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Some Approximation Results on Bleimann-Butzer-Hahn
Operators Defined by (p, g)-Integers

Mohammad Mursaleen?, Md Nasiruzzaman?, Asif Khan?, Khursheed Jamal Ansari®

*Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

Abstract. In this paper we introduce a generalization of the Bleimann-Butzer-Hahn operators based on

(p, 9)-integers and obtain Korovkin’s type approximation theorem for these operators. Furthermore, we
compute convergence of these operators by using the modulus of continuity.

1. Introduction

Bleimann, Butzer and Hahn (BBH) introduced the following operators in [2] as follows;
1 zn: k n k
. = — _— > 0.
Lnlf3) (1 +x) k—of(”_k+1)[ k ]x,x_O @

In approximation theory, g-type generalization of Bernstein polynomials was introduced by Lupas [7].
In 1997, Phillips [11] introduced another modification of Bernstein polynomials. Also he obtained the rate

of convergence and the Voronovskaja’'s type asymptotic expansion for these polynomials.
The BBH-type operators based on g-integers are defined as follows

1 v (k] KD [ 7
e

(i) fn(x)kZ_Of([n—k+1]qqk 1 k qx
where £,(x) = [T'5 (1 + ¢°x).

)

Recently, Mursaleen et al [9] applied (p, 7)-calculus in approximation theory and introduced first (p, q)-

analogue of Bernstein operators. They also introduced and studied approximation properties of (p, 9)-

analogue of Bernstein-Stancu operators in [8], and of Bernstein-Shurer operators in [10].
Let us recall certain notations on (p, g)-calculus.

The (p, q) integers [n], ; are defined by
pn _ qn
, n=012---, O0<g<p<l
P—q 1=p

[nlpq =
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Whereas g-integers are given by

n

q
1-q’

[n], = n=0,12,---, 0<g<l

It is very clear that g-integers and (p, q)-integers are different, that is we cannot obtain (p, ) integers just
by replacing g by g in the definition of g-integers but if we put p = 1 in definition of (p, q) integers then
g-integers becomes a particular case of (p, q) integers. Thus we can say that (p, g)-calculus can be taken as a
generalization of g-calculus.

Now by some simple calculation and induction on 1, we have (p, g)-binomial expansion as follows

n
n-Ron-k-1) kk-1) | 7
no._ — s ~kpk.,n—k, k
(ax +by),, = E p 2z q°? [ K ] a"t b x ,
k=0 P

(x4 Wy = O+ @Y+ qYEPc+ Py @+ g ),
(1 - x);’lr‘? = (1 - x)(P - q.X)(pz — qzx) c.. (p”—l _ qn—lx)

and the (p, g)-binomial coefficients are defined by

[ n ] _ [n]p,q!
(38 R T T

Again it can be easily verified that (p, 4)-binomial expansion is different from g-binomial expansion and
is not a replacement of g by %.

By some simple calculation, we have the following relation

=k + 1]y = [n+ 15 = p" [kl

For details on g-calculus and (p, g)-calculus, one can refer [15], [5, 12, 13], respectively.
Now based on (p, q)-integers, we construct (p, g)-analogue of BBH-operators, and we call it as (p, 9)-

Bleimann-Butzer-Hahn-Operators and investigate its Korovokin’s-type approximation properties, by using

the test functions (#)V forv =0,1,2. Also for a space of generalized Lipschitz-type maximal functions we
give a pointwise estimation.
Let C(IR;) be the set of all bounded and continuous functions on R, then Cp(IR;) is linear normed

space with

I fllc,=sup | f(x) .

x>0
Let w denotes modulus of continuity satisfying the following condition:

1. w is a non-negative increasing function on R,
2. w(61 + 62) < w(61) + w(62)
3. lims_o w(6) = 0.

Let H,, be the space of all real-valued functions f defined on the semiaxis R, satisfying the condition

)

S
1+x 1+vy

| F0) - f) I w(‘

forany x,y € R..
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Theorem 1.1. ([4]) Let {A,} be the sequence of positive linear operators from H, into Cp(R.), satisfying the
conditions

Eoy x \
JEEOHA ((1+t) x)_(l +x) les

forv =0,1,2. Then for any function f € H,

lim | A,(f) = f lley= 0

We define (p, g)-Bleimann-Butzer and Hahn-type operators based on (p, q)-integers as follows:

Uw(f'x) B n k+1[k]pq (n—k)(;—k—]) @ n xk (3)
s [n k+ 11,7 )7 Tk,

where, x>0, 0<g<p<1

n—1

&' =] +a0

s=0

and f is defined on semiaxis R,.
And also by induction, we construct the Euler identity based on (p, g4)-analogue defined as follows:

n—1 n

(=kn—k=1)  kk=1) | 7
H(ps + qu) = Zp 2 q: [ k ] xk. (4)
5=0 k=0 pA

k+
If we put p = 1, then we obtain g-BBH-operators. If we take f ([n T +1] ) instead of f (ﬁ) in (3),

then we obtain usual generalization of Bleimann, Butzer and Hahn operators based on (p, g)-integers, then

in this case it is impossible to obtain explicit expressions for the monomials " and (1 — t) forv =1,2. But
if we define the Bleimann, Butzer and Hahn operators as in (3), then we can obtain explicit formulas for
the monomials (1t t) for v =0,1,2. We emphasize that these operators are more flexible than the classical
BBH-operators and g-analogue of BBH-operators. That is depending on the selection of (p, g)-integers, the

rate of convergence of (p, 7)-BBH-operators is at least as good as the classical one.

2. Preliminary Results
Lemma 2.1. Let L}(f; x) be given by (3), then for any x > 0 and 0 < q < p < 1 we have the following identities
1. LM(1x) =1,
2 L) = i ()
3. [P ((m)z; x) _ w/ [[]p,q[n—llp,q 2 p"“[nlp,q (L)

15, A0+ T [+,

y (=k)(n—-k-1)  k(k-1) n
Proof. 1. LI (1;x) = mZZﬂP - [ r ] xk.
pa

For0 <g<p<1,wehave

n n—-1

(=k)(n-k=1)  k(k=1) n s S y
Yo e [k] * =[]0 +40 = 6.
k=0 s=0

PA
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[n— k+1] q
t 1 (R 1) et
i (—; x) =
"1+t ﬁ’q(x)z [n+1]pq

. L

q
1 [7’1];7,17?”_](+1 Rk k(k n| n-1

= P
B 1

&) = [n+ 1]W k —

1 [1],q )n1 S k(kl)[n—l ] ¢

- P (qx)
(qu(x) [n+1l, ) & k b

[n]p,q X
[n+1],1+x

2. Lett =

—

3. We have
pa{ 2 _ kI 20~ k1) ik (n—k=-1) k(k | n X
L, ((1+t)2’ )— R Yia [1+1E, P a0 g X
p4q

By some simple calculation, we have

(Klpq = P +qlk = 11, and [kI}, = glKllk = 1pg + P K], g
Then by using it we get,

k 1];7 P2n_2k+2 (=K)(-k-1)  k(k-1)

2 qlklp,ql q bk ey [ 7
LP’] X / 5 > k
(<1+t>2 ) Wx)z TS I

Zn“ k]p qun ~2k+ 2P(,, K-k qu(kz 1 [ n ] &

) = [n+117, k pa

1 glnlpgln -1y, - (@n-2k+2)+ RD ed | 71— 2 k

] [+ 12 Z P q k-2 X
W) I+l = pa

gp’i(

1 ps v ((k=1)+(2n—2k+2)+ B0 “k”[ n-1 ] k
qu(x) [n+1]quz; k-1 pa

n-2
_ 2 pql qlnlyqln zl]pq p (@n-2k-2)+ it k'z)z‘”'k'”)qi‘k”)z(k”) [ ”;2 ] &
6O In+ll, = pa

n—1

7’l (n—k=1)(n—k-2) 1)(,1 k-2) + —
]M pk+(2n 2k)+ AR )qLszl) [ n-1 ] N
x) [n+117, & pa

IS 507 U 7R ‘"k)(gk”qk‘kz”[ " ] (70"
6 I+, = kL

n+1 YRS : (- k)n k-1) k(k—l) n—1
T Z P [ k ] (g0
P4

x) [n +115, e

g 2[nlpgln — 1, X 4 P nlp, ( X )
S I+l Qe+ 1R, \1+x)

This completes the proof of Lemma 2.1. [
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3. Main Results

3.1. Korovkin type approximation properties

In this section we obtain the Korovkin's type approximation properties for our operators defined by (3),
with the help of Theorem 1.1.

In order to obtain the convergence results for the operators Lf,’q, we take g =g, p = p, whereg, € (0,1)
and p, € (g, 1] satisfying,

limp, =1, limg, =1. )

Theorem 3.1. Let p = p,, q = gy satisfying (5), for 0 < q, < p, < 1 and if L™ is defined by (3), then for any
function f € H,,

limn | L (f3) = f lley = 0

Proof. Using Theorem 1.1, we see that it is sufficient to verify that following three conditions:
1 Pt t v X v
. n/Mn . _ — 6
nl—r&”L” ((1+t) ,x) (1+x) ley=0, v=0,1,2. (6)

From Lemma 2.1, the first condition of (6) is fulfilled for v = 0. Now it is easy to see that from (2) of Lemma
2.1

ty x Y
1 () )= (1) e

pulnlp, q, B l'
[n+1]p,4,

Pn n 1 ) ‘
< |[E)1-pr—a] -1
‘ (qn )( p [n + l]Pn,qn

Since g,[nlp, 4, = [0+ 1,4, —Pn, [1+1]p,4, — 00 asn — oo, the condition (6) holds for v = 1. To verify this
condition for v = 2, consider (3) of Lemma 2.1. Then, we see that

he (%) 5%) - (75) le

_ x2 F’n’h[”]pn,qn[”_llpn,qn 14x Pt [”]pn an X
=SUP.>g {(1+x)2( [n+113, 40 " Pntnx + [n+113 T+x [*

Pn.gn
A small calculation leads to

(nlp, g1 = 1pq, 1 p 1 , 1
g ln = Upg, 1 1_p( +q—)—+(m)2( ‘7)_ ,
[n+112 . ' pn) [n+ 1y, [n+11 .

and

[ ]pn In _ l 1 _ 1
TR (TR TS T

Thus, we have
2 2
Pnn t .
() 5) = () e

<o {1 ph(2+ ) i + O V(“"Z)W‘l}

Pnqn

nPn 1
+p1’l qn ([n+1]ﬂn An pl’l [n+1]lzin/qn ) )

This implies that the condition (6) holds for v = 2 and the proof is completed by Theorem 1.1. [
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3.2. Rate of convergence
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In this section we calculate the rate of convergence of operators (3) by means of modulus of continuity

and Lipschitz type maximal functions.
The modulus of continuity for f € H,, is defined by

Z £ - F) ],

<6,

w(f;0) =

| T+ 1+x
x,t20

where «(f; 0) satisfies the following conditions. For all f € H,(R)

2.1 f() - f0) I< 5(f;5)(|ﬁ—Tﬁ-|+1)'

Theorem 3.2. Letp =p,, q = qnsatisfy (5), for0<gq, <p
and for any function f € H,, we have

| L (f;%) = f 1< 20(f; Vou(x)),

x < Land if LI is defined by (3). Then for each x > 0

where
5 (x) = x? PnQ%[”]pmqn[”_l]pmn 1+x palnlp, q. w1+ pitn nlp,q,  x
(1+x)? [n+11,,, Putqux[n+1]p,, [n+1]5,, 1+x
Proof.
L (fix) = f1 < L™ (L fB) = (o) [x)
t X
< 1 ﬁ”%———————;».
B w(f6{+6 T+t 1+
Now by using the Cauchy-Schwarz inequality, we have
1
1 t x V2P 1
P - Pnfn . Pnitn (1. 2
et = w4 k- 25 o
1
2 Pugal T g0 (1= Pultt]pn g Pt 1o g 2
<a(f; 5”){1 ta, [(1%2( TSV e s T +1)+ TS ﬁ] }

This completes the proof of Theorem 3.2. [

Now we will give an estimate concerning the rate of convergence by means of Lipschitz type maximal
functions. In [1], the Lipschitz type maximal function space on E C R, is defined as

W ={f :sup(l + x)“ﬁ;(X) <M

1
1+y”

x<0,and y € E},

)

where f is bounded and continuous function on IR, M is a positive constant, 0 < a < 1.

In [6], B.Lenze introduced a Lipschitz type maximal

t)
.ﬂx(x/t) = Z |f|(x {|(:C
>0
t#x

function f, as follows:

We denote by d(x, E) the distance between x and E, that is

d(x,E) =inf{|x -y |,y € E}.
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Theorem 3.3. Forall f € Wa,E, we have
| L™ (5 x) = f(x) 1< M(5; () +2 d(x, E))*), 9)
where 0,(x) is defined as in Theorem 3.2.

Proof. Let E denote the closure of the set E. Then there exits a xy € E such that | x — x |= d(x, E), where
x € R,. Thus we can write

| f=f@) 1=l f = f(xo) | +1 fxo) = f() |-
Since L!""" is a positive linear operator, f € VTLLE and by using the previous inequality, we have

| Ly (f;) = £ ISILY™ (L f = fxo) [x)+ 1 flxo) = f(x) | Ly (1;%)

o a
;x) + |x X0 | Pn qn(l x))

(1 +x)2(1 + x0)* L

t X0
1+t 14+x

i

Since (a + b)* < a® + b*, which consequently imply

t xo | t x |° x xo |¢
Lpn/qrz ' _ ; < LPnrﬂn ‘ _ ’, + Lpn/qn ' _ ’,
" (1+t 1+ x X)= b T+t 1+x" " 1+x 1+x :
t xo | t x ¢ | x —xg |*
Lpn/q” ' _ ; < LPV:/Qn ‘ _ ; + pn n 1
" (1+t 1+ x X)= b T+t 1+x" (1 + x)2(1 + x0)* L™ (13).

By using the Holder inequality with p = 2 < and q=755we have

a 2
ndn t . ndn t . nldn (9. a
LZ ! (m - 13:0 ,x) SLft ! ((m - lix) ,x) (Lﬁ ! (1,x)) z
| x —xo |*

LPVU% 1
TTrorarme BX)

| x—xp |*

=00+ T ao

This completes the proof of Theorem 3.3. [J
Corollary 3.4. If we take E = R, as a particular case of Theorem 3.3, then for all f € Wa,r,, we have
L () — f(x) < MBS (x),
where 6,,(x) is defined in Theorem 3.2.

[Klpq
[n—k+1],

£ (2) -l

Theorem 3.5. If x € (0, o)\ {Pn_k+1

}, then

n-1
X PX . -k (Klyq ] 1 (R ikeD) g k(k—3>_2[ n ] k
+ — ; g : : 10
) Zg[ 7 ket | h, 7 k]! (10)
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Proof. By using (3), we have
2 pry_ _1 Pk, px)|,, LRk KD |7 k
Ly (frx)—f(ﬂ—mzzzo[f(m)‘f(v)]?’ Tq [k] x

iz
n—k+1 n—k+1
_ 1 no (px PR \[px. PR, =Re=k=1) k=) |7 k
AL Zk:o( q  In—k+1lq* J[ a7 [”—k*'l]mqk'f poroqe k -
PA

[, n n
By using = k+1q],,q[ X ] =[ o1 ] , we have
P P

n n—k+1
p (klpq Re-k-) 4 KD 4 | 7
L (f32) - (p—x)=— . [p—x,‘—; = g 2,
0= Ll T h e ) 77k,

pql Z[FE P k+1[k]pq » f] R 1)qk(k 1) k[ kfl ] &
f (x) q " [n—k+1lp9 pa

_x i{ﬁ p”_k+1[k]ll/q .f}p(nk)(;knﬂqk(kzn_l[ n ] &
fzfq(x) k=0 q ’ [Vl —k+ 1]Pr‘7qk, k [ ‘

1 n—k
px p [k + Hpq (n—k— 1)()1 k-2) —(k=n) k(k+] —(k+1) X
qu(x Z‘[ q" [n—klp, fik“’f y T k Mx

k=0

Pan! px p pq ] n(nl
A f

x px Pl px Pk, <n ok g HED g | 71 k
+55'q(x) k -0 {[q’ [n=kly, qu’f 7 [n- k+1mqk’f q ’ k pqx .

Now by using the result

px ., Pk, px. P K,
[ 7 [n—klp, qk“’f] [ 4 [n k+1],, qq”f]

= (pn_k[k +1]p, P kg J f [px . P kg .pn_k[k +1]py ]

[ =Kl =k + 10095 )" | 0" [n—k+ 11,005 [n = Klpgqgt’

and
n—k k+1 n—k+1 k
A Uy I A U = [n+1],,,
[n=klpgq™t  [n—k+1],,q" ’
we have

L) = £ () = i [ 25 s ] g5

n—k+1 7k
x px., [Klp.q [n+1]pq (=Rk-1) g kD) 4 [ 7 X
+fﬁ'q(x) k 0 {[ 7 [n— k+1mqk’f [n— kM n—k+1],,44"1 p 2 q: k X
PA

This completes the proof of Theorem 3.5. [

4. Generalization of LZ 4

In this section we present some generalization of the operators L}’ based on (p, q)-integers similar to
work done in [1, 3].
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We consider a sequence of linear positive operators based on (p, q)-integers as follows:

1 1 pn7k+1 [k] gtV ehekn | n
Lffrﬂ)r?’(f; x) = o 2 f(b—pq p 2 g2 X xk, (7/ € ]R),
{n (.X) k=0 nk pq

where b, satisfies the following conditions:

pl [klpq + bnk=cu and .
n

—1, for n - oo.

647

(11)

It is easy to check that if b, = qk[n —k+1],4+pforanyn,kand 0 <g<p <1, thenc, = [n+1],, +p. If we
choose p = 1, then operators reduce to generalization of g-BBH opeartors defined in [1], and which turn out
to be D.D. Stancu-type generalization of Bleimann, Butzer, and Hahn operators based on g-integers [14]. If
we choose y =0, g =1asin[1] for p = 1, then the operators become the special case of the Baldzs-type

generalization of the g-BBH operators [1] given in [3].

Theorem 4.1. Let p = p,, q = g satisfying (5), for 0 < g, < pn < 1and sz,(f"’q”)’y is defined by (11), then for any

function f € We [0,00), we have
iy, [| LY (f;%) = f(x) lle, < 3M

han V(v Y
Xmax {( Cn+y ) [n]pn,f/n ’ 1

Proof. Using (3) and (11), we have
| L (fix) - f() |

(B ) (B ) |, S |
bn,k V+bn,k pﬂ qn k
pn qn

n k+1 n— k+1 -R—k=1)  Kk=1)
1 Z f(pn [ ]Pn,% ] _ f( p?’l [ ]pmqn k] pniz qn 5 [ 7];1 ] xk
Pnln

+
) L Y+ bk [ =k + 1Ly,

[1+1]p,90
Cuty

a
(Pn[”]pn,qn ) 1— an Lpnan + Gn[11pn g [1—1Tpn g }

[n+1]p,,40 [n+11p,,,9, [“’H'l]%n,q,,

1
< g Li-o

FIL(f0) = f(0) ]

Since f € W, [0,.0) and by using Corollary 3.4, we can write
p:: k1 [k]pn,qn P27k+1 [k]pmqn

| L(Pfq)r)/(f,. x) — f(x) |
A (-k)n-k-1)  kk=1)
Po C [ i ] x*
Pnin

pn 1k Tpnan Y o e [KTpn.an
” kel [k]Pnﬂn +)/+bnk 7’+PZ k+1 [k]}mllln +bn/k
P K g+ 40k PE T K g0+ =k 4105, 095
(=K)(n-k=1)  kk-1)
2 2 |: n

— an fln(x) Zk =0

fpn Lln (X) Zk 0

Xp, G r ] Xk + Méf ().
Pnn

This implies that
A . (o \* ('
L (0 - fo 1< () ()

M n4 1,0, 1% xo (P kg, || bt s 5
+ Prndn [ . [ [ - p" : q” ’ Z xk * Mé?% (X)
6, (%) cwty L\ I+, P
" a +1 144 t @ a
VYA A M‘l It s ((_) ;x) + M5 ().
CTL + 7/ [n]Pn,qn C” + 7/ 1 + t




Using the Holder inequality forp =1, 4=
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1
1= we get

L7 () = f) |
< M(["]Pwn )a( b4 )a +M‘1 _ [n+ g

a 1-

L () (L (20) " + Mo (x)

Cuty [1]py4n Cuty 1+t
a a
[1]p,90 @ )4 “ [n+1]p,,,9 pallpngn g
< M (Fe) G| +M|1— T (e ) MG ().

This completes the proof of Theorem 4.1. [J
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