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Abstract. In this paper our aim is to give refinements of Jensen’s type inequalities for the convex function
defined on the co-ordinates of the bidimensional interval in the plane.

1. Introduction

A function ¢ : [a,b] — Ris said to be convex if
PAx + (1= A)y) < Ap(x) + (1 = Mo (y) 1)

holds for all x, ¥ € [2,b] and 0 < A < 1. A function ¢ is said to be strictly convex if the inequality in (1) is
strict whenever x # yand 0 < A < 1.

Let ¢ : [a,b] = R be a convex function on [, b]. If x; € [4,b] and p; > 0 such that P,, = ), p; then
i=1

¢ [PiZ p,-x,-] < > Y Pt @
"i=1 "=

is well known in the literature as Jensen’s inequality.

The Jensen inequality for convex functions plays a crucial role in the Theory of Inequalities due to the fact
that other inequalities such as the arithmetic-mean geometric-mean inequality, the H6lder and Minkowski
inequalities, the Ky Fan inequality etc. can be obtained as particular cases of it.
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In [7], the authors have investigated the following refinement of (2):

szxz
{Z plxl] < mm Prop

Z pip(xi)

ielI
lezxz n

T— Z Pio| = +(2" = n) zpi¢(xi)
P

Icl,
Z pixi
sz (xi) <Zp¢x1,

iel,\I

< m?x Prp
where ¢ : C — R is a convex function defined on a convex set C, x; € C and
I={cl,I+I,=1{1,..,n}st|l|>2},iell,..,n}, n>3

and P; = }, p; together with ) p; = 1.
iel i=1
In 2010 Dragomir obtained another refinement of Jensen’s inequality (see [15] ):

¢ [P%Z pixi
i=1

where

<D, p.x]) < Pi ;p@(xi), 3)

D(¢, p,x, 1) = P@[ Zplxl]wzqs[%jz pm]

0#Icl,={1,.,n}, I=[,\I#0, ie{l,..,n}

and

together with Pr = Y. p;, P = Y. pi and x = (x1,X2, ..., X), P = (P1,P2, .., Pn). Also in [6], the authors have
i€l iel
proved a generalized refinement of (2) given as under:

Z (xi)

¢[ leJS—i¢[ZA]+1x,+]] — @)

where ¢ : [a,0] — R is a convex function, x := (x1, ..., x,) € [a,b]" such that xj,, = x; and A := (A4, ..., A,) is

k
a positive n—tuple together with }} A; = 1 for some k, 2 < k < n. More recently in 2015, the authors have
i=1
given further generalizations of the results presented in [2, 3].

In [14], the concept of convex functions defined on the co-ordinates of the bidimensional interval of the
plane of two variables was introduced:

Definition 1.1. Let us consider the bidimensional interval A := [a,b] X [c,d] in R? witha < band ¢ < d. A
function ¢ : [a,b] X [c,d] — R is called convex on the co-ordinates if the partial mappings ¢, : [a,b] — R
defined as ¢, (t) := ¢(t, y) and ¢, : [c,d] — R defined as ¢.(s) := ¢(x, s), are convex for all x € [a,b], y € [c,d].

Remark 1.2. Note that every convex function ¢ : [a,b] X [c,d] — R is convex on the co-ordinates, but the
converse is not generally true [14].

The following Jensen’s inequality for co-ordinate convex functions has been given in [4].
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Theorem 1.3. ([4]) Let ¢ : [a,b] X [c,d] — R be a convex function on the co-ordinates on [a,b] X [c,d]. If x is an
n-tuple in [a, b], y is an m-tuple in [c,d], p is a non-negative n-tuple and w a non-negative m-tuple such that

Pn:ipi>0 and W, =iwj>0, then

i=1 j=1
L 1 1 1 n m
O (% 7)< 21D, Z pip(xi, y) + — Z wip(x, yj) ¢ < W, & L piw;p(xi, yj), (G))
1y 1 ¢
where ¥ = P_n L pixi, = W ;‘w]y]

For other refinements and generalizations of Jensen’s inequality and their applications see [1-6, 8-13, 17—
23] and some of the references given in them.

In this article, we have generalized the results given in [6], [7] and [15] from convex functions defined
on the subset of R to convex functions defined on the co-ordinates on the bidimensional interval of the
plane by constructing some new functionals depending on the function ¢ and indexing sets, separating the
discrete domain of it. Furthermore the result given in [6] is extended to co-ordinate convex functions.

2. Main Results

Terminologies and notations: Let ¢ : [a,b] X [c,d] = R be convex on the co-ordinates on [a, b] X [c, d].
n

If x; € [a,b], yj € [c,d],and p;,w; > 0,i € {1,2,...,n}, j € {1,2,...,m} such that n,m > 3 with P, = Zp,« and
i=1

Wy = ij, andletQ; = {I: " c I, = {1,..,n}, I >2, F £ Lyand Q = {J': J' C Ju = (L, om}, ]| 22, J' # ),

=1
weassume I¥ := {1,2,...,n})\IFand J' := {1,2,...,m}\ J. Define Py = Zp,- and Py = Zpi and Wy = ij,

i€l ielk jel!

Wy = Z wj. For the function ¢ and the n, m-tuples x = (x1,x2,...,%,) € [a,b]", y = (y1, y2,- .., Ym) € [c,d]"

jel
and p = (p1,p2, ..., Pn), W= (W1, W, ..., Wwy), we define the following functionals:

Fopxly = 2 (Pk}:m, ]+—ZP¢(xuy)
P
Fowyl) = oo [ WlZw]y]] W, Lo (v). ®)
D%, J) = F(¢,w,y,1’)+]/]f(q>,p,x,1k) ) 7)
Dy(I",J)) = Pi Zn;pf (0. w,y, ] x) + w%,, Zm; wif (¢, p,% I, y;) 8)
p
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where

Py
F(¢,p,xI",y)) P—;qb [P,k Z piXi, y]J + = Z pi xl, y]

" ek

Wi
]
F(o,w,y,],x) Wﬂ}fb[xl,w E w]y]] o E w; (xi, ),

jel jeJt
n

1
X = — Xi, w
P, = pixi, Y= W, ]Zl iYi

Remark 2.1. Itisobviousthat|Qq| = 2"—n-2,|Q,| = 2"—m-2, thatis,k=1,...,2"-n-2andl =1, ..., 2" -m-2
and throughout the paper we will denote 2" —n —2 by N and 2" —m — 2 by M.

The following lemma will be proved helpful in the further elaboration of the next refinement:

Lemma 2.2. Let ¢ : A =[a,b] X[c,d] = R be afunctzon defined on A. If x; € [a,b], y; € [c,d], and p;,w; > 0,i €
{1,2,...,n},j€{1,2,...,m}, n, m > 3, with P, Zp,andW Zw],thenwehave

M N
Y. ¥ Di(I%, ) N L pixi n
I=1k=1 1 Py rielk N @ -n) _
MN - N ; P_H(P( PIk ’ y) + Pn Zl: Pi¢(xi/ }/)
Y. wiy

MWI el m=1 _
S TR AT

and
)A:d % (s 7 Y

DZ I /] N m pl i ; "
I=1k=1 11 Py ciet @1 =n) 1—71) o
MN "W, N ;;‘ P, ZU](P( Py /y]) L ;p w]qb(x,,y])

Y wiy;
Mo 171 nom
1 1 W]z jeJ! (2m 1 _

+P_n A_/I ;‘ i=1 melcp( v W}l ) = le](Z)(x,, yJ)

Proof. Since, from (6) we know that

Dy(I, ") = F (¢, w,y,]') + F (¢, p,x, I)..
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Therefore, we have

I=1k=1 L
MN MN
1 [ & Pi [ 1 1
= W[Z {P—Ingb[P—Ik Zpixiry]+17nzpi¢(xi/]7)
=1 k=1

ielt i€l

Wp | 1 1 _
+ W—mqb [x, W, ];‘ wj%‘] W, ,;7 wj¢p (x/ y;‘) }]

N L pixi pel oy
N| L b0+ S5 ot )

M N
Z Z Dl(Ik/]l)
[ :F<¢,p,x,1k>+F<¢,w,y,f’>}l

Here it is obvious that
N n
YN poy) =@ === 1)) it v),
k=1 iel* i=1

since every pi¢(x;, y;) appears as many times as there is a subset I* C I,,, |I| > 2, and that doesn’t contain the
index i. Similarly we can prove the second part of the lemma. [J

The following refinement of Theorem 1.3 holds:

Theorem 2.3. Suppose that ¢ : A = [a,b] X [c,d] — R is convex on the co-ordinates on A. If x; € [a, b], y; € [c,d],
n m

and p,w; > 0,i € {1,2,...,n}, j €{1,2,...,m}, n, m > 3, with P, = }, p; and Wy, = ¥ wj, then for any e
i=1 j=1

and J' € Qy we have

1 1i1=1k=1 1
¥ ) < = D5, [h < = <= Dy(I5, T
¢y < 7 min Dil%J) < 53— < 5 max Dl J)
1=1,...M 1=1,...M
111 ¢ 1
< == )+ — 9
< 3|p Lo g Lo ley)
M N 1l
1 1 lzikleZ(I /]) 1
< = Do(IF T < === < DI, T
< g min Dol ) < 5—4g < 5 max Dol T)
1=1,...M 1=1,...M
1 n m
< o L )L Pwid( ), ©)
mEII o1 =1
1 v 1 w«
where J_C=P—n piXi, y:W—mejyj,lsksN,lslsM
i=1 j=1
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Proof. One-dimensional Jensen’s inequality gives us
1 v 1 v
¢ (xi, 7) < W Z wj (x;,yj) and (% y)) < P, Zpiﬁb (xiv7)-
j=1 i=1

By Jensen’s inequality, we get

F(¢,P,X,Ik/yj) (Pk Zp,x,,y]] ZP¢ xz,]/J

ielk L

P,k

IA

P,
ielk ielkulk

1<
ko il E ) -
= F(¢,p,x,1 /]/]) < P, - pip(xi, y])

As the function ¢ is convex on the first co-ordinate, so we have

Py
F(¢)/prxrlkryj) _Igb(Pl zplx”y]] sz xuy]

" el
z &¢(szp1xl’y]]+_ [ Zp’x”yf]
ielk iel
> [I;Ikpll szz Pkp szxu%] ( Iépzxv%

1 n
F(o,p,x, v, y) = [P_ Zpixz', yj].
"=t

Now, from (10) and (11), we have

Z pidp(xi, yj)-

’UlH

gb(x y])<F(qb P, X I y]

Similarly, we can write

m

Z wjp(xi, Yj)-

=1

1

m

¢ (xi,7) <F (o, w,y, ' x) < =

Multiplying (12) and (13) respectively by w; and p; and summing over i and j, we obtain

ZWP XY <—Zw] ¢, P %1% y)) < pw anzpzwfcb(xuyf

i=1 j=1

and

n

=

1 1 -
B, L P D)< —Zpl oWy, ] 0) < 5y ) Y Pl vy

n i=1 j=1

i=

Z‘pch(x,,y])vL B 2P (viy) = = Y oty

808

(10)

(11)

(12)

(13)

(14)

(15)
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Adding (14) and (15), one has the following

1%;Piqﬁ(xh?ﬂwim;w@(iw)] = %

n

Pin Z pif ((p, w,y,J, Xi) + V\} Z wjF (‘P/ pox, I, yj)

i=1 j=1

Y pwigty).  (6)

Now, setting x; = X and y; =  in (12), (13) and adding we have

¢ (%) <

NIH

[F (@ w,y. 1)+ F (¢, p,x.I')] <

N~

(1 ¢ I TN
B ; pip (xi, §) + W ; wio (%, ;)]
Combining (16) and (17) we obtain

n

1

o@D < 5[F(owy ) +Fopxl)) <3 P_ni:1p,.¢(xi,g)+wim;wj¢(x,yj)
3|7 LopF (0w 1) + 5 Y wf (opx T ) SP Wy 2 Lot y)
A= ] =

The statement in the theorem follows by taking the min and max of D1(I¥, J') and D (I*, J') over the indices
kand Iwith1 <k <N, 1 << M and together with Lemma 2.2 and using the fact that

M N
Z Z Dl(Ik/]l)

. koY < I=1k=1 < k 1l
(i, D1 ) < S < max Dult )y v
1=1,...M I=1,...M
and
M N -
121 kzl Dy(I, T)
: k 1l < == < k 1l
?g{gNDz(I ) VN < kg}?.),(NDZ(I - (18)
=1,...M =1,..M

This completes the desired proof. [

Remark 2.4. For I = {ul, p€{1,...,n} and J' = v}, v € {1,...,m}, the above functionals take the form given
below

n

Fo,px I y) = F(cz»p,x,{m,yj):Pinz;w(xi, V),

F@wy Jx) = F@,wy,v,x) = Zw@(xz, ),
Di(fuh, ) = F(¢,w,y, (v})+F (o, p,x (u),
1 m
= W—mzwf¢(f, i)+ —chpxu )
Dy({u, ) = Z wib(xi, )

m =1
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and the refinement given in Theorem 2.3 shrinks to the result given in Theorem 1.3.
In the next theorem, subsets of equivalent cardinality are observed.

Theorem 2.5. Suppose that ¢ : A = [a,b] X [c,d] — R is convex on the co-ordinates on A. If x; € [a,b], y; € [c,d],

and p;,w; > 0,i € {1,2,...,n},j€{1,2,...,m}, n,m > 3, with P, = Zp, and W,, = Zw], thenforanylkeQ1
i=1

and J' € Q, such that |IF| = s > 2 and |J'| = r > 2 we have

0
1 B );1 Dy(I, J')
PEY < zﬁl‘s‘“([ D om zrlfa?Dl“k UES Zm(xl,w W, Zw@
00
1 1 DZ(Ik/]I) 1 n om
< GminDal")) % 5= < ymaxDa(l /) < 5 ot ),

\ll=r \ll=r =1 j=
1 v 1 «
here ¥ = — X, = — A
where X P, ;Zl pixis Y =3 - ]Ezl w;y;

Proof. The statement in the theorem follows by taking the min and max of the functionals given in (1) and
(2), after choosing every subset IF e Qand J' € Q,, such that || = sand || = r, with 2 < s < n and
2 < r < m. We use the facts mentioned in (17) and (18), where (?) and (') represent the number of subsets
IFcl,and J' € ], [I¥| = s, |J'| = r. Note that

—1\] &
Z Z pip(xi, yj) = [(Z) - (Z _q )] Z pip(xi, ),
Ikcl,, |IF|=s i€l i=1

since every p;p(x;, y;) in the double sum appears as many times as there are subsets I* C I, |I¥| = s > 2 such
that i ¢ I*. The subsets I* C I,, with |I| = s and i € I* is constructed by adding s — 1 elements from the n — 1
available once. Algebraically,

[(’;) - ('; L )] le P, y)) = (n . 1) ; P, ))-

Similar arguments can be given for the subsets J' C I, with |J)| = 7 > 2 and one has

Z Z wip(xi,yj) = [(T) - (T__ 11 )} ]Zml, wjp(xi, Yj)-

J'<hu \I'f=r jeT!

Every partition of I, = {1, ...,n} and J,, = {1,..., m} gives the statement obtained in the next theorem.

Theorem 2.6. Suppose that ¢ : A = [a,b] X [c,d] — R is convex on the co-ordinates on A. If x; € [a,b], y; € [c,d],

n m
and p;,w; > 0,i € {1,2,...,n}, j € {1,2,...,m}, n, m > 4, with P, = Y} p; and Wy, = }, w;. For every integers
i=1 j=1
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q, 1, such that 4 < 2q < nand 4 < 2r < m, there are partitions L UL, U .. Ul, =I,, 1 U o U ... U], = [, with
2< |yl <n,2< | <mforu=1,2,..,q9,v=1,2,..,r Then we have

ro g
Z Z Dl(lyrfv)
(59) < 3 min Dl J) < 2 < max Dyl )
(P ’y - 2;1:1 ..... q 1H’V_2 (E]T’) 2#21 4 R Jv
v=1,..r v=1,..,r
1 - i
< 3 ZP1¢(Xi,y)+—Zw,¢ X,y
ro g
Z Z D2(Iy/]v) n m
s lminD(I ])<1L 1me(I ])< Zw,(x. )
- 2y=} ,,,,, q 2w vl =g (qr) 2y=} A 2urlv —~ ]=1pl P Yj),
V=Lt v=l,..., r

1 v 1 v«
where ¥ = — iXi, J=— wiy,1<u<g, 1<v<r
P, L pixi, Y Wm;‘ iYj H=q
Proof. Every subset I, € I, and ], C ], induced theirs complement Ty and J, and (9) is valid with the

substitutions: I¥ — I, J! = J,. For D1(I,, J») and Dx(I,, J,) we take the min and max over u = 1,...,n and
v =1, ..., m and using the facts that

roq ro 9
Zl 21 Di(1, J») 21 Zl Dy(1, Jv)

. v=1u= . =1 pu=
mmDI,VS—_maxDI ) and min D I,,V_—_maxD L, ).
min Di(l, ). o max Dy(l ) and min Da(l, ) o max Da(l, )
v=1,..,r v=1,..., r v=1,..r v-l ..... r
Note: Zqub(xl,y]) =~ 1>Zp¢><xl,y] O

u=1 lEIA,
Theorem 2.3 ensures the next improvements of Jensen’s difference.
Corollary 2.7. Under the conditions of Theorem 2.3, we obtain:
1 n m n m 1
S D D Pib, v) — 6 9) > max| - Y Pl y) = D11 )| 2 0. (19)
=1 =1 i=1 j=1
Proof. Subtractmg Z Zplw]qb xi,yj) from every side of (9), we obtain that for every choice of
i=1 j=1
Fcl,={1,..nland ]l C Jm = {1, ..., m}, there is a statement:
1 n m n m 1
S L Y P ) = 95 9) > 5 Y Y pioydt ) = 5 Di(0 1) 2 0, (20)

I\
—_

i=1 ] i=1 :1

Taking the max of the right hand side in (20) for Fcl,|I"l>2and J' C ], ]| > 2, the proof is making
through. O

Corollary 2.8. Under the conditions of Theorem 2.3, we obtain:

n

P, Wy, Zpiwj¢(xir yj) — ¢(x, ) = max

kol
i=1 j=1 LT

Z w@(xi,yj)—%Dz(I",]l) > 0. (21)
i=1 j=1
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Proof. The proof is similar to that of corollary 2.7 only use D(I¥, J') instead of D1(I¥, J'). O

Now we give another refinement of the Jensen’s inequality for the convex function defined on the
co-ordinates of the bidimensional interval in the plane:

Theorem 2.9. Let ¢ : [a,b] X [c,d] — R be a co-ordinate convex function on [a, b] X [c d]. If x; € [a, b] yj € [c,d]

such that Xy, = Xi, Yjsm = yjand p;,w; > 0,i € {1,2,...,n}, j € {1, }, with Zpl =1and Zw] =1, for

somekandl,2 <k <nand2 <1< m, then we have

1 —1 n k-1 -1 111 n 1 m
(P(X-/ ?) < E ; Z (P [Z pr+1x1+rr ] + — Z (P [x/ Z wt+lyj+t < E ; Z (P(xi/ y) + a Z (P(xr ]/])
| =t =0 =1 =0 i=1 =1
[ m n m n -1 m n
111 1 1
< 5l [Z Pre1Xisr, y]] p Z cp(xi, Zwt+1]/j+t] pron Z O(xi, vj),
| j=1 i=1 r=0 =1 i=1 t=0 j=1 i=1
where X = 1nx< __1'" -
Tt VTt
i=1 j=1
Proof. Since ¢y, : [a,b] — Ris convex, so by Jensen’s inequality, we have
1 n 1 n k 1 n k-1
Py, (; ; x,-] = ¢y, n IZ;, 1; PV] Py, [n ; - Pr+1xi+r)
1 n 1 n k-1
< 2%y [Z Pre1Xisr ] - qb(z Pre1Xisr, yj],
=1 i=1 r=0

therefore,

1 n 1 n k-1
¢ [; Z Xi, ]/]'] <29 {Z PreXisr, 1//] : (22)
i r=0

i=1 i=1

On the other hand, since ¢, : [4,b] — R is convex, so again by Jensen’s inequality and simple calculations
one can get

n k=1 n
% Yo [Z Pre1Xisr, %‘] < % > (i vi) (23)
=1 \r=0 i=1

the combination of (22) and (23) yields

n n k-1 n
o3 L)< 2% o[ Lpers v < 2 Fr 0o w) o
i=1 i=1 r=0 i=1

Similarly, the convexity of ¢y, : [c,d] = R implies the following

0 [ ly y] 1y qb[xu )} wt+1]/]+t] <136 w). @5)
=1
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Multiplying (24) and (25) by 1 and 1 respectively and summing over j, i and then adding the obtained
results, one has the following

n m m n k-1 m n -1
% % Z o(xi, 7) + % Z & y)| < % % Z Z ¢ Zpr+1xi+rr Yyilt % Z Z P xi Z Wre1Yj+t
i=1 =1 =1 i=1 =0 j=1 i=1 t=0
X A )
=1 i=1

Furthermore by setting x; — ¥ and y; — 7 in (24) and (25) respectively we get

n n k-1 n
1 _ 1 _ 1 _
¢ szi/ 7l< EZ‘P mexm, gl< EZ(P(M, 7) (27)
i=1 i=1 =0 i=1
and
1 m 1 m -1 1 m
qb X, a ;% < a - Qb X, - Wi+1Yj+t < a ;(13(9?, y]) (28)

Now adding them, we obtain

N~

n k-1 m n m
111 1 1 1
o(x,7) < 515 Z ¢ 2?r+1xi+r, g+ - Z<P X, ) Wil || < - Z o(xi, 7) + p Z¢(f/ yil-
=1 \r=0 ' = =

Hence, we have the desired result. [
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