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Abstract. In this paper we study the motion of a robot end-effector by using the curvature theory of a
dual unit hyperbolic spherical curve which corresponds to a timelike ruled surface with timelike ruling
generated by a line fixed in the end-effector. In this way, the linear and angular differential properties of
the motion of a robot end-effector such as velocities and accelerations which are important information in
robot trajectory planning are determined. Moreover, the motion of a robot end-effector which moves on
the surface of a right circular hyperboloid of one sheet is examined as a practical example.

1. Introduction

Since robot end-effectors can be used in many areas such as transportation, painting, and medical
science, accurate trajectory planning of a robot end-effector becomes an important research area of robotics
and engineering. Describing the path of a robot end-effector and determining the linear and angular
time-dependent properties are interesting problems in robot trajectory planning. The most common two
methods to represent a path for robot trajectory planning are the joint interpolating method and the cartesian
interpolating method [3, 13]. But these methods are based on matrix representation that is required intense
computation, so they are not efficient for trajectory planning. Ryuh and Pennock proposed a method based
on the curvature theory of a ruled surface generated by a line fixed in the end-effector for accurate trajectory
planning [15–17]. Their method [16] was the first attempt to apply the curvature theory of a ruled surface
to the study of the motion of a robot end-effector.

The research area of the motion of a robot end-effector also attracts the authors’ attention in Lorentzian
space, for example, Ekici et al. study the motion of a robot end-effector in Lorentzian space by using the
curvature theory of a timelike ruled surface with timelike ruling [4].

As a robot end-effector moves on a specified trajectory in Lorentzian space, a line called tool line fixed
in the end effector generates a ruled surface. In this paper, it is assumed that this ruled surface is a timelike
ruled surface with timelike ruling. We first mention three reference frames which are the tool frame, the
surface frame, and the generator trihedron used to study the motion of a robot end-effector in Lorentzian
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space. From E.Study mapping (or transference principle), this ruled surface corresponds to a dual unit
hyperbolic spherical curve. Then, we give the well-known dual Darboux frame of the dual curve in dual
Lorentzian space. By defining a dual frame called dual tool frame on the robot end-effector and using the
relations between the dual Darboux frame and the dual tool frame, the differential properties of the motion
of a robot end-effector such as linear and angular velocities, and linear and angular accelerations which
are important for robot trajectory planning are determined. Moreover, we give some corollaries for special
cases of the motion of a robot end-effector and an example of the study of a robot end-effector which moves
on the surface of a right circular hyperboloid of one sheet.

2. Preliminaries

In this section we give a brief summary of basic concepts for the reader who is not familiar with
Lorentzian space, dual space, and dual Lorentzian space.

Lorentzian space IR3
1 is the vector space IR3 provided with the following Lorentzian inner product

〈a, b〉 = −a1b1 + a2b2 + a3b3,

where a, b ∈ IR3 [10]. Let a = (a1, a2, a3) be a vector in IR3
1. If 〈a, a〉 > 0 or a = 0, then a is called spacelike,

if 〈a, a〉 < 0, then a is called timelike, if 〈a, a〉 = 0 and a , 0, then a is called null (lightlike) vector [10]. Let
a = (a1, a2, a3) and b = (b1, b2, b3) be two vectors in IR3

1, Lorentzian vector product of a and b can be defined
by [20]

a × b = (a2b3 − a3b2, a1b3 − a3b1, a2b1 − a1b2).

Let a and b be two spacelike vectors in IR3
1 and they span a spacelike vector subspace, then there is a

real number θ ≥ 0 such that 〈a, b〉 = ‖a‖ ‖b‖ cosθ and this number is called the spacelike angle between the
vectors a and b [14].

A surface in Lorentzian space IR3
1 is called a timelike surface if the induced metric on the surface is a

Lorentzian metric, i.e. the normal vector on the surface is a spacelike vector [21].
The hyperbolic unit sphere can be defined by [22]

H2
0 =

{
a = ( a1, a2, a3) ∈ IR3

1 : 〈a, a〉 = −1
}
.

A dual number can be defined as an ordered pair of real numbers ā = (a, a∗), where a and a∗ are called
real part and dual part of the dual number, respectively. Dual numbers may be formally expressed as
ā = a + εa∗, where ε = (0, 1) is called dual unit which satisfies the condition that ε2 = 0 [23]. The set of all
dual numbers is denoted by ID. Two inner operations and equality in ID are defined as follows [1, 7]:

Addition: (a, a∗) + (b, b∗) = (a + b, a∗ + b∗),
Multiplication: (a, a∗) (b, b∗) = (ab, ab∗ + a∗b),
Equality: (a, a∗) = (b, b∗)⇔ a = b, a∗ = b∗.

The set ID with the above operations is a commutative ring over the real number field. The function of a
dual number f (ā) can be expanded in a Maclaurin series as

f (ā) = f (a + εa∗) = f (a) + εa∗ f ′(a),

where f ′(a) is derivative of f (a) with respect to a [2]. The absolute value of a dual number ā = a + εa∗ can
be given as [23]

|ā| = |a| + ε
a
|a|

a∗, (a , 0).

Similar to the dual numbers, a dual vector can be defined as an ordered pair of two real vectors (a, a∗).
Dual vectors can also be expressed as ã= a+εa∗, where a, a∗ ∈ IR3 and ε2 = 0 [18]. The set of all dual vectors
is a module over the ring ID and is called dual space or ID-module, and can be denoted by ID3.
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Let ã= a+εa∗ and b̃= b+εb∗ be two dual vectors in ID3, the dual Lorentzian inner product and the dual
Lorentzian vector product can be defined, respectively, as [22]〈

ã, b̃
〉

= 〈a, b〉 + ε (〈a, b∗〉 + 〈a∗, b〉)

and

ã × b̃ = a × b + ε (a × b∗ + a∗ × b) ,

where 〈 , 〉 and × are the Lorentzian inner product and the Lorentzian vector product, respectively. A dual
vector ã= a+εa∗ is said to be timelike (resp., spacelike, lightlike) if a is timelike (resp., spacelike, lightlike)
[22]. The set of all dual Lorentzian vectors is called dual Lorentzian space and can be denoted by ID3

1 [22].
The norm of a dual vector ã is given by [7, 23]

‖ã‖ = ‖a‖ + ε
〈a, a∗〉
‖a‖

, (‖a‖ , 0).

Let ã = a + ε a∗ ∈ ID3
1. ã is said to be dual unit timelike (resp. spacelike) vector if the vectors a and a∗ satisfy

the following equations [12]:

< a, a >= −1 (resp. < a, a >= 1), < a , a∗ > = 0.

The set of all dual timelike unit vectors is called dual hyperbolic unit sphere and it can be denoted by H̃2
0

[22].
Let ã and b̃ be two spacelike vectors in ID3

1 that span a dual spacelike vector subspace. Then the dual
angle between ã and b̃ is defined by < ã, b̃ >= ‖ã‖

∥∥∥b̃
∥∥∥ cos θ̄. The dual number θ̄ = θ + εθ∗ is called the dual

spacelike angle [5].

3. Reference Frames of a Robot End-Effector in Lorentzian Space

In this section we introduce three reference frames, namely, a tool frame, a surface frame and a generator
trihedron. These frames were described in detail and used to study of the motion of a robot end-effector in
real space by Ryuh and Pennock [16, 17] and in Lorentzian space by Ekici et. al. [4]. Before these papers,
Karger and Novak [8] introduced the generator trihedron as “the Frenet frame of directing cone of a ruled
surface”. Moreover, Onder and Ugurlu [11] gave the generator trihedron as “Frenet frame” for timelike
ruled surface with timelike ruling. This section sheds light on the geometrical meaning of the dual method
to be used in section 5.

A robot trajectory can be defined as the path of a point fixed in a robot end-effector and the orientation
of the robot end-effector along the path [17]. The point is called the tool center point and denoted by TCP.
The tool frame strictly attached to the robot end-effector consists of three mutually orthonormal vectors:
the orientation vector O, the approach vector A, and the normal vector N (see Figure 1). The tool center
point can be chosen to be the origin of the tool frame [15]. Since it is assumed that the ruled surface is a
timelike ruled surface with timelike ruling, O is a timelike vector and A and N are spacelike vectors.

Figure 1 A robot end-effector and its tool frame.
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As a robot end-effector moves on a trajectory in Lorentzian space IR3
1, a line called tool line which passes

through TCP and whose direction vector is parallel to the orientation vector O, generates a ruled surface
[4]. In this study, this ruled surface is assumed to be a timelike ruled surface with timelike ruling and can
be expressed by

X(t, v) = α(t) + v R(t),

where α(t) which is the specified trajectory of the robot end-effector is the directrix of the ruled surface, R(t)
called ruling is a vector of constant magnitude parallel to the orientation vector O, and t is the parameter
of time. For simplicity in the formulations, the normalized parameter s which is the arc-length parameter
of the spherical image curve of R can be used instead of the time parameter t and it can be found as [7]

s(t) =

∫ t

0

∥∥∥∥∥ dR
dt

∥∥∥∥∥ dt.

As a robot end-effector moves on a trajectory, the approach vector A may not be always perpendicular
to the ruled surface. As shown in Figure 2, there may be an angle between the approach vector A and the
surface normal vector which may be denoted by Sn. This angle is called spin angle and denoted by η [4].

Figure 2 The spin angle.

Now, we introduce the surface frame { O, Sn, Sb} to describe the orientation of the tool frame relative to
the ruled surface. The spacelike surface normal vector Sn can be expressed as

Sn =
Xv × Xs

‖Xv × Xs‖

∣∣∣∣∣
v=0
,

where Xv and Xs are derivations of X with respect to v and s, respectively [4]. The spacelike surface binormal
vector can also be given as

Sb = −O × Sn.

The tool frame relative to the surface frame can be expressed as O
A
N

 =

 1 0 0
0 cos η − sin η
0 sin η cos η


 O

Sn
Sb

 , (1)

where η called spacelike spin angle is the angle between A and Sn [4].
The generator trihedron can be defined on the line of striction of the ruled surface which can be

expressed as c(s) = α(s) − µ(s)R(s), where µ = 〈α′, R′〉, and it consists of three orthonormal vectors: the
timelike generator vector e, the spacelike central normal vector t, and the spacelike central tangent vector
g. These vectors can be given as

e =
R
‖R‖

, t = R′, g = −e × t,
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respectively, where the prime indicates differentiation with respect to s which is the arc-length parameter
of spherical image curve of R [11]. The distance from the line of striction to the directrix is µ‖R‖. The
orientation of the surface frame relative to the generator trihedron can be given in matrix form as O

Sn
Sb

 =

 1 0 0
0 cos σ − sin σ
0 sin σ cos σ


 e

t
g

 , (2)

where σ is a spacelike angle between Sn and t [4]. By substituting equation (1) into equation (2), the relation
between the tool frame and the generator trihedron can be found as O

A
N

 =

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


 e

t
g

 ,
where

ϕ = η + σ. (3)

The relationships between three reference frames which are the tool frame, the surface frame and the
generator trihedron are shown in Figure 3, when a robot end-effector moves on a specified trajectory.

Figure 3 Three reference frames.

4. Dual Darboux Frame of Dual Unit Hyperbolic Spherical Curves

There exists one-to-one correspondence called E.Study mapping or transference principle between dual
unit vectors in dual space ID3 and the directed lines in line space IR3 [9, 19]. By taking 3-dimensional
Lorentzian space IR3

1 instead of IR3, this correspondence can be stated as follows: a point on the dual
hyperbolic unit sphere H̃2

0 corresponds to the directed timelike line in Lorentzian space IR3
1 [22]. Then, the

dual unit spherical curve lying fully on H̃2
0 represents a timelike ruled surface with timelike ruling.

The timelike ruled surface with timelike ruling on which a robot end-effector moves can be given by the
equation

X(s, v) = α(s) + v R(s),



B. Sahiner et al. / Filomat 30:3 (2016), 791–802 796

where α(s) is the trajectory of the robot end-effector, R(s) which is a vector of constant magnitude is the
ruling of the ruled surface and s is the normalized parameter discussed in Section 3. The ruled surface
corresponds to a dual curve on dual unit hyperbolic sphere and it can be expressed by ẽ(s) = e(s) + εe∗(s),
where e(s) is the timelike generator vector of the ruled surface as defined in Section 3 and e∗ is called moment
vector of e and it can be given by e∗ = c × e, where c is the line of striction of the ruled surface.

Now, we give the dual Darboux frame (or dual geodesic frame) of the dual unit hyperbolic spherical
curve which was described by Onder and Ugurlu [12] in detail. The dual Darboux frame consists of three
orthonormal dual unit vectors. The first dual unit vector is the dual curve itself, i.e. ẽ(s). The dual arc-length
parameter of the dual curve ẽ is given by [12]

s̄ =

∫ s

0
‖ ẽ′(u) ‖ du =

∫ s

0
(1 − ε∆)du = s − ε

∫ s

0
∆du, (4)

where ∆ = det(c′, e, t). By differentiating (4), we have s̄′ = 1 − ε∆. The second dual unit vector of the dual
Darboux frame can be given by [12]

t̃ =
dẽ
ds̄

=
ẽ′

s̄′
=

ẽ′

1 − ε∆
= t + ε(c × t),

where t is the spacelike central normal vector. The third dual unit vector g̃ can also be given as [12]

g̃ = −ẽ × t̃ = g + ε(c × g),

where g is the spacelike central tangent vector. Note that ẽ is a dual timelike vector and t̃ and g̃ are dual
spacelike vectors. The derivation formulae of the dual Darboux frame can be expressed in matrix form

d
ds̄

 ẽ
t̃
g̃

 =

 0 1 0
1 0 γ̄
0 −γ̄ 0


 ẽ

t̃
g̃

 , (5)

where γ̄ is called dual geodesic curvature [12]. The dual Darboux instantaneous rotation vector of the dual
Darboux frame can also be found as [12]

w̃e = −γ̄ẽ − g̃.

5. Differential Properties of the Motion of a Robot End-Effector

In this section we determine the linear and angular differential properties of the motion of a robot
end-effector by using the curvature theory of a dual unit hyperbolic spherical curve corresponds to the
ruled surface generated by a line fixed in the robot end-effector.

First, we define a dual frame called dual tool frame which can be defined by three orthonormal dual
unit vectors correspond to three lines pass through the tool center point of the robot end-effector. These
lines may be called the orientation line, the approach line and the normal line, and their direction vectors
are the timelike orientation vector O, the spacelike approach vector A and the spacelike normal vector N,
respectively (see Figure 4). The dual unit vectors correspond to the orientation line, the approach line and
the normal line can be denoted by Õ, Ã and Ñ which may be called dual timelike orientation vector, dual
spacelike approach vector and dual spacelike normal vector, respectively.
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Figure 4 The dual tool frame of a robot end-effector.

Let the dual spacelike angle between the dual unit spacelike vectors Ã and t̃ be ϕ̄ = ϕ + ε ϕ∗, where ϕ
and ϕ∗ are spacelike angle and Lorentzian shortest distance between the lines which correspond to the dual
unit vectors Ã and t̃, respectively. From Section 3, we know that ϕ and ϕ∗ are the real spacelike angle in
equation (3) and the distance from the line of striction to the directrix which equals to µ‖R‖, respectively.
The relations between the dual Darboux frame and the dual tool frame can be given in matrix form as Õ

Ã
Ñ

 =

 1 0 0
0 cos ϕ̄ − sin ϕ̄
0 sin ϕ̄ cos ϕ̄


 ẽ

t̃
g̃

 . (6)

By differentiating equation (6) and substituting equation (5) into the result, we have

d
ds̄

 Õ
Ã
Ñ

 =

 0 1 0
cos ϕ̄ −δ̄ sin ϕ̄ −δ̄ cos ϕ̄
sin ϕ̄ δ̄ cos ϕ̄ −δ̄ sin ϕ̄


 ẽ

t̃
g̃

 ,
where δ̄ = ϕ̄′−γ̄ and s̄ is the dual arc-length parameter of ẽ(or Õ). By using equation (6), derivation formulas
of the dual tool frame can be obtained in terms of itself as

d
ds̄

 Õ
Ã
Ñ

 =

 0 cos ϕ̄ sin ϕ̄
cos ϕ̄ 0 −δ̄
sin ϕ̄ δ̄ 0


 Õ

Ã
Ñ

 .
Then the dual instantaneous rotation vector of the dual tool frame can be found as

w̃O = δ̄ Õ + sin ϕ̄ Ã − cos ϕ̄ Ñ.

By using equation (6), the dual instantaneous rotation vector of the dual tool frame can be expressed in
terms of the dual Darboux frame as

w̃O = δ̄ ẽ − g̃. (7)

We also have the relation between the dual instantaneous rotation vector of the dual tool frame and the
dual Darboux vector of the dual Darboux frame as

w̃O = ϕ̄′ ẽ + w̃e.

It is seen that the dual vector w̃O = wO + εw∗O is similar to the dual Pfaff vector in dual spherical motion
[6] and it can be considered as dual velocity vector of the robot end-effector. The dual tool frame rotates
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along the axis
w̃O

‖w̃O‖
with the dual angle ‖w̃O‖. This dual Lorentzian motion includes both rotational and

translational motion in real Lorentzian space. wO and w∗O correspond to the instantaneous angular velocity
vector and the instantaneous linear velocity vector, respectively. By separating equation (7) into the real
and dual parts, these vectors can be obtained as

wO = δe − g (8)

and

w∗O = δe∗ + δ∗e − g∗, (9)

respectively. By differentiating equation (7) and using equation (5), the derivative of the dual instantaneous
rotation vector of the dual tool frame can be obtained as

w̃
′

O = δ̄′ ẽ + ϕ̄′ t̃. (10)

By separating equation (10) into real and dual parts, the instantaneous angular acceleration vector and the
instantaneous translational acceleration vector can be found as

w
′

O = δ′ e + ϕ′ t (11)

and

w∗
′

O = δ′ e∗ + δ∗
′

e + ϕ′ t∗ + ϕ∗
′

t, (12)

respectively. The linear and angular differential properties of the motion of a robot end-effector which are
velocities and accelerations given in equations (8), (9), (11) and (12) are found in terms of the arc-length
parameter of the spherical image curve of R, i.e. s. In order to determine the time dependent differential
properties of the motion, these vectors should be associated with t which is the parameter of time. Now,
we can give the following corollaries concerning the time dependent differential properties of the motion
of a robot end-effector which moves on a specified trajectory in Lorentzian space.

Corollary 5.1. Let a robot end-effector moves on a timelike ruled surface with timelike ruling with the spacelike spin
angle η in Lorentzian space. Then the linear and angular velocities of the robot end-effector can be given, respectively,
as

vL = w∗O ṡ (13)

and

vA = wO ṡ, (14)

where w∗O and wO are given by equations (9) and (8), respectively, and the dot indicates differentiation with respect to

time, i.e. ṡ =
ds
dt

.

Corollary 5.2. Let a robot end-effector moves on a timelike ruled surface with timelike ruling with the spacelike
spin angle η in Lorentzian space. Then the linear and angular accelerations of the robot end-effector can be given,
respectively, as

aL = w∗O s̈+w∗
′

Oṡ2 (15)

and

aA = wO s̈+w
′

Oṡ2 (16)

where w∗′O and w′

O are given by equations (12) and (11), respectively, and s̈=
d2s
dt2 .
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Now we discuss some special cases that one can encounter in the study of the motion of a robot end-
effector in Lorentzian space. For example, a robot end-effector can move on a specified trajectory such that
it is always perpendicular to the ruled surface, namely, the spacelike spin angle η can be equal to zero. More
general, the spacelike spin angle η may be constant during the motion. Furthermore, a specified trajectory
which a robot end-effector follows may be the line of striction of the ruled surface, in other words, the
directrix and the line of striction of the ruled surface can be the same curve. For these cases, we can give
the following corollaries.

Corollary 5.3. Let a robot end-effector moves on a timelike ruled surface with timelike ruling with the spacelike spin
angle η in Lorentzian space. If the spacelike spin angle η is constant, then the linear and angular velocities of the robot
end-effector can be expressed as

vL = ((σ′ − γ)e∗ + δ∗e − g∗) ṡ

and

vA = ((σ′ − γ)e − g) ṡ,

respectively.

Corollary 5.4. Let a robot end-effector moves on a timelike ruled surface with timelike ruling with the spacelike spin
angle η in Lorentzian space. If the spacelike spin angle η is constant, then the linear and angular accelerations of the
robot end-effector can be expressed as

aL = ((σ′ − γ)e∗ + δ∗e − g∗) s̈+((σ′′ − γ′) e∗ + δ∗
′

e + σ′ t∗ + ϕ∗
′

t)ṡ2

and

aA = ((σ′ − γ)e − g) s̈+((σ′′ − γ′) e + ϕ′ t) ṡ2,

respectively.

Corollary 5.5. Let a robot end-effector moves on a timelike ruled surface with timelike ruling with the spacelike spin
angle η in Lorentzian space. If the specified trajectory is also the line of striction of the ruled surface which robot
end-effector moves on, then the linear and angular velocities of the robot end-effector can be expressed as

vL = ((η′ − γ)e∗ − γ∗e − g∗) ṡ

and

vA = ((η′ − γ)e − g) ṡ,

respectively.

Corollary 5.6. Let a robot end-effector moves on a timelike ruled surface with timelike ruling with the spacelike spin
angle η in Lorentzian space. If the specified trajectory is also the line of striction of the ruled surface which robot
end-effector moves on, then the linear and angular accelerations of the robot end-effector can be expressed as

aL = ((η′ − γ)e∗ − γ∗e − g∗) s̈+((η′′ − γ′) e∗ − γ∗
′

e + η′ t∗)ṡ2

and

aA = ((η′ − γ)e − g) s̈+((η′′ − γ′) e + η′ t) ṡ2,

respectively.
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6. Example

Let a robot end-effector moves on the surface of a right circular hyperboloid of one sheet (see Figure 5)
given by the following equation

X(t, v) = (cv, sin t + v cos t, cos t − v sin t),

with a spin angle η, where |c| > 1 and t is the parameter of time. The directrix and the ruling of the
hyperboloid of one sheet are α(t) = (0, sin t, cos t) and R(t) = (c, cos t, − sin t), respectively. Since µ =
〈α′,R′〉 = 0, the directrix is also the line of striction, i.e. c(t) = α(t). A dual curve corresponds to the
hyperboloid of one sheet and it can be expressed as

ẽ(s) =
1
m

[(c, cos s, − sin s) +ε (−1, − c cos s, c sin s)] ,

where m =
√

c2 − 1 and s is the arc-length of the spherical image curve of R. The second and third elements
of the dual Darboux frame can be found as

t̃(s) = (0, − sin s, − cos s) ,

and

g̃(s) =
1
m

[(1, c cos s, −c sin s) +ε (−c,− cos s, sin s)] ,

respectively. By using equation (5), it is seen that the dual geodesic curvature can be found as γ̄ = γ+ εγ∗ =

−
c

√

c2 − 1
+ ε

√

c2 − 1 + c2

c2 − 1
. Since the directrix is also the line of striction, the distance between the directrix

and the line of striction equals to zero, i.e. ϕ∗ = 0, and the spacelike normal vector Sn and the spacelike

central normal vector t are the same vectors, i.e. σ = 0. Thus, we have ϕ̄ = η and δ̄ =
(
η′ + c

√

c2−1

)
−ε

( √
c2−1+c2

c2−1

)
.

The dual instantaneous rotation vector of the dual tool frame can be found as

w̃O = wO + εw∗O =
1
m

((
η′ +

c
√

c2 − 1

)
(c, cos s, − sin s) + (1, c cos s, −c sin s)

)

+ε
1
m

(η′ + c
√

c2 − 1

)
(−1, −c cos s, c sin s) −

 √c2 − 1 + c2

c2 − 1

 (c, cos s, − sin s) − (−c,− cos s, sin s)

 ,
where m =

√

c2 − 1. The linear and angular velocities of the robot end-effector can be obtained by substitut-
ing wO and w∗O into equations (13) and (14), respectively. By differentiating the dual instantaneous rotation
vector, we have

w̃′O = w
′

O + εw∗
′

O =

(
η′′c
m
,
η′′

m
cos s − η′ sin s, −

η′′

m
sin s − η′ cos s

)
+ ε

η′′

m
(−1, −c cos s, c sin s).

Finally, the linear and angular accelerations of the robot end-effector can be obtained by substituting w′

O
and w∗′O into equations (15) and (16), respectively.
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Figure 5 A robot end-effector which moves on the surface of a right circular hyperboloid of one sheet.

7. Conclusions

This paper presents a dual method to study the motion of a robot end-effector which moves on a
specified trajectory in Lorentzian space IR3

1. By using the dual curvature theory of a dual unit hyperbolic
spherical curve, corresponding to the ruled surface generated by a line fixed in the robot end-effector in
Lorentzian space, the linear and angular differential properties which are velocities and accelerations of the
motion of a robot end-effector can be determined. This dual method provides simplicity in expression and
it is believed that it reduces computation time in computer programming. It is hoped that this paper can
contribute to the research area of robot trajectory planning.
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