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Abstract. In this paper we provide two characterizations of H-J generalized Hausdorff matrices. The first
is a recursion relationship among each nonzero triangular array consisting of three terms, and the second
is a generalization of the classical Hurwitz-Silverman theorem to H-J Hausdorff matrices.

1. Introduction

A Hausdorff matrix is a lower triangular matrix with nonzero entries of the form

hnk =

(
n
k

)
∆n−kµk,

where {µn} is a real or complex sequence and ∆ is the forward difference operator defined by ∆µk = µk−µk+1
and ∆n+1µk = ∆(∆n)µk for n > 1.

The Cesáro matrix of order one, (C, 1), is the Hausdorff matrix generated by the sequence

µn =
1

n + 1
.

Hurwitz and Silverman [3] showed that a lower triangular matrix commutes with (C, 1) if and only if it
is a Hausdorff matrix although they did not use that term. They also showed that each such matrix has the
decomposition

H = δµδ,

where

δnk = (−1)k
(
n
k

)
,

∆ is its own inverse, and µ is the diagonal matrix with diagonal entries µk.
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In 1921 Hausdorff [4] established a number of properties of these matrices, which now bear his name,
including necessary and sufficient conditions for regularity. A matrix is called regular if and only if it maps
every convergent sequence into a convergent sequence with the same limit.

There are at least two well-known generalizations of Hausdorff matrices. The first of these was defined
by Hausdorff [5]. An H-J matrix is defined as follows. Let {λn} be a positive sequence satisfying

0 ≤ λ0 < λ1 < · · · < λn < · · · (1)

with limn λn = ∞ and

∞∑
k=1

1
λk

= ∞.

The nonzero entries of an H-J matrix are defined by

hn,k(λ;µ) = λk+1 . . . λn[µk, µk+1, . . . , µn], (2)

where [·] is the symmetric difference operator defined by

[µk, µk+1] =
µk − µk+1

λk+1 − λk
,

and, for n > 1,

[µk, . . . , µn+1] =
[µk, . . . , µn] − [µk+1, . . . , µn+1]

λn+1 − λk
.

Hausdorff considered those methods for which λ0 = 0, and Jakimovski [6] investigated such matrices
for λ0 > 0.

The other generalization we shall consider is the class of E-J matrices, which were defined independently
by Jakimovski [6] and Endl [2].

The nonzero entries of an E-J matrix are

h(α)
n,k =

(
n + α
n − k

)
∆n−kµk.

Thus, the H-J matrices reduce to the E-J matrices by setting λn = n + α, and the choice λn = n yields the
ordinary Hausdorff matrices.

The purpose of this paper is to provide two characterizations of H-J matrices. The first is a new
characterization that has not been considered before, even for ordinary Hausdorff matrices, and the second is
a slight generalization of the characterization established by Hurwitz and Silverman for ordinary Hausdorff
matrices.

For simplicity of notation we shall also denote the entries of an H-J matrix by hnk.

2. Results

Theorem 2.1. A lower triangular matrix A is an H-J matrix if and only if there exists a sequence λn satisfying (1)
such that

an+1,k =
λn+1

λn+1 − λk
ank −

λk+1

λn+1 − λk
an+1,k+1 (3)

for each 0 ≤ k ≤ n.
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Proof. Suppose that A is an H-J matrix. Then, from the definition of an H-J matrix,

hn+1,k = λk+1 · · ·λn+1[µk, . . . , µn+1]

=
λk+1 · · ·λn+1

λn+1 − λk
([µk, . . . , µn] − [µk+1, . . . , µn+1])

=
λn+1

λn+1 − λk
hnk −

λk+1

λn+1 − λk
hn+1,k+1,

and (3) is satisfied.
With n = k, from (3), one has

ak+1,k =
λk+1

λk+1 − λk
akk −

λk+1

λk+1 − λk
ak+1,k+1. (4)

Since the diagonal entries of A only depend on k we can write akk = µk, for some sequence µk. Therefore
(4) becomes

ak+1.k =
λk+1

λk+1 − λk
(µk − µk+1) = λk+1[µk, µk+1],

and the first diagonal below the main diagonal has the entries of an H-J matrix.
Assume the induction hypotheses; i.e., assume that, for any j satisfying 0 ≤ j ≤ k that (3) is satisfied

with n = k + j. Then, with n = k + j + 1, (3) becomes

ak+ j+2,k =
λk+ j+2

λk+ j+2 − λk
ak+ j+1,k −

λk+1

λk+ j+2 − λk
ak+ j+2,k+1

=
1

λk+ j+2 − λk

(
λk+ j+2λk+1 · · ·λk+ j+1[µk, . . . , µk+ j+1]

− λk+1λk+2 · · ·λk+ j+2[µk+1, . . . , µk+ j+2]
)

= λk+1, . . . , λk+ j+2[µk, . . . , µk+ j+2],

and the (n + k + 1)st diagonal elements are the corresponding terms of an H-J matrix.

To prove the analogue of the Hurwitz-Silverman theorem, which states that a lower triangular matrix A
commutes with (C, 1) if and only if A is a Hausdorff matrix, it will first be necessary to compute the entries
of the H-J analogue of (C, 1). For a regular H-J matrix it is known that

µn =

∫ 1

0
xλn dχ(x),

where χ is a function of bounded variation over [0, 1]. The function χ is normally called the mass function
for the moment generating sequence {µn}. Since the mass function for (C, 1) is χ(t) = t, we shall use the
same mass function to compute the entries of the H-J analogue.

µn =

∫ 1

0
xλn dx =

1
λn + 1

.

A routine computation verifies that

cnk =
λk+1 · · ·λn∏n

i=k(λi + 1)
=

λ1 · · ·λn∏n
i=0(λi + 1)

·

∏k−1
i=0 (λi + 1)
λ1 · · ·λk

. (5)

We shall also use the notation C to denote the H-J analogue of (C, 1).



F. Aydin Akgun, B.E. Rhoades / Filomat 30:3 (2016), 675–679 678

A lower triangular matrix A is called a triangle if ann , 0 for all n ≥ 0. A matrix A is called factorable
if it is lower triangular with entries ank = cnbk, 0 ≤ k ≤ n, where bk depends only on k and cn depends only
on n. A simple example of a factorable matrix is C, the Hausdorff Cesáro matrix of order one. Then C is a
factorable matrix with each bk = 1 and each cn = 1/(n + 1)

The following lemma allows us to omit the assumption that a matrix A which commutes with C must
be lower triangular.

Lemma 2.2. Let B be a factorable triangle with distinct diagonal entries. Then, if A is any row finite infinite matrix
that commutes with B, A must be lower triangular.

Proof. A matrix A commute with B if and only if A commutes with B−1. From Lemma 2.1 of [1], a triangle is
factorable if and only if its inverse is bidiagonal. Therefore B−1 is bidiagonal. Moreover, if bnk = cndk, then
b−1

nn = 1/(cndn) and b−1
n,n−1 = 1/(cn−1bn), which are defined and nonzero for each n, since B is a triangle.

The proof is by repeated induction.

(AB−1)00 =
∑

j

aojb−1
j0 = a00b−1

00 + a01b−1
10 ,

and

(B−1A)00 =
∑

j

b−1
0 j a j0 = b−1

00 a00,

which implies that a01 = 0. Assume that a0k = 0 for 0 < k ≤ n. Then

(AB−1)0n =
∑

j

a0 jb−1
jn = a0nb−1

nn + a0,n+1b−1
n+1,n,

and

(B−1A)0n =
∑

j

b−1
0 j a jn = b−1

00 a0n,

which implies that a0,n+1 = 0.
Now assume that akm = 0 for 0 < k < n and m > k. Then

(AB−1)nn =
∑

j

anjb−1
jn = annb−1

nn + an,n+1b−1
n+1,n,

and

(B−1A)nn =
∑

j

b−1
nj a jn =

∑
j

b−1
n,n−1an−1,n + b−1

nnann,

and it follows that an,n+1 = 0.
Assume now that anm = 0 for n < m ≤ n + k. Then

(AB−1)n,n+k =
∑

j

anjb−1
j,n+k = an,n+kb−1

n+k,n+k + an,n+k+1b−1
n+k+1,n+k,

and

(B−1A)n,n+k =
∑

j

b−1
nj a j,n+k = b−1

n,n−1an−1,n+k + b−1
nnan,n+k,

which implies that an,n+k+1 = 0.
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Theorem 2.3. A row finite infinite matrix A commutes with C if and only if A is an H-J matrix.

Proof. From (5) it is clear that C is a factorable triangle. Therefore by Lemma 1, A must be a lower triangular
matrix. Since the principal diagonal entries of A depend only on k, one can regard akk = µk, for some
sequence {µk}. Using (5),

(AC)k+1,k =
∑

j

ak+1, jc jk = ak+1,kckk + ak+1,k+1ck+1,k

=
ak+1,k

λk + 1
+

λk+1µk+1

(λk + 1)(λk+1 + 1)
,

and

(CA)k+1,k =
∑

j

ck+1, ja j,k = ck+1,kak,k + ck+1,k+1ak+1,k

=
µk

(λk + 1)(λk+1 + 1)
+

ak+1,k

(λk+1 + 1)
.

Equating (AC)k+1,k and (CA)k+1,k gives

ak+1,k

λk + 1
+

λk+1µk+1

(λk + 1)(λk+1 + 1)
=

λk+1µk

(λk + 1)(λk+1 + 1)
+

ak+1,k

(λk+1 + 1)
,

or ( 1
λk + 1

−
1

λk+1 + 1

)
ak+1,k =

λk+1µk

(λk + 1)(λk+1 + 1)
−

λk+1µk+1

(λk + 1)(λk+1 + 1)
.

Hence

(λk+1 − λk)ak+1,k = λk+1(µk − µk+1),

or ak+1,k = λk+1[µk, µk+1].
Now assume the induction hypothesis. Then Theorem 1 applies and A is an H-J matrix.

Remark 2.4. Setting λn = n in Theorem 2 gives a generalization of the Hurwitz-Silverman theorem, and
setting λn = n + α yields the corresponding result for the E-J matrices.
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