1yn) + d(Sn(PSn)n−1yn,Sn(PSn)n−1xn).

It follows from (15) and (19) that

lim
n→∞

d(xn,Sn(PSn)n−1xn) = 0. (20)

Now

d(xn,Tn(PTn)n−1xn) ≤ d(xn,Sn(PSn)n−1xn) + d(Sn(PSn)n−1xn,Sn(PSn)n−1yn) + d(Sn(PSn)n−1yn,Tn(PTn)n−1xn)

implies by (15), (19) and (20), we have

lim
n→∞

d(xn,Tn(PTn)n−1xn) = 0. (21)
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Moreover, it follows from (19)-(21) that

d(xn+1, xn) = d(PW(Tn(PTn)n−1xn,Sn(PSn)n−1yn, αn), xn)
≤ d(W(Tn(PTn)n−1xn,Sn(PSn)n−1yn, αn), xn)
≤ (1 − αn)d(Tn(PTn)n−1xn, xn) + αnd(Sn(PSn)n−1yn, xn)
≤ (1 − αn)d(Tn(PTn)n−1xn, xn) + αn{d(Sn(PSn)n−1yn,Sn(PSn)n−1xn) + d(Sn(PSn)n−1xn, xn)}
→ 0 as n→∞. (22)

Now by (21) and (22), for any i = 1, 2, ...N, we get

d(xn,Tixn) ≤ d(xn, xn+1) + d(xn+1,Ti(PTi)nxn+1) + d(Ti(PTi)nxn+1,Ti(PTi)nxn) + d(Ti(PTi)nxn,Tixn)
≤ (1 + L)d(xn, xn+1) + d(xn+1,Ti(PTi)nxn+1) + Ld(Ti(PTi)n−1xn, xn)
→ 0 as n→∞.

Similarly, we have

lim
n→∞

d(xn,Sixn) = 0 and lim
n→∞

d(xn,Qixn) = 0 for each i = 1, 2, ...,N.

Step 3. Now we are in a position to prove the 4-convergence of {xn}. Since {xn} is bounded, by Lemma 2.6,
it has a unique asymptotic center AK ({xn}) = {x}. Let {un} be any subsequence of {xn}with AK ({un}) = {u}. By
(9), we have

lim
n→∞

d(un,Tiun) = lim
n→∞

d(un,Siun) = lim
n→∞

d(un,Qiun) = 0 for each i = 1, 2, ...,N.

Then it follows from Remark 2.4(ii) and Lemma 2.5 that u ∈ F. By the uniqueness of asymptotic centers, we
get x = u ∈ F. It implies that the sequence {xn} 4-converges to x ∈ F. The proof is completed.

Example 3.3. Let R be the real line with the usual metric |.| and T,S,Q : R→ R be three mappings defined
by Tx = 1 − x,Sx = 2x+1

4 and Qx = 1
2 . The mappings T and S satisfy the condition d(x,Snx) ≤ d(Tnx,Snx)

for all n ∈ N and x ∈ R. Additionally T,S and Q are uniformly L-Lipschitzian and total asymptotically
nonexpansive mappings. Clearly, F =

{
1
2

}
. Set αn = n

2n+1 and βn = 2n
3n+1 for all n ∈ N. Thus, the conditions

of Theorem 3.2 are satisfied.

If we take Qi = Ti for each i = 1, 2, ...,N in Theorem 3.2, we get the following corollary, yet it is new in
the literature.

Corollary 3.4. Let X,K, {Ti}
N
i=1 and {Si}

N
i=1 be the same as in Theorem 3.2. Suppose that the conditions (i)-(iii) in

Theorem 3.2 are satisfied. Then the sequence {xn} defined by
x1 ∈ K,
xn+1 = PW(Tn(PTn)n−1xn,Sn(PSn)n−1yn, αn),
yn = PW(xn,Tn(PTn)n−1xn, βn), n ∈N,

4-converges to a common fixed point of {Ti}
N
i=1 and {Si}

N
i=1.

Example 3.5. Let R be the real line with the usual metric |·| and let K = [−1, 1]. Define two mappings
T,S : K→ K by

Tx =

−2 sin x
2 , if x ∈ [0, 1]

2 sin x
2 , if x ∈ [−1, 0)

and Sx =

x, if x ∈ [0, 1]
−x, if x ∈ [−1, 0)

.

It is mentioned in [29] that both T and S are uniformly L-Lipschitzian and total asymptotically nonexpansive
mappings. Clearly, F(T) = {0} and F(S) = {x ∈ K; 0 ≤ x ≤ 1}. Set

αn =
n

2n + 1
and βn =

n
3n + 1

for all n ≥ 1. (23)

Thus, the conditions of Corollary 3.4 are fulfilled.
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Example 3.6. Let R be the real line with the usual metric |·| and let K = [0,∞). Define two mappings
T,S : K→ K by Tx = sin x and Sx = x. It is mentioned in [29] that both T and S are uniformly L-Lipschitzian
and total asymptotically nonexpansive mappings. Clearly, F(T) = {0} and F(S) = {x ∈ K; 0 ≤ x < ∞}. Let
{αn} and

{
βn

}
be the same as in (23). So, the conditions of Corollary 3.4 are satisfied.

If we take Qi = Si = Ti for each i = 1, 2, ...,N in Theorem 3.2, we get the following corollary which is still
new in the literature.

Corollary 3.7. Let X,K, {Ti}
N
i=1 be the same as in Theorem 3.2. Suppose that the conditions (i)-(iii) in Theorem 3.2

are satisfied. Then the sequence {xn} defined by
x1 ∈ K,
xn+1 = PW(Tn(PTn)n−1xn,Tn(PTn)n−1yn, αn),
yn = PW(xn,Tn(PTn)n−1xn, βn), n ∈N,

4-converges to a fixed point of {Ti}
N
i=1.

Recall that a mapping T from a subset K of a metric space (X, d) into X is semi-compact if any bounded
sequence {xn} satisfying d(xn,Txn)→ 0 as n→∞ has a strongly convergent subsequence.

By using this definition, we obtain the strong convergence theorem.

Theorem 3.8. Under the assumptions of Theorem 3.2, if one of the mappings in {Ti}
N
i=1, {Si}

N
i=1 and {Qi}

N
i=1 is

semi-compact, then the sequence {xn} defined by (4) converges strongly to a common fixed point in F.

Proof. We can assume that the mapping Tk in {Ti}
N
i=1 is semi-compact. By (9) and semi-compactness of Tk,

there exists a subsequence
{
xn j

}
⊂ {xn} such that

{
xn j

}
converges strongly to some point p ∈ K. Moreover, by

the uniform continuity of {Ti}
N
i=1, we have

d(p,Tip) = lim
j→∞

d(xn j ,Tixn j ) = 0 for each i = 1, 2, ...,N.

This implies that p is a fixed point of {Ti}
N
i=1. Similarly, p is a common fixed point of {Si}

N
i=1 and {Qi}

N
i=1. Then

p ∈ F. It follows from (5) that limn→∞ d(xn, p) exists and hence limn→∞ d(xn, p) = 0.As a result, {xn} converges
strongly to a point p in F. The proof is completed.

Fukhar-ud-din and Khan [10] defined the condition (A) for two finite families of mappings as follows.
Let f be a nondecreasing self-mappings on [0,∞) with f (0) = 0 and f (r) > 0 for all r ∈ (0,∞). Then two

finite families {Ti}
N
i=1 and {Si}

N
i=1 are said to satisfy condition (A) on K if

d(x,Tx) ≥ f (d(x,F)) or d(x,Sx) ≥ f (d(x,F)) for all x ∈ K

holds for at least one T ∈ {Ti}
N
i=1 or one S ∈ {Si}

N
i=1, where d(x,F) = inf{d(x, p): p ∈ F.}

We can modify this definition for three finite families of mappings as follows.
Three finite families {Ti}

N
i=1, {Si}

N
i=1 and {Qi}

N
i=1 are said to satisfy condition (B) on K if, for all x ∈ K,

d(x,Tx) ≥ f (d(x,F)) or d(x,Sx) ≥ f (d(x,F)) or d(x,Qx) ≥ f (d(x,F)) (24)

holds for at least one T ∈ {Ti}
N
i=1 or one S ∈ {Si}

N
i=1 or one Q ∈ {Qi}

N
i=1 .

The condition (B) is reduced to the condition (A) when Qi = Ti for each i = 1, 2, ...,N.
We use the condition (B) to prove the strong convergence of {xn} defined by (4).

Theorem 3.9. Under the assumptions of Theorem 3.2, if a triple of mappings T,S and Q in {Ti}
N
i=1, {Si}

N
i=1 and {Qi}

N
i=1,

respectively, satisfies condition (B), then the sequence {xn} defined by (4) converges strongly to a common fixed point
in F.
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Proof. By (9) and (24), we obtain limn→∞ f (d(xn,F)) = 0. Since f is a nondecreasing function with f (0) = 0
and f (r) > 0,∀r > 0, we have limn→∞ d(xn,F) = 0. The rest of the proof is similar to Theorem 4 in [33] and
therefore it is omitted.

Remark 3.10. (i) Our results generalize the corresponding results of Şahin and Başarır [30] from three
nonexpansive self mappings to three finite families of uniformly L-Lipschitzian and total asymptotically
nonexpansive nonself mappings.

(ii) Since the iteration process (4) is reduced to the iterative scheme in [33] when Ti = I,Si = S,Qi = Q
for each i = 1, 2, ...,N, our results generalize the corresponding results of Wan [33].

4. Data Dependence of an Iteration Process

Data dependence of fixed points has become an important subject for research. The data dependence
of various iteration processes has been studied by many authors; see [8, 14, 31].

We begin with modification of the iterative scheme (1) from a Banach space to a hyperbolic space:
x1 ∈ K,
xn+1 = W(Txn,Syn, αn),
yn = W(xn,Qxn, βn), n ∈N,

(25)

where K is a nonempty subset of a hyperbolic space X and T,S,Q : K → K are three contractive-like
mappings and {αn} ,

{
βn

}
are real sequences in [0, 1].

Remark 4.1. Since T,S and Q are contractive-like mappings, then there exist constants a1, a2, a3 and func-
tionsϕ1, ϕ2, ϕ3 such that d(Tx,Ty) ≤ a1d(x, y)+ϕ1(d(x,Tx)), d(Sx,Sy) ≤ a2d(x, y)+ϕ2(d(x,Sx)) and d(Qx,Qy) ≤
a3d(x, y) + ϕ3(d(x,Tx)) for all x, y ∈ K. Throughout this paper, we take a = max{a1, a2, a3} and ϕ =
max{ϕ1, ϕ2, ϕ3} so that d(Tx,Ty) ≤ ad(x, y) + ϕ(d(x,Tx)), d(Sx,Sy) ≤ ad(x, y) + ϕ(d(x,Sx)) and d(Qx,Qy) ≤
ad(x, y) + ϕ(d(x,Qx)) for all x, y ∈ K.

We prove the strong convergence of the iterative sequence {xn} defined by (25) for contractive-like
mappings in a hyperbolic space.

Theorem 4.2. Let K be a nonempty closed convex subset of a hyperbolic space X, let T,S,Q : K → K be three
contractive-like mappings with F , ∅ and {xn} be a sequence defined by (25) such that {αn} ,

{
βn

}
⊂ [0, 1]. Then the

sequence {xn} converges strongly to the unique common fixed point of T,S and Q.

Proof. Let p be the unique common fixed point of T,S and Q. From (W1), (2) and (25), we have

d(xn+1, p) = d(W(Txn,Syn, αn), p)
≤ (1 − αn)d(Txn, p) + αnd(Syn, p)
≤ (1 − αn)

{
ad(xn, p) + ϕ(d(p,Tp))

}
+ αn

{
ad(yn, p) + ϕ(d(p,Sp))

}
= (1 − αn)ad(xn, p) + αnad(yn, p). (26)

Similarly, we obtain

d(yn, p) = d(W(xn,Qxn, βn), p)
≤ (1 − βn)d(xn, p) + βnd(Qxn, p)
≤ (1 − βn)d(xn, p) + βn

{
ad(xn, p) + ϕ(d(p,Qp))

}
= (1 − βn)d(xn, p) + βnad(xn, p)
= (1 − βn(1 − a))d(xn, p)
≤ d(xn, p). (27)
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Then from (26) and (27), we get that

d(xn+1, p) ≤ (1 − αn)ad(xn, p) + αnad(yn, p)
≤ (1 − αn)ad(xn, p) + αnad(xn, p)
≤ ad(xn, p)

...

≤ an+1d(x0, p).

If a ∈ (0, 1), we obtain

lim
n→∞

d(xn+1, p) = 0.

Thus we have xn → p ∈ F. If a = 0, the result is clear. This completes the proof.

Example 4.3. Let R be the real line with the usual metric |·| and let K = [0, 1]. Define three mappings
T,S,Q : K → K by Tx = x

2 , Sx = x
4 and Qx = x

6 . It is clear that T,S,Q are contractive-like mappings and
F = {0}. Let αn = βn = 0 for n = 1, 2, 3 and αn = βn = 2

√
n

for all n ≥ 4. It is easy to see that the conditions of
Theorem 4.2 are satisfied.

Example 4.4. Let R be the real line with the usual metric |·| and let K = [0, 1]. Define three mappings
T,S,Q : K→ K by

Tx =

{
1
6 , x ∈ (0.5, 1]
0, x ∈ [0, 0.5] , Sx =

{
1
7 , x ∈ (0.5, 1]
0, x ∈ [0, 0.5] and Qx =

{
1
8 , x ∈ (0.5, 1]
0, x ∈ [0, 0.5] .

It is mentioned in [13, Example 2.4] that T,S and Q are contractive-like mappings. Clearly, F = {0}. Let
αn = βn = 0 for n = 1, 2, ..., 15 and αn = βn = 4

√
n

for all n ≥ 16. So, the conditions of Theorem 4.2 are satisfied.

Definition 4.5. ([4]) Let T, T̃ : X → X be two operators. We say that T̃ is an approximate operator for T if,
for all x ∈ X and for a fixed ε > 0, we have d(Tx, T̃x) ≤ ε.

By using this definition, we now prove the data dependence result for the iteration process defined by
(25).

Theorem 4.6. Let X,K,T,S and Q be the same as in Theorem 4.2. Suppose that T̃, S̃, Q̃ are approximate operators of
T,S,Q as in Definition 4.5, respectively, that is, d(Tx, T̃x) ≤ ε1, d(Sx, S̃x) ≤ ε2, d(Qx, Q̃x) ≤ ε3. Let {xn} and {un} be
two iterative sequences defined by (25) and

u1 ∈ K,
un+1 = W(T̃un, S̃vn, αn),
vn = W(un, Q̃un, βn), n ∈N,

(28)

respectively, where {αn} and
{
βn

}
are real sequences in [0, 1] satisfying αn ≥

1
2 ,∀n ∈ N. If p = Tp = Sp = Qp and

q = T̃q = S̃q = Q̃q, then we have

d(p, q) ≤
3ε

1 − a
,

where ε = max{ε1, ε2, ε3}.
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Proof. From (W4), (2), (25) and (28), we have the following estimates:

d(xn+1,un+1) = d(W(Txn,Syn, αn),W(T̃un, S̃vn, αn))

≤ (1 − αn)d(Txn, T̃un) + αnd(Syn, S̃vn)

≤ (1 − αn){d(Txn,Tun) + d(Tun, T̃un)} + αn{d(Syn,Svn) + d(Svn, S̃vn)}
≤ (1 − αn)

{
ad(xn,un) + ϕ(d(xn,Txn)) + ε1

}
+ αn

{
ad(yn, vn) + ϕ(d(yn,Syn)) + ε2

}
(29)

and

d(yn, vn) = d(W(xn,Qxn, βn),W(un, Q̃un, βn))

≤ (1 − βn)d(xn,un) + βnd(Qxn, Q̃un)

≤ (1 − βn)d(xn,un) + βn{d(Qxn,Qun) + d(Qun, Q̃un)}
≤ (1 − βn)d(xn,un) + βn

{
ad(xn,un) + ϕ(d(xn,Qxn)) + ε3

}
= (1 − βn(1 − a))d(xn,un) + βnϕ(d(xn,Qxn)) + βnε3. (30)

Combining (29) and (30), we get

d(xn+1,un+1) ≤
{
(1 − αn)a + αna(1 − βn(1 − a))

}
d(xn,un) + (1 − αn)ϕ(d(xn,Txn)) + αnϕ(d(yn,Syn))

+αnβnaϕ(d(xn,Qxn)) + (1 − αn)ε1 + αnε2 + αnβnaε3. (31)

Since a ∈ [0, 1) and {αn} ,
{
βn

}
⊂ [0, 1], we have

(1 − αn)a ≤ 1 − αn, 1 − βn(1 − a) ≤ 1, αnβna ≤ αn. (32)

It follows from the assumption αn ≥
1
2 ,∀n ∈N that

1 − αn ≤ αn, ∀n ∈N. (33)

By substituting (32) and (33) into (31), we obtain

d(xn+1,un+1) ≤ (1 − αn(1 − a))d(xn,un) + αnϕ(d(xn,Txn)) + αnϕ(d(yn,Syn)) + αnϕ(d(xn,Qxn))
+αnε1 + αnε2 + αnε3,

or, equivalently,

d(xn+1,un+1) ≤ (1 − αn(1 − a))d(xn,un)

+αn(1 − a)
ϕ(d(xn,Txn)) + ϕ(d(yn,Syn)) + ϕ(d(xn,Qxn)) + ε1 + ε2 + ε3

1 − a
. (34)

Now define

an = d(xn,un),
rn = αn(1 − a),

tn =
ϕ(d(xn,Txn)) + ϕ(d(yn,Syn)) + ϕ(d(xn,Qxn)) + ε1 + ε2 + ε3

1 − a
.

Thus, (34) becomes

an+1 ≤ (1 − rn)an + rntn. (35)

From Theorem 4.2, it follows that limn→∞ d(xn, p) = 0 and limn→∞ d(un, q) = 0. Since T is a contractive-like
mapping and p = Tp,

0 ≤ d(xn,Txn)
≤ d(xn, p) + d(Tp,Txn)
≤ d(xn, p) + ad(p, xn) + ϕ(d(p,Tp))
= (1 + a)d(xn, p)→ 0 as n→∞. (36)
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It is easy to see from (36) that this result is also valid for d(yn,Syn) and d(xn,Qxn). Since ϕ is continuous, we
have

lim
n→∞

ϕ(d(xn,Txn)) = lim
n→∞

ϕ(d(yn,Syn)) = lim
n→∞

ϕ(d(xn,Qxn)) = 0.

Therefore, using Lemma 2.9, (35) yields

d(p, q) ≤
3ε

1 − a
,

where ε = max{ε1, ε2, ε3}.

Since the Picard, Mann, Ishikawa and S-iterative processes are special cases of the iterative scheme (1),
the data dependence results of these iterative processes can be obtained similarly.
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