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Abstract. In this article, the sequence spaces f0(Nt) and f (Nt) are introduced as the domain of Nörlund
mean in the spaces f0 and f of almost null and almost convergent sequences which are isomorphic to the
spaces f0 and f , respectively, and some inclusion relations are given. Additionally, alpha, beta and gamma
duals of the sequence spaces f0(Nt) and f (Nt) are determined. Finally, the classes (λ(Nt) : µ) and (µ : λ(Nt))
of matrix transformations are characterized for given sequence spaces λ and µ together with two Steinhaus
type results.

1. Introduction

We denote the space of all complex valued sequences by ω. Each subspace of ω is called as a sequence
space, as well. The spaces of all bounded, convergent and null sequences are denoted by `∞, c and c0,
respectively. By `1, `p, cs, cs0 and bs, we denote the spaces of all absolutely convergent, p-absolutely
convergent, convergent, convergent to zero and bounded series, respectively; where 1 < p < ∞.

A linear topological space λ is called a K-space if each of the maps pk : λ → C defined by pk(x) = xk is
continuous for all k ∈ N, where C denotes the complex field and N = {0, 1, 2, 3, . . .}. A K-space λ is called
an FK-space if λ is a complete linear metric space. If an FK-space has a normable topology then it is called
a BK-space, (cf. Choudhary and Nanda [4]). The alpha, beta and gamma duals of a sequence space λ are
respectively defined by

λα := {a = (ak) ∈ ω : ax = (akxk) ∈ `1 for all x = (xk) ∈ λ},

λβ := {a = (ak) ∈ ω : ax = (akxk) ∈ cs for all x = (xk) ∈ λ},

λγ := {a = (ak) ∈ ω : ax = (akxk) ∈ bs for all x = (xk) ∈ λ}.
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Let λ and µ be two sequence spaces, and A = (ank) be an infinite matrix of complex numbers ank, where
n, k ∈ N. Then, we say that A defines a matrix transformation from λ into µ and we denote it by writing
A : λ→ µ, if for every x = (xk) ∈ λ the A-transform Ax = {(Ax)n} of x exists and belongs to µ; where

(Ax)n =

∞∑
k=0

ankxk for each n ∈N. (1)

By (λ : µ), we mean the class of all matrices A such that A : λ→ µ. Thus, A ∈ (λ : µ) if and only if the series
on the right side of (1) converges for each n ∈N, i.e., An ∈ λβ for all n ∈N, and we have Ax belongs to µ for
all x ∈ λ, where An denotes the sequence in the n-th row of A. A sequence x is said to be A-summable to l if
Ax converges to l and is called as the A-limit of x.

If a normed sequence space λ contains a sequence (bn) with the following property that for every x ∈ λ
there is a unique sequence of scalars (αn) such that

lim
n→∞
‖x − (α0b0 + α1b1 + · · · + αnbn)‖ = 0

then (bn) is called a Schauder basis for λ. The series
∑
∞

k=0 αkbk which has the sum x is then called the
expansion of x with respect to (bn) and written as x =

∑
∞

k=0 αkbk.
Let λ be FK-space. If φ ⊂ λ and (ek) is a basis for λ then λ is said to have AK property, where ek is a

sequence whose kth term is 1 and the other terms are 0 for each k ∈ N, and φ = span{ek
}. If φ is dense in λ,

then λ is called AD-space, thus AK implies AD.
The domain λA of an infinite matrix A in a sequence space λ is defined by

λA = {x = (xk) ∈ ω : Ax ∈ λ}

which is also a sequence space.
The spaces `∞(Nt) and `p(Nt) consisting of all sequences whose Nörlund transforms are in the spaces

`∞ and `p with 1 ≤ p < ∞ were worked by Wang [19], respectively. Additionally, the inverse of Nörlund
matrix and some multiplication theorems for Nörlund mean were given by Mears in [13] and [12].

Let (tk) be a nonnegative real sequence with t0 > 0 and Tn =
∑n

k=0 tk for all n ∈ N. Then, the Nörlund
mean with respect to the sequence t = (tk) is defined by the matrix Nt = (at

nk), as follows;

at
nk :=


tn−k
Tn

, 0 ≤ k ≤ n,

0 , k > n
(2)

for all k,n ∈ N. It is known that the Nörlund matrix Nt is a Teoplitz matrix if and only if tn/Tn → 0, as
n → ∞. Furthermore, if we take t = e = (1, 1, 1, . . .), then the Nörlund matrix Nt is reduced to the Cesàro
mean C1 of order one and if we choose tn = Ar−1

n for every n ∈ N, then the Nörlund mean Nt corresponds
to the Cesàro mean Cr of order r, where r > −1 and

Ar
n :=


(r+1)(r+2)···(r+n)

n! , n = 1, 2, 3, . . . ,

1 , n = 0.

Let t0 = D0 = 1 and define Dn for n ∈ {1, 2, 3, . . .} by

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 1 0 0 · · · 0
t2 t1 1 0 · · · 0
t3 t2 t1 1 · · · 0
...

...
...

...
. . .

...
tn−1 tn−2 tn−3 tn−4 · · · 1
tn tn−1 tn−2 tn−3 · · · t1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3)
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Then, the inverse matrix Ut = (ut
nk) of Nörlund matrix Nt was defined by Mears in [13], as follows

ut
nk :=


(−1)n−kDn−kTk , 0 ≤ k ≤ n,

0 , k > n
(4)

for all k,n ∈N.
The shift operator P is defined on ω by (Px)n = xn+1 for all n ∈ N. A Banach limit L is defined on `∞ as

a nonnegative linear functional such that L(Px) = L(x) and L(e) = 1. A sequence x = (xk) ∈ `∞ is said to be
almost convergent to the generalized limit l if all Banach limits of x are l, and is denoted by f − lim xk = l.
Lorentz [10] proved that f − lim xk = l if and only if

∑m
k=0 xn+k/(m + 1) → l, as m → ∞, uniformly in n. It is

known that a convergent sequence is almost convergent such that its ordinary and generalized limits are
equal. By f0 and f , we denote the spaces of all almost null and all almost convergent sequences, that is,

f0 :=

x = (xk) ∈ ω : lim
m→∞

m∑
k=0

xn+k

m + 1
= 0 uniformly in n

 ,
f :=

x = (xk) ∈ ω : ∃l ∈ C 3 lim
m→∞

m∑
k=0

xn+k

m + 1
= l uniformly in n

 .
In this paper we construct the new sequence spaces f0(Nt) and f (Nt) of non-absolute type as the domain

of Nörlund mean Nt with respect to the sequence t = (tk) in the spaces f0 and f of almost null and almost
convergent sequences. We give some inclusion relations and determine the alpha, beta and gamma duals
of the spaces f0(Nt) and f (Nt). Finally, we characterize some classes of matrix transformations related to
the new sequence space f (Nt) and give two Steinhaus type results.

2. The Spaces of Nörlund Almost Null and Nörlund Almost Convergent Sequences

We introduce the spaces f0(Nt) and f (Nt) as the set of all Nt-almost null and Nt-almost convergent
sequences, respectively, that is,

f0(Nt) :=

x = (xk) ∈ ω : lim
m→∞

1
m + 1

m∑
j=0

n+ j∑
k=0

tn+ j−k

Tn+ j
xk = 0 uniformly in n

 ,
f (Nt) :=

x = (xk) ∈ ω : ∃l ∈ C 3 lim
m→∞

1
m + 1

m∑
j=0

n+ j∑
k=0

tn+ j−k

Tn+ j
xk = l uniformly in n

 .
By c0(Nt) and c(Nt) which are investigated in a separate paper, we denote the spaces of all sequences whose
Nt-transforms are in the classical sequence spaces c0 and c, respectively.

We define the sequence y = (yk) by the Nt-transform of a sequence x = (xk) ∈ ω, that is,

yk = (Ntx)k =
1
Tk

k∑
j=0

tk− jx j for all k ∈N. (5)

Therefore, by applying Ut to the sequence y in (5) we obtain that

xk = (Uty)k =

k∑
j=0

(−1)k− jDk− jT jy j for all k ∈N. (6)
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Theorem 2.1. The spaces f0(Nt) and f (Nt) are BK-spaces with the norm given by

‖x‖ f (Nt) = ‖Ntx‖ f = sup
m,n∈N

|tmn(Ntx)|,

where

tmn(Ntx) =
1

m + 1

m∑
j=0

1
Tn+ j

n+ j∑
k=0

tn+ j−kxk for all m,n ∈N.

Proof. Since f0 and f are BK-spaces with the norm ‖ · ‖∞ (see Boos [2, Example 7.3.2 (b)]) and Nt is a triangle
matrix, Theorem 4.3.2 of Wilansky [20, p. 61] gives that f0(Nt) and f (Nt) are BK-spaces with respect to the
norm ‖ · ‖ f (Nt).

Let λ denotes any of the spaces f0 or f . With the notation of (5), since the transformation T : λ(Nt)→ λ
defined by x 7→ y = Tx = Ntx is a norm preserving linear bijection, we have the following:

Corollary 2.2. The sequence spaces f0(Nt) and f (Nt) are linearly norm isomorphic to the spaces f0 and f , respectively,
that is, f0(Nt) � f0 and f (Nt) � f .

Now, we can mention on the existence of the Schauder bases of the spaces f0(Nt) and f (Nt). It is known
from Corollary 3.3 of Başar and Kirişçi [1] that the Banach space f has no Schauder basis. It is also known
from Theorem 2.3 of Jarrah and Malkowsky [6] that the domain λA of a matrix A in a normed sequence
space λ has a basis if and only if λ has a basis whenever A = (ank) is a triangle. Combining these facts, one
can immediately conclude that both of the spaces f0(Nt) and f (Nt) have no Schauder basis.

Theorem 2.3. The following statements hold:

(i) The inclusion f0(Nt) ⊂ f (Nt) is strict.
(ii) The inclusion c(Nt) ⊂ f (Nt) is strict.

(iii) The sequence spaces f (Nt) and `∞ are overlap, but neither of them contains the other.

Proof. (i) If we take a sequence x = (xk) in the space f0(Nt), then we have Ntx ∈ f0 and since the inclusion
f0 ⊂ f trivially holds, then we have Ntx ∈ f which gives us x ∈ f (Nt). Thus, the inclusion f0(Nt) ⊂ f (Nt)
holds.

Now, we consider a sequence x = (xk) in the space f (Nt) but is not in the space f0(Nt), that is, we show
that f (Nt)\ f0(Nt) is not empty. Consider the sequence x = e. Then, Nte = e ∈ f \ f0, we have x ∈ f (Nt)\ f0(Nt).
Hence, the inclusion f0(Nt) ⊂ f (Nt) strictly holds.

(ii) If x ∈ c(Nt), then we have Ntx ∈ c and the inclusion c ⊂ f is well-known, so that Ntx ∈ f , i.e., x ∈ f (Nt).
Hence, the inclusion c(Nt) ⊂ f (Nt) holds.

Now, we should show that the set f (Nt)\c(Nt) is not empty. For this, we consider the sequence x = (xk)
defined by

xk =

k∑
j=0

(−1)kDk− jT j for all k ∈N. (7)

Therefore, we obtain that

(Ntx)n =

n∑
k=0

tn−k

Tn

k∑
j=0

(−1)kDk− jT j = (−1)n for all n ∈N.
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Then, it is clear that Ntx is not in c but,

lim
m→∞

1
m + 1

m∑
k=0

k+n∑
j=0

tk+n− j

Tk+n

k∑
j=0

(−1)kDk− jT j = lim
m→∞

1
m + 1

m∑
k=0

(−1)n+k

= lim
m→∞

(−1)n

m + 1

[
1 + (−1)m

2

]
= 0 uniformly in n.

That is to say that Ntx ∈ f . Thus, the set f (Nt)\c(Nt) is not empty.
(iii) To prove this, first we prove that f (Nt) and `∞ are not disjoint. If we take z = e then, since Ntz = e ∈ f ,

z ∈ f (Nt). Furthermore, it is trivial that z ∈ `∞. This shows that there exists at least one point belonging to
both f (Nt) and `∞, as was asserted.

Now, we prove that the sequence spaces f (Nt) and `∞ do not include each other. Let us consider the
sequence x = (xk) defined by (7). Then, since Ntx = {(−1)n

} ∈ f , x ∈ f (Nt) but x < `∞. Hence, x ∈ f (Nt)\`∞.
Now, we consider the sequence s = Utv with v = (0, 0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . .),

where the sequence v is defined by Miller and Orhan [14], and belongs to the set `∞ \ f and the blocks of
0’s are increasing by factors of 100 and the blocks of 1’s are increasing by factors of 10. Then, it is clear that
s ∈ `∞ but is not in the space f (Nt). This shows that the spaces f (Nt) and `∞ do not include each other.

This completes the proof.

3. The Alpha, Beta and Gamma Duals of the Spaces f0(NT) and F(NT)

In the present section, we determine the alpha, beta and gamma duals of the spaces f0(Nt) and f (Nt).
We start with quoting the following two lemmas whose some parts related with the characterization of

matrix transformations on/in the space f and are needed in the rest of the study. Here and after, we denote
the collection of all finite subset ofN by F .

Lemma 3.1. Let A = (ank) be an infinite matrix over the complex field. Then, the following statements hold:

(i) A ∈ ( f0 : `1) = ( f : `1) if and only if

sup
K∈F

∞∑
n=0

∣∣∣∣∣∣∣∑k∈K ank

∣∣∣∣∣∣∣ < ∞. (8)

(ii) A ∈ (`∞ : `∞) = ( f : `∞) if and only if

sup
n∈N

∞∑
k=0

|ank| < ∞. (9)

(iii) (cf. Sıddıqi [17]) A ∈ ( f : c) = ( f0 : c) if and only if (9) holds and

∃αk ∈ C such that lim
n→∞

ank = αk for each k ∈N, (10)

∃α ∈ C such that lim
n→∞

∞∑
k=0

ank = α, (11)

lim
n→∞

∞∑
k=0

|∆(ank − αk)| = 0. (12)

Here and after, ∆ denotes the forward difference matrix, i.e., ∆(ank − αk) = an,k+1 − αk+1 − (ank − αk) for all
n, k ∈N.

(iv) A ∈ (`∞ : c) if and only if (10) holds, and

lim
n→∞

∞∑
k=0

|ank − αk| = 0 uniformly in n. (13)
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Lemma 3.2. Let A = (ank) be an infinite matrix over the complex field. Then, the following statements hold:

(i) (cf. Duran [5]) A ∈ (`∞ : f ) if and only if (9) holds and

∃αk ∈ C such that f − lim ank = αk for each k ∈N, (14)

lim
n→∞

∞∑
k=0

∣∣∣∣∣∣∣∣ 1
m + 1

m∑
j=0

an+ j,k − αk

∣∣∣∣∣∣∣∣ = 0 uniformly in n. (15)

(ii) (cf. Duran [5]) A ∈ ( f : f ) if and only if (9) and (14) hold, and

∃α ∈ C such that f − lim
∞∑

k=0

ank = α, (16)

lim
m→∞

∞∑
k=0

∣∣∣∣∣∣∣∣∆
 1

m + 1

m∑
j=0

an+ j,k − αk


∣∣∣∣∣∣∣∣ = 0 uniformly in n. (17)

(iii) (cf. King [8]) A ∈ (c : f ) if and only if (9), (14) and (16) hold.
(iv) (cf. Nanda [15]) A ∈ (`p : f ) if and only if (14) holds, and

sup
n∈N

∞∑
k=0

|ank|
q < ∞, (1 ≤ p < ∞), (18)

sup
k,n∈N

|ank| < ∞, (0 < p < 1). (19)

Theorem 3.3. The alpha dual of the spaces f0(Nt) and f (Nt) is the set

dt
1 :=

a = (ak) ∈ ω : sup
K∈F

∞∑
n=0

∣∣∣∣∣∣∣∑k∈K (−1)n−kDn−kTkan

∣∣∣∣∣∣∣ < ∞
 .

Proof. Let us define the matrix B = (bt
nk) via a = (ak) ∈ ω by

bt
nk :=


(−1)n−kDn−kTkan , 0 ≤ k ≤ n,

0 , k > n
(20)

for all k,n ∈N. Since the relation (6) holds, it is immediate that

anxn =

n∑
k=0

(−1)n−kDn−kTkanyk = (By)n for all n ∈N. (21)

By the relation (21), we read that ax = (anxn) ∈ `1 whenever x = (xn) ∈ f0(Nt) or ∈ f (Nt) if and only if
By ∈ `1 whenever y = (yk) ∈ f0 or ∈ f . This leads to the fact that a ∈ [ f0(Nt)]α = [ f (Nt)]α if and only if
B ∈ ( f0 : `1) = ( f : `1). Therefore, we derive by Part (i) of Lemma 3.1 that

sup
K∈F

∞∑
n=0

∣∣∣∣∣∣∣∑k∈K (−1)n−kDn−kTkan

∣∣∣∣∣∣∣ < ∞. (22)

This means that the alpha dual of the spaces f0(Nt) and f (Nt) is the set dt
1, as desired.

Theorem 3.4. Define the set dt
2 by

dt
2 :=

a = (ak) ∈ ω : sup
n∈N

∞∑
k=0

∣∣∣∣∣∣∣∣
n∑

j=k

(−1) j−kD j−kTka j

∣∣∣∣∣∣∣∣ < ∞
 . (23)

Then, [ f0(Nt)]β = [ f (Nt)]β = dt
2 ∩ cs.
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Proof. Let x = (xk) be any sequence in the space f0(Nt) or f (Nt). Then, one can immediately observe that
a = (ak) ∈ [ f0(Nt)]β = [ f (Nt)]β if and only if the matrix B = (bt

nk) is in the class ( f : cs) of infinite matrices,
where bt

nk is defined by (20). This is equivalent to the fact that a = (ak) ∈ [ f0(Nt)]β = [ f (Nt)]β if and only if
the matrix E = (et

nk) = SB is in the class ( f0 : c) = ( f : c) of infinite matrices, where S = (snk) denotes the usual
summation matrix and

et
nk =



∑n
j=k(−1) j−kD j−kTka j , 0 ≤ k ≤ n − 1,

anTn , k = n,

0 , k > n

(24)

for all k,n ∈ N. In this situation, we derive from (9) and (10) with et
nk instead of ank that the following two

conditions are satisfied:

sup
n∈N

∞∑
k=0

∣∣∣∣∣∣∣∣
n∑

j=k

(−1) j−kD j−kTka j

∣∣∣∣∣∣∣∣ < ∞,
(ak) ∈ cs.

This step leads us to the desired consequence that the beta dual of the spaces f0(Nt) and f (Nt) is the set
dt

2 ∩ cs.

Theorem 3.5. The gamma dual of the spaces f0(Nt) and f (Nt) is the set dt
2.

Proof. This is similar to the proof of Theorem 3.4 with Part (ii) of Lemma 3.1 instead of Part (iii) of Lemma
3.1. By avoiding the repetition of the similar statements, we omit the detail.

4. Matrix Transformations Related to the Space F(NT)

Let λ denotes any of the classical sequence spaces `∞, c, c0 and `p or any of the sequence spaces f0 and
f . Then, the domain λNt is called as Nörlund sequence space. Therefore, since λNt � λ it is trivial with the
notation (5) that the two sided implication ”x ∈ λNt if and only if y ∈ λ” holds.

For the sake of brevity in notation, we shall also write here and after that

dnk =

n∑
j=0

tn− j

Tn
b jk and b(n, k) =

n∑
j=0

b jk (25)

for all k,n ∈N.
Following Yeşilkayagil and Başar [21], we shall employ the concept of the pair of summability matrices

(shortly PSM) defined by a relation between two infinite matrices such that one of them applied to the
sequences in a Nörlund space and the other one applied to the sequences in a space which is isomorphic to
the Nörlund space. We also give a basic theorem related to the PSM. Therefore, we characterize the classes
(λ(Nt) : µ) and (µ : λ(Nt)) of infinite matrices. Here and after, we suppose that λ and µ are given two
sequence spaces.

Now, we may focus on the PSM. Let us suppose that the infinite matrices A = (ank) and B = (bnk)
transform the sequences x = (xk) and y = (yk) which are connected with the relation (5) to the sequences
u = (un) and v = (vn), respectively, i.e.,

un =
(
Ax

)
n

=
∑

k

ankxk for each n ∈N, (26)

vn =
(
By

)
n

=
∑

k

bnkyk for each n ∈N. (27)
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It is clear here that the method B is applied to the Nt-transform of the sequence x = (xk) while the method
A is directly applied to the terms of the sequence x = (xk).

Let us assume that the matrix product BNt exists. We say in this situation that the matrices A and B in
(26), (27) are the PSM if un is reduced to vn (or equivalently vn is reduced to un) under the application of the
formal summation by parts. This leads us to the fact that BNt exists and is equal to A and (BNt)x = B(Ntx)
formally holds, if one side exists. Therefore, we have the relation

ank =

∞∑
j=k

t j−k

T j
bnj or equivalently bnk =

∞∑
j=k

(−1) j−kD j−kTkanj for all k,n ∈N. (28)

By taking into account the relation (5) one can derive that

m∑
k=0

bnkyk =

m∑
k=0

bnk

 1
Tk

k∑
j=0

tk− jx j

 =

m∑
k=0

m∑
j=k

t j−k

T j
bnjxk (29)

for all m,n ∈N. Therefore, we obtain by (29) as m→∞ that vn reduces to un, as follows:

vn =
∑

k

bnkyk =
∑

k

bnk

 1
Tk

k∑
j=0

tk− jx j

 =
∑

k

∞∑
j=k

t j−k

T j
bnjxk = un.

But, the order of summation may not be reversed. So, the methods A and B are not necessarily equivalent.

Theorem 4.1. Let the elements of the matrices A = (ank) and B = (bnk) are connected with the relation (28). Then,
A ∈ (λ(Nt) : µ) if and only if B ∈ (λ : µ).

Proof. Let A = (ank) and B = (bnk) be a PSM.
Suppose that A ∈ (λ(Nt) : µ). Then, Ax exists and belongs to µ for all x ∈ λ(Nt). Therefore, we have the

following equality derived from mth partial sum of the series
∑
∞

k=0 ankxk with the relation (6):
m∑

k=0

ankxk =

m∑
k=0

m∑
j=k

(−1) j−kD j−kTkanjyk (30)

for all m,n ∈ N. Then, we have from (30) by letting m → ∞ that Ax = By. Therefore, it is immediate that
By ∈ µ whenever y ∈ λ; i.e., B ∈ (λ : µ).

Conversely, suppose that B ∈ (λ : µ). Then, By exists and belongs to µ for all y ∈ λ. Therefore, by letting
m→∞ in (29), we get By = Ax which gives the desired fact that A ∈ (λ(Nt) : µ).

By interchanging the spaces λNt and λ with the space µ, we have

Theorem 4.2. Suppose that the elements of the infinite matrices A = (ank) and C = (cnk) are connected with the
relation

cnk =

n∑
j=0

tn− j

Tn
a jk for all k,n ∈N. (31)

Then, A ∈ (µ : λ(Nt)) if and only if C ∈ (µ : λ).

Proof. Let us take any s = (sk) ∈ µ and consider the following equality with (31) that
m∑

k=0

cnksk =

n∑
j=0

m∑
k=0

tn− j

Tn
a jksk for all m,n ∈N,

which yields as m → ∞ that (Cs)n = {Nt(As)}n for all n ∈ N. Now, we immediately deduce from here that
As ∈ λ(Nt) whenever s ∈ µ if and only if Cs ∈ λ whenever s ∈ µ.

This step completes the proof.
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Of course, Theorems 4.1 and 4.2 have several consequences depending on the choice of the sequence
spaces λ and µ. By Theorem 4.1, the necessary and sufficient conditions for A ∈ (λ(Nt) : µ) may be derived
by replacing the elements of A by those of the elements of B = AUt, where the necessary and sufficient
conditions on the matrix B are read from the concerning results in the existing literature. Since Theorems
4.1 and 4.2 are respectively related with the matrix transformations on the Nörlund sequence spaces and
into the Nörlund sequence spaces, the characterizations of the matrix mappings between the Nörlund
sequence spaces may be derived by combining Theorems 4.1 and 4.2. Now, we may quote our results on
the characterization of some matrix classes concerning with the Nörlund sequence spaces.

The rest of the paper, we assume that the elements of the matrices A = (ank), B = (bnk), C = (cnk) and
D = (dnk) are connected with the relations (25), (28) and (31); and q = p/(p − 1) when 1 ≤ p < ∞.

Corollary 4.3. Let A = (ank) be an infinite matrix over the complex field. Then, the following statements hold:

(i) A ∈ ( f (Nt) : `∞) if and only if (9) holds with bnk instead of ank.
(ii) A ∈ ( f (Nt) : f ) if and only if (9), (14), (16) and (17) hold with bnk instead of ank.

(iii) A ∈ ( f (Nt) : f ; p) if and only if (9), (14), (16) and (17) hold with bnk instead of ank, and αk = 0 for all k ∈ N,
α = 1.

(iv) A ∈ ( f (Nt) : c) if and only if (9)-(12) hold with bnk instead of ank.
(v) A ∈ ( f (Nt) : c; p) if and only if (9)-(12) hold with bnk instead of ank, and αk = 0 for all k ∈N, α = 1.

(vi) A ∈ ( f (Nt) : c0) if and only if (9)-(12) hold with bnk instead of ank, and αk = 0 for all k ∈N, α = 0.
(vii) A ∈ (`∞(Nt) : f ) if and only if (9), (14) and (15) hold with bnk instead of ank.

(viii) A ∈ (`∞(Nt) : c) if and only if (10) and (13) hold with bnk instead of ank.
(ix) A ∈ (`p(Nt) : f ) if and only if (14), (18) and (19) hold with bnk instead of ank.

Corollary 4.4. Let A = (ank) be an infinite matrix over the complex field. Then, the following statements hold:

(i) A ∈ ( f (Nt) : `∞(Nt)) if and only if (9) holds with dnk instead of ank.
(ii) A ∈ ( f (Nt) : f (Nt)) if and only if (9), (14), (16) and (17) hold with dnk instead of ank.

(iii) A ∈ ( f (Nt) : f (Nt); p) if and only if (9), (14), (16) and (17) hold with dnk instead of ank, and αk = 0 for all
k ∈N, α = 1.

(iv) A ∈ ( f (Nt) : c(Nt)) if and only if (9)-(12) hold with dnk instead of ank.
(v) A ∈ ( f (Nt) : c(Nt); p) if and only if (9)-(12) hold with dnk instead of ank, and αk = 0 for all k ∈N, α = 1.

(vi) A ∈ ( f (Nt) : c0(Nt)) if and only if (9)-(12) hold with dnk instead of ank, and αk = 0 for all k ∈N, α = 0.
(vii) A ∈ (`∞(Nt) : f (Nt)) if and only if (9), (14) and (15) hold with dnk instead of ank.

(viii) A ∈ (`p(Nt) : f (Nt)) if and only if (14), (18) and (19) hold with dnk instead of ank.

Corollary 4.5. Let A = (ank) be an infinite matrix over the complex field. Then, the following statements hold:

(i) A ∈ ( f (Nt) : bs) if and only if (9) holds with b(n, k) instead of ank.
(ii) A ∈ ( f (Nt) : f s) if and only if (9), (14), (16) and (17) hold with b(n, k) instead of ank.

(iii) A ∈ ( f (Nt) : f s; p) if and only if (9), (14), (16) and (17) hold with b(n, k) instead of ank, and αk = 0 for all
k ∈N, α = 1.

(iv) A ∈ ( f (Nt) : cs) if and only if (9)-(12) hold with b(n, k) instead of ank.
(v) A ∈ ( f (Nt) : cs; p) if and only if (9)-(12) hold with b(n, k) instead of ank, and αk = 0 for all k ∈N, α = 1.

(vi) A ∈ ( f (Nt) : cs0) if and only if (9)-(12) hold with b(n, k) instead of ank, and αk = 0 for all k ∈N, α = 0.
(vii) A ∈ (`∞(Nt) : f s) if and only if (9), (14) and (15) hold with b(n, k) instead of ank.

(viii) A ∈ (`p(Nt) : f s) if and only if (14), (18) and (19) hold with b(n, k) instead of ank.

Corollary 4.6. Let A = (ank) be an infinite matrix over the complex field. Then, the following statements hold:

(i) A ∈ (`∞ : f (Nt)) if and only if (9), (14) and (15) hold with cnk instead of ank.
(ii) A ∈ ( f : f (Nt)) if and only if (9), (14), (16) and (17) hold with cnk instead of ank.
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(iii) A ∈ ( f : f (Nt); p) if and only if (9), (14), (16) and (17) hold with cnk instead of ank, and αk = 0 for all k ∈ N,
α = 1.

(iv) A ∈ (c : f (Nt)) = (c0 : f (Nt)) if and only if (9), (14) and (16) hold with cnk instead of ank.
(v) A ∈ (c : f (Nt); p) if and only if (9), (14) and (16) hold with cnk instead of ank, and αk = 0 for all k ∈N, α = 1.

(vi) A ∈ ( f : `∞(Nt)) if and only if (9) holds with cnk instead of ank.

Finally, we mention about Steinhaus type theorems which were formulated by Maddox [11], as follows:
Let λ and µ be any two sequence spaces having some notion of limit or sum, and (λ : µ; p) denotes the
class of regular matrices and ν also be any sequence space such that ν ⊃ λ. Then, a result of the form
(λ : µ; p) ∩ (ν : µ) = ∅, is called a theorem of Steinhaus type.

Now, we can give the following theorem including two Steinhaus type conclusions.

Theorem 4.7. The following statements hold:

(i) The classes ( f (Nt) : c; p) and (`∞(Nt) : c) are disjoint.
(ii) The classes ( f (Nt) : f ; p) and (`∞(Nt) : f ) are disjoint.

Proof. (i) Suppose conversely that the classes ( f (Nt) : c; p) and (`∞(Nt) : c) are not disjoint. Then, there exists
at least one infinite matrix A satisfying the conditions of Parts (v) and (viii) of Corollary 4.3. Therefore, we
derive by using the condition (13) with αk = 0 and with fnk instead of ank that

lim
n→∞

∞∑
k=0

∣∣∣ fnk

∣∣∣ = 0. (32)

Nevertheless, from Part (v) of Corollary 4.3 with α = 1 and with fnk instead of ank we have

lim
n→∞

∞∑
k=0

fnk = 1

which contradicts (32). This completes the proof of Part (i).
(ii) This is similar to the proof of Part (i) of the present theorem with Parts (iii) and (vii) instead of Parts

(v) and (viii) of Corollary 4.3, respectively. So, we leave the details.

5. Conclusion

Lorentz [10] introduced the concept of almost convergence in 1948. Başar and Kirişçi [1] determined
the beta and gamma duals of the spaces f , f s and f̂ , and proved some basic results on the space f and
characterized the class of matrix transformations on the space f̂ into any given sequence space, where f s
denotes the space of almost convergent series.

Kayaduman and Şengönül investigated the spaces f 0 and f that consist of all sequences whose Cesàro
mean of order one transforms are in the spaces f0 and f in [7], respectively. Şengönül and Kayaduman
[16] defined the spaces f̂0 and f̂ as the domain of Riesz mean in the sequence spaces f0 and f . They also
showed that the spaces f̂0 and f̂ are linearly isomorphic to the sequence spaces f0 and f , respectively. After
computing the beta and gamma duals of f̂0 and f̂ they characterized the classes ( f̂ : µ) and (µ : f̂ ) of infinite
matrices and they determined some core theorems related to the space f̂ . Recently, Sönmez [18] worked
the domain f (B) of the triple band matrix B(r, s, t) in the space f .

Candan [3] established the sequence spaces f (B̃) and f0(B̃) consisting of all sequences x = (xk) ∈ ω such
that (rkxk + sk−1xk−1) ∈ f0 or ∈ f as the domain of the double sequential band matrix B̃(̃r, s̃) in the sequence
spaces f0 and f . In this study, Candan determined the beta and gamma duals of the spaces f0(B̃) and f (B̃),
and also gave some inclusion theorems related with the spaces f0(B̃) and f (B̃). Finally, he has recently
characterized the classes ( f (B̃) : µ) and (µ : f (B̃)) of infinite matrices.
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Kirişci [9] studied the domains ( f0)Er and fEr of the Euler means of order r in the spaces f0 and f ,
respectively. Yeşilkayagil and Başar [22] have presented the domains Aλ( f0) and Aλ( f ) of the matrix Aλ

in the spaces f0 and f , respectively, and they have established some inclusion relations deal with the
concerning sequence spaces. Finally, they computed the alpha, beta and gamma duals of the sequence
spaces Aλ( f0) and Aλ( f ) and gave the characterization of the classes (Aλ( f ) : µ) and (µ : Aλ( f0)) of infinite
matrices.

Since in the special case t = e, the Nörlund mean Nt is reduced to the Cesàro mean C1 of order one;
our corresponding results are much more general than those given by Kayaduman and Şengönül, in [7].
Although the domain of certain triangle matrices in the spaces f0 and f is studied, the investigation of the
domain of the Nörlund mean Nt in the same sequence spaces was open. So, the main results of the present
paper fill up the gap in the existing literature.
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careful reading and valuable comments on the earlier version of this paper which improved the presentation
and readability. We also thank the referees for their constructive reports.

References
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