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Abstract. Recently, Carlitz degenerate Bernoulli numbers and polynomials have been studied by several
authors (see [3}14]]). In this paper, we consider new degenerate Bernoulli numbers and polynomials, different

from Carlitz degenerate Bernoulli numbers and polynomials, and give some formulae and identities related
to these numbers and polynomials.

1. Introduction

The ordinary Bernoulli numbers are defined by

1, ifn=1
Bo=1, (B+1)"-B,=1" ’ 1
0 (B+1)" - B, 0 ifn>1, (1)

with the usual convention about replacing B" by B,,.
The Bernoulli polynomials are defined by

By(x)=Y (7)le”l, (see [T-20]) .
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1 n
B (a+x) t_
"\ 4 n!’

a=0

n=0
Thus, by (@), we get
= a+x
B = ) B (), @

where n € N U {0} and 4 € IN.
Let x be a Dirichlet character with conductor d € IN. The generalized Bernoulli numbers are defined by

d-1
Bn,X = d"—l Z X (a) B, (%)/ (7’1 > 0) ’ (see [12, 18, 20]) . (5)
a=0

Carlitz introduced the degenerate Bernoulli polynomials given by the generating function

t

X s tn
aranpiog s A 3,]). 6
(1+)\t)%_1( + At) ;6/3(x| ) (see [BH] o

When x =0, B, (1) = B, (0| A) are called the degenerate Bernoulli numbers.
From (6), we note that

lim B, (x| A) = By (x), (220). @)

In this paper, we consider new degenerate Bernoulli numbers and polynomials, different from Carlitz
degenerate Bernoulli numbers and polynomials, and give some formulae and identities related to these
numbers and polynomials.

2. Degenerate Bernoulli Polynomials

Let us consider the new degenerate Bernoulli polynomials as follows:

log (1 + At - f
2 1+ADT = o (1) —. 8
e ;ﬁux)n! ®)

Whenx =0, 8,1 = B (0) are called the degenerate Bernoulli numbers. Note thatlim,_,g 8,1 (x) = By, (x).
From (8), we have

log (1 + AT

log(1+AD)T  log (1 +Ab)

1+ ABT - = = 9)
1+ AT -1 1+AHT -1 A
We observe that
1 _ . (_1)n A" n+1
Alog(1+/\t)—”Z:6 P (10)
Thus, by (), ) and (10), we get
0 ifn=0,
ar (1) =By = _ , =1. 11
B (1) = Bua {(—A)"l(n—l)! _— Boa (11)
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From (8), we note that

log (1+AB)T (1+ AHT

= ((1 + AT — 1) [mzzoﬁm% (x) %]

= (1] A)y n\| t"
(Z 1+111ﬁ”“(x)(l)]ﬁ’

where
x|A), =x(x-A)---(x-A(m-1)).

It is known that Daehee numbers are given by the generating function

Now, we observe that

log (1+ABT (1+ At

- (—bg (;: At)) (t1+2p)7)
00 n n tn
= t[nZ_O [; (Z)Dl/\] (JC | /\)n—l] E] .

Thus, by (I2) and (13), we get

n

¥ ()2, = 3 (o st

= 1=0
By (8), we easily get
= (n
B (x) = ; (Z)ﬁl,/\ Ay, (m20).

Therefore, by and (15), we obtain the following theorem.

Theorem 2.1. For n > 0, we have

n

5 i et

1=0

and

n

B (x) = Z (7)ﬁu (x| Ay

1=0
Moreover,

o, ifn=0,
Brna (1) = Bua = {(_)\)“—1 m=-1! ifn=1, Por=1
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By (8), we get
1
—og( +1 ) 1+ AD)*
1+ADT -1
1og(1+-Ao% o
Zkl AT
(1+)\t)*—1 =0
4 41
1 1 At‘ a+x
Og(+ 1+ A0
(1+At) -1
1011 a+x t
7;[2_:0%;( )]
0 d-1
_ n—1 a+Xx ﬂ
‘;{d azoﬁnlﬁ( d )}n'

Thus, by (16), we obtain the following theorem.

Theorem 2.2. Forn > 0, we have

Bus (x) = d' 12‘8”7(“—“(),

It is not difficult to show that

log (1+ At) & ,
MZ(“_/U);

A

1=0
log (1 + Af)T . log(1+ApT
_ log( 1 ) L+ a0t - og ( 1 )
A+AnDT -1 A+ADT -1

"
m!

Z{ﬁm;\(fl) Bun)

3 B+, (M) = B | "
B th:o { m+1 m!’

Thus we get

log (1+ At) & I
—— ) 1+ A7

log (1+ A\ [ 1
= t(%)(z 1+ )\t)f‘]

1=0
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From (17) and (18), we have
“1( k
Brria (M) = Brern  § K\ i
=T B VM REU R
=0 \i=0
Therefore, by (19), we obtain the following theorem.

Theorem 2.3. Forn > 1and k > 0, we have
1 n=1( k k ’
-—ﬂ%um—mmhgjgﬂﬁwmmh}
Replacing t by 1 log (1 + At) in ( . we get
log (1 + AT
(1+ADF -1

- Z B, (x) A‘”% (log (1 + At)"

(1+AHT

:iBm (x) A~ ’”251(11 m) ntn
m=0 n=m
i ZB (x) A"™S; (n, m)

n=0 \m=

where S1 (1, m) is the Stirling number of the first kind.
On the other hand,

log (1 + )\t)%

PR t
1+ At = E 2 (x) —
(1+AD} R = P

Therefore, by @D and , we obtain the following theorem.

Theorem 2.4. For n > 0, we have
n
Bur () = Y By () A8y (1, m).
m=0

Replacing t by 1 (e“ - 1) in , we have

= i [Z B (X) A" (n, m)]

where S, (1, m) is the Stirling number of the second kind.
Thus, by (22), we obtain the following theorem.
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Theorem 2.5. For n > 0, we have

By ()= ) B () A"S5 (n,m).

m=0

For d € IN, let x be a Dirichlet character with conductor d. Then, we define the generalized degenerate
Bernoulli numbers attached to x:

log (1+AHT &3 P p
———— ) x@@A+A)T =) Puya—. (23)
(1+At)i—1;; Z:o‘ ol
From () and (23), we have
0 1
1 log (1 + A7 A
Y Bupim = Y k@1 +An' (24)
n=0 s 1+A)* —195
d-1 a
1 log (1 + Af)? a
=2 @) 5" (14 A
=0 a+A0)T =1
d-1 00
1 a\ d'"
=2 LK@ ) fu (Zl) !
a=0 n=0
00 d-1
_ m—1 E ﬂ
- Z‘a[d Y r@p (d)] ot

Therefore, by (24), we obtain the following theorem.

Theorem 2.6. Forn >0, d € N, we have
d-1 p
Buaa =4 Y x @, (5)
a=0

3. Further Remark

Let p be a fixed prime number. Throughout this section, Z,, Q, and C, will denote the ring of p-adic
integers, the field of p-adic rational numbers and the completion of the algebraic closure of Q,. The p-adic
norm is normalized as ‘p|p = %. Let us assume that A, t € C, with |Af], < p_%’%. In Section we introduced
the degenerate Bernoulli polynomials given by the generating function

log (1+A)! R "
2+ At =Y g
(]. + Ai’)X -1 n=0 n.

Let d be a positive integer with (d,p) = 1. Then we set
1 N7 .
X =lim (z/dpz);
a+dpNz, = {x €eX|lx=a (mod de)};

X = U (a + dep).

O<a<dp
pta

We shall usually take 0 < a < dpN when we write a + dpNZ,,. Now, we will use Theorem to prove a
p-adic distribution result.
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Theorem 3.1. For k > 0, let uy g be defined by

W) N _ (.N\E a
g (@ +adp"Z,) = (™) By s, ( de) : (25)
Then [Ll](j\ﬁ) extends to a Cp-valued distribution on compact open sets U C X.

Proof. It suffices to show that

-1
pZ yl((’\ﬁ) (a +idpN + de“Zp)
i=0

=

_ (de+1)k‘1

g

i
- ©

= a + idpN
Br,—4 e

s N
. L
k=1 _ dp_N + 1
= (@) P )P ( ]
pr ) S 14

= (dPN)k_l ﬁk,dpAN (%)

= [ul(fﬁ) (a +dpNZ,).

|
—_

g

(=)
S

= ‘

O

The locally constant function x can be integrated against the distribution 4 defined by , and the
result is

[ @y 26)
X
dpN-1

= lim XZ:;‘ X @) gy (x+dpz,)

dpN-1
_ 1 N1 x
- fm (@) X, v (5]
= Prya-

From (26)), we have

fx X @ ditg A () = Birr, (k= 0).
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