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Generalized Analytic Fourier-Feynman Transforms with Respect to
Gaussian Processes on Function Space

Seung Jun Chang?, Hyun Soo Chung?, Ae Young Ko?, Jae Gil Choi®

?Department of Mathematics, Dankook University, Cheonan 330-714, Korea

Abstract. In this article, we introduce a generalized analytic Fourier-Feynman transform and a multiple
generalized analytic Fourier-Feynman transform with respect to Gaussian processes on the function space
Ca5[0, T] induced by generalized Brownian motion process. We derive a rotation formula for our multiple
generalized analytic Fourier-Feynman transform.

1. Introduction

Let Co[0, T] denote one-parameter Wiener space; that is, the space of all real-valued continuous functions
x on [0, T] with x(0) = 0. Let M denote the class of all Wiener measurable subsets of Cy[0, T] and let my,
denote Wiener measure. Then (Co[0, T], M, my,) is a complete measure space.

The concept of the ‘analytic’ Feynman integral on the Wiener space Cy[0, T] was initiated by Cameron
[2]. The foundation of the definition of the analytic Feynman integral also can be found in [1, 3]. There has
been a tremendous amount of papers on the analytic Feynman integral theory. Furthermore, the concept of
the analytic Fourier-Feynman transform on Cy[0, T] has been developed in the literature. For an elementary
introduction of the analytic Feynman integral and the analytic Fourier-Feynman transform, see [14] and
the references cited therein.

The concepts of the analytic Z,-Wiener integral (the Wiener integral with respect to Gaussian paths
Zy) and the analytic Z;-Feynman integral (the analytic Feynman integral with respect to Gaussian paths
Zn) on Co[0, T] were introduced by Chung, Park and Skoug in [12], and further developed in [4, 10, 13].
In [4, 10, 12, 13], the Z;-Wiener integral is defined by the Wiener integral fCo[O,T] F(Zy(x, -))dmy,(x) where

Zn(x, ) is the Gaussian path given by the stochastic integral Zj(x, t) = fot h(s)dx(s) with h € L?[0, T].

On the other hand, in [5, 7-9], the authors studied a generalized analytic Fourier-Feynman transform
and a generalized integral transform on the very general function space C,;[0,T]. The function space
Cap[0, T], induced by generalized Brownian motion process, was introduced by J. Yeh [15, 16] and was used
extensively in [5-9, 11].
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In this article, we introduce the generalized analytic Zj-Feynman integral, the generalized analytic
Zy-Fourier-Feynman transform, and the multiple generalized analytic Fourier-Feynman transform with
respect to Gaussian paths on the function space C,,[0, T]. We also derive a rotation formula involving the
two transforms.

2. Preliminaries

In this section, we briefly list some of the preliminaries from [5, 7, 8, 15] that we will need to establish
the results in this paper.

Let a(t) be an absolutely continuous real-valued function on [0, T] with a(0) = 0, a’(t) € L2[0,T], and
let b(t) be a strictly increasing, continuously differentiable real-valued function with b(0) = 0 and b’(t) > 0
for each t € [0, T]. The generalized Brownian motion process Y determined by a(t) and b(t) is a Gaussian
process with mean function a(t) and covariance function (s, t) = min{b(s), b(t)}. By Theorem 14.2 [16, p.187],
the probability measure u induced by Y, taking a separable version, is supported by C,,[0, T] (which is
equivalent to the Banach space of continuous functions x on [0, T] with x(0) = 0 under the sup norm). Hence,
(Cyp[0, T, B(C,pl0, T1), 1) is the function space induced by Y where B(C, [0, T]) is the Borel o-algebra of
Copl[0, T]. We then complete this function space to obtain (C,;[0, T1, W(C,[0, T]), 1) where W(C, [0, T]) is
the set of all Wiener measurable subsets of C,;[0, T].

We note that the coordinate process defined by e;(x) = x(t) on C,;[0, T] X [0, T] is also the generalized
Brownian motion process determined by a(t) and b(t). The function space C,;[0, T] reduces to the classical
Wiener space Co[0, T], considered in papers [1-4, 10, 12, 13] if and only if a(t) = O and b(f) = t for all t € [0, T].
For more detailed studies about this function space C, [0, T], see [5-9, 11, 15].

A subset B of C, [0, T] is said to be scale-invariant measurable provided pB € W(C,;[0, T]) forall p > 0,
and a scale-invariant measurable set N is said to be scale-invariant null provided u(pN) = 0 for all p > 0.
A property that holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere
(s-a.e.). A functional F is said to be scale-invariant measurable provided F is defined on a scale-invariant
measurable set and F(p -) is W(C, [0, T])-measurable for every p > 0. If two functionals F and G are equal
s-a.e., we write F ~ G.

Let L2, [0, T] be the space of functions on [0, T] which are Lebesgue measurable and square integrable
with resp,ect to the Lebesgue-Stieltjes measures on [0, T] induced by a(-) and b(-); i.e.,

T T
Lih[O, T] := {U : f v?(s)db(s) < +o0 and f v*(s)dlal(s) < +oo}
0 0

where |a|(-) denotes the total variation function of the function a(-). Then Li ,[0, T] is a separable Hilbert
space with inner product defined by

T T
(1, V)ap = fo u(t)yo(t)dmq p(t) = f(; u(Byo(t)d[b(t) + lal(®)],

where m,, denotes the Lebesgue-Stieltjes measure induced by |a|(-) and b(-). Note that [[u|l,p = /(1 )sp = 0
if and only if u(t) = 0 a.e. on [0, T] and that all functions of bounded variation on [0, T] are elements of
L2,[0,T]. Also note that if a(t) = 0 and b(t) = t on [0, T}, then L2, [0, T] = L*[0, T]. In fact

(L2,10, TL 11 llp) © (L2410, TL 11 loe) = (L0, T, 11 - II2)

since the two norms || - [lp and || - [|> are equivalent.
Foreachv € Li b[O, T1], the Paley-Wiener-Zygmund (PWZ) stochastic integral (v, x) is given by the formula

T n
(v,x) := ;}I—{QL Z(U/ P )apPj(t)dx(t)
=
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for u-a.e. x € Cop[0, T] where {(1)]-}}?11 is a complete orthonormal set of real-valued functions of bounded
variation on [0, T] such that (¢;, ¢x)ap = Ojk, the Kronecker delta. If v is of bounded variation on [0, T], then

the PWZ stochastic integral (v, x) equals the Riemann-Stieltjes integral fOT u(t)dx(t) for s-a.e. x € Cyp[0, T].
Furthermore, for each v € Lﬁ ,[0, T], the PWZ stochastic integral (v, -) : C,4[0, T] — R is a Gaussian random

variable with mean fOT o(t)da(t) = fOT v(t)a’(t)dt and variance fOT v*(t)db(t) = J(;T v?(t)b’ (t)dt. For more details,
see [5,7, 8].

3. Gaussian Processes
For any h € L2 [0, T] with [|lll,, > 0, let Zj(x, t) denote the PWZ stochastic integral
Zh(x/ t) = <hX[0,t]/ x)/ (31)

let By(t) := fot h2(u)db(u), and let yy,(t) := fot h(u)da(u). Then Zj, : C;5[0, T]1 % [0, T] — R is a Gaussian process
with mean function

f Z0(x, Hip(x) = f hu)da(u) = (8
Cayh[O,T] 0

and covariance function
min{s,t}
fc [0,T] (Zh(x' 5~ Vh(S))(.Zh(x, t) - yh(t))dy(x) = fo W2 (u)db(u) = By (minfs, t}).

In addition, by [16, Theorem 21.1], Zy(-, t) is stochastically continuous in ¢t on [0, T]. Of course if h(f) = 1,
then Z1(x, ) = x(f). Furthermore, if a(f) = 0 and b(t) = t on [0, T], then the function space C,;[0, T] reduces
to the classical Wiener space Cy[0, T] and the Gaussian process (3.1) with h(t) = 1 is an ordinary Wiener
process.

For hy,h; € Lib[O, T with [|hjll.p > 0, j € {1,2}, let Z;,, and Zy, be the Gaussian processes given by (3.1)
with h replaced with iy and h, respectively. Then the process

Shl,hz : Cu,b[ol T] X Cﬂ,b [O/ T] X [0/ T] - R
given by
B (X1, X2, 1) 1= Ty, (x1, 1) + Ly (X2, 1) (3.2)

is also a Gaussian process with mean iy, ;,(t) = vy, (f) + yn,(t) and variance vy, 4, (t) = Bp, (£) + Br, (). More
precisely, the covariance of the process 3, », is given by

fz (Shl,hz (x1,X2,8) = My, (5))(3111,112(?61,362, t) - mhl,hz(t))d(!l X w)(x1, x2)
2, [0T]

= By, (minfs, t}) + By, (min{s, t})
= vy, i, (Minfs, t}).

Let h; and K, be elements of Li b[O, T]. Then there exists a function s € Lg b[O, T] such that
s2(t) = H3(t) + h3(t) (3.3)

for myp-a.e. t € [0,T]. Note that the function ‘s’ satisfying (3.3) is not unique. We will use the symbol
s(h1, hy) for the functions ‘s’ that satisfy (3.3) above.
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We consider a stochastic process associated with the process Zq, 1,). Define a process
Rin iy = Capl0, T x [0, T] = R

by

R (6, £) 1= L oy (6, ) + f (P (1) + haut) = s, ) () dae). (3:4)
0

Then Ry, 1, is a Gaussian process with mean

f Ru s (x, HAH()
Capl0,T]

t
— [ Zaunal ) + [ (a0 + o) = s, )0t
Capl0,T1] 0
=Vm (t) + th(t) = mhlrhz(t)

and covariance

f o (Rhl,hz (%, ) = My iy (s))<Rh1,hz (x, 1) = mhl,hz(f)>du(x)
Culo,T

~ min{s,t} ) - " ~ min(s,t} hz h2 "
- [ S = [ (s + )

= By, (minfs, t}) + By, (min{s, t})
= vy, j, (minfs, t}).

Also, Ry i) (-, 1) is stochastically continuous in t on [0, T].

From these facts, one can see that 3, 5, and Ry, ;, have the same distribution and that for any random
variable F on C, [0, T],

I

2
ab

(31122, e < 01,22 = [ F(Ri ), (35)

[0,T] Capl0,T]

where by = we mean that if either side exists, both sides exist and equality holds.

Remark 3.1. In [11], the authors investigated a rotation property of the function space measure . The result is
summarized as follows: for a measurable functional F and every nonzero real p and q,

f F(pr + qua)d(u ), x2)
c2,[0T]

= Fl \Jp? + 2x+(+ -+ Z)a)d X).
fcﬂ,b[o,n(P q p+qa— P +4q p(x)

But, by the observation presented above, we also obtain an alternative result such that

f F(px1 + qx2)d(p X p)(x1, X2)
C2,10,T]

= F[ — /p2+ 2x+( +q+ AP+ Z)a)d (x).
fc;,h[o,T] ( p=+q p+q p-tq H
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4. A Rotation Theorem for Generalized Analytic Feynman Integrals with Respect to Gaussian Processes

Let C denote the set of complex numbers. Let C, := {1 € C: Re(Ad) > 0} and let C, :={A € C: A #
0 and Re(A) > 0}. Let G be a stochastically continuous Gaussian process on C, [0, T] X [0, T]. We define the
G-function space integral (the function space integral with respect to the Gaussian process G) for functionals
Fon C,;[0, T] by the formula

I61F] = IgulF@ (N i= [ F(G6

Cap[0,T]

whenever the integral exists.
Let F be a C-valued scale-invariant measurable functional on C, [0, T] such that

Jr(G; A) = Ig[F(A2G(x, )]

exists and is finite for all A > 0. If there exists a function J;(G; A) analytic on C. such that J(G; A) = Jr(G; A)
forall A > 0, then J;.(G; A) is defined to be the analytic G-function space integral (the analytic function space
integral with respect to the process G) of F over C,,[0, T] with parameter A, and for A € C, we write

an )

A = ERFGE N = [ FG )t = (6

Capl0,T]

Let g be a nonzero real number and let I'; be a connected neighborhood of —ig in C, such that IT'; N (0, +0)
is an open interval. Let F be a measurable functional whose analytic G-function space integral exists for all
A € C,. If the following limit exists, we call it the generalized analytic G-Feynman integral (the generalized
analytic Feynman integral with respect to the process G) of F with parameter g and we write

Ianfq anf,

5" F1 = I IFG )] = lim VRG] (1)

where A approaches —ig through values in I';.

In the case of the generalized analytic Z;-Feynman integral, if we choose i = 1 on [0, T], then the
definition of the generalized analytic Z;-Feynman integral agrees with the previous definitions of the
generalized analytic Feynman integral [5, 8, 9].

Now we will establish a rotation formula of our generalized analytic Feynman integral.

Lemma 4.1. Given h;j € Lih[O, T, j € (1,2}, with |Ihjllap > O, let Zy, be the Gaussian processes given by (3.1) with h

replaced with h;, and let Ry, y, be the Gaussian process given by (3.4). Let F be a scale-invariant measurable functional

that the analytic function space integrals IaZr:* [F], I‘ZA [F] and I%’;Ah [F] exist for every A € C... Furthermore assume
1 2 112

that Iz’lz,xz [Ig:l,x] [F(Zp, (x1,) + Zny(x2, ))]] exists for every (A1, A3) € Cy. X Cy. Then for each A € Cy,
I [Tz [F(Zn ) + Zino, )] = 1 [F(Rua )] (42)

Proof. In view of the definition of the analytic function space integral with respect to the Gaussian process,
we first note that the existences of the generalized analytic integrals

an, an an, an,, an,). . .
17 UF) 17, [F, g [F), and 170 [0 [F(Zi ) + 2|
guarantee that the function space integrals

e L D) | A (e MC ) | R L U SN D) |

ang,

1201z, [F(47 220 (1, ) 4 252 2002, and Tz [ 170 [F(Z0 (1) + G2 202 )]
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all exist forany A > 0,A; >0, A, >0, € C4,and (; > 0.
Next, the existence of the analytic function space integral

an,, any,;

(Zny T, M) =177 (120 [F(Z 0,0 + Zae )] (A2 € Cax, (4.3)
also ensure that the analytic function space integral
Ji( @ Zis A ) = I (170 [F(Z0 ) + 2o

is well-defined for all A € C,. In equation (4.3) above, [ (Zny» Ziys M, A2) means the analytic function space
integral, which is the analytic continuation of the function space integral

an».

12,12 [F(Z (1, ) 4 252 Z0 0 )], (A, 12) € €o x (0, +00).
On the other hand, using the Fubini theorem, (3.2) and (3.5), it follows that for all A > 0,
IZI,Z,XZ [IZh1 X1 [F(A_l/zzhl (xlr ) + /\_1/2th (x2/ ))”
= IZ/IZ,XZ [IZh1,X1 [F(A_l/z[zlh (xlr ) + th (Xz, )])H
= Ith,xz [Izhl,xl [F(Ail/zghl,hz (xlz X2, ))]]

= IRy F(A R |

We now use the analytic continuation to obtain our desired conclusion. [J
Remark 4.2. Let

T1(Zini A2) = Iz, [ 17, [F(Zi (0, ) + 472 Z0 002 9)]| (A,42) € € x (0, +0),

]AZ(Zhl;/\l) = IZhl ,Xl[ an\z [F( 1/2Zh1 (xlr ) + th(JCz, ))”
=17", [Iz,,l,xl [F(AT2Z0 (11, ) + Zia2, )], (A1, A2) € (0, +00) X T,

and
J(Z Zii M, A2) = Iz, [Tz, [F(AT 220 (1, ) + 452 Z02, )], (A, A) € (0, 400) X (0, +00).

Also, let ];l(th;/\z), Ay € €y, denote the analytic continuation of Jy,(Zn,; A2), let ]j\z(zhl;/\l)’ A1 € C,, denote
the analytic continuation of |1,(Zn,; A1), and let [*(Zy,, Zn,; -, ) denote the analytic continuation on C. X C, of the
function [(Zn,, Zny; -, ). Clearly, ]Bl(th;/\z) = [1(Zny, Ziys M1, A2) where J1(Zn,, Zny; ) is the analytic function
on C; X C, given in (4.3) above.

From the assumptions in Lemma 4.1, one can see that the three analytic function space integrals J (Zp,; A2),
]32 (Znys A2), and J*(Zny, Liny; M1, A2) all exist, and

11, (Ziai A2) = T, (L A1) = T (g s Ly A1, A2)
forall (A1, A7) € Cp x C,.

Theorem 4.3. Let Zy,, Zn,, Ry 1, and F be as in Lemma 4.1. Then for a real g € R\ {0},

anf, anfq

o 2 [F(Zn )+ Zut )] = e [F(Ru )] (44)
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Proof. To obtain equation (4.4), one may establish that

im 12 [0 [F(Zi () + T )]] = I [F(Rum )]

M Ap——ig Ziy X2 L Zny 11 g iy X
A1, A€l

But, as shown in the proof of Lemma 4.1, the assumption that the analytic function space integrals IZA [F1,
1
Ig; [F], and I;;;j,hz [F] exist for every A € C,, and the analytic function space integral Iazr:‘;xz [ 12’:1’){1 [F(Zp, (x1, ) +
Zn,(x2,-))]] exists for every (A1, ) € C. X C,, says the fact that I,';‘;]“] [F]is analytic on C., as a function of A,
hyhy
and I?sz [Iazn:lx1 [F(Zn, (x1,°) + Zny(x2,-))]] is analytic on C,. X C., as a function of (A1, A2). Thus, to establish
" iy
equation (4.4), it will suffice to show that

lim 2" [Ig,/‘l,xl[F<Zhl(x1")+Z”2(x2"))” I [F(Rhl,hz(x,‘)ﬂ.

A——igq LipX2 TRy X
Ael

Using equation (4.2) and the analytic continuation, we obtain the desired result. O

5. Multiple Generalized Analytic Fourier-Feynman Transform with Respect to Gaussian Processes

We begin this section with the definitions of the generalized analytic Fourier-Feynman transform with
respect to Gaussian process and the multiple generalized analytic Fourier-Feynman transform with respect
to Gaussian processes of functionals on C,;[0,T]. Let F be a scale-invariant measurable functional on
Cap[0, T] and let G be a stochastically continuous Gaussian process on C,[0,T] X [0,T]. For A € C, and
y € Capl0, T, let

Tag(F)y) = It [F(y + 6, )] (5.1)

denote the analytic function space transform of F. Let g be a nonzero real number and let I'; be a connected
neighborhood of —ig in C, such that I'; N (0, +o0) is an open interval. We define the L; generalized analytic
Fourier-Feynman transform with respect to the process G, T;%(F) of F, by the formula (if it exists)

TP = lim Tig(F)) (52)
Ael

fors-a.e. y € C,p[0, T].
We note that T;%(F) is defined only s-a.e.. We also note that if T;%(F) exists and if F ~ G, then Tf}%(G)

exists and T;%(G) = T;%(F). From equations (5.1), (5.2), and (4.1), it follows that
+ ranf
TL(F)y) = Iy " [F(y + )] (5.3)

fors-a.e. y € Cop[0, T].
Next,let G, j € {1,...,n}, be stochastically continuous Gaussian processes on C, [0, T] X [0, T]. For A > 0

.....

Mig,,...e0)E)NY)

:=f F(y+)\‘1/2zg]-(x]-, -))dy"(xl,...,xn)
c,[0,T] =

=Ig, x, [Ign_l,xn_l [ e [IQLM [F(y + A2 i Gj(xj, ))H e ”
=1
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.....

g € R\ {0} and a Connected neighborhood I'; of —ig in C, such that r,n (O +00) is an open interval, we defme
the L; multiple generalized analytic Fourier—Feynman transforms with respect to the Gaussian processes

(G1,---,Gn), M(l(g G )(F) of F, by the formula (if it exists)

Mfi%()gl ~~~~~ Gn )(P)(y) - hm M, (G1,./ Q,,)(F)(y) (5.4)

/\GF

for s-a.e. y € C,p[0, T
Clearly, we have that M g)(F) = Ty g(F) for all A € C,, and M(l() o) = TL%(F) for any nonzero real g if
the transforms exist.

Theorem 5.1. Let Zy,, Zp,, and Ry, , be as in Lemma 4.1. Let F be a scale-invariant measurable functional that
the analytic transforms

T2, (YY) = B2 [F( + ), Tz, (FX9) = 2 [E(y -+ ), and Tag, ., (FXy) = G [Fy+ 9]
exist for every A € C,. and s-a.e. y € C,3[0, T]. Furthermore assume that the analytic function space integral
el [Fly + 2 + Zil )]
exists for every (A1, Ay) € C. X Cy and s-a.e. y € C,p[0, T]. Then for areal g € R\ {0},
(1) (1)
M.z, 2, (B =T, Rups, DY)
fors-a.e. y € Cyppl0, T].
Proof. First, proceedings as in the proofs of Lemma 4.1 and Theorem 4.3, we conclude that

e [Fy+ Zut ) + 2 )] = et JF(y + R )] (5.5)

for s-a.e. y € C,3[0, T]. Next, in view of equation (5.4) and under the assumption, it follows that for s-a.e.
]/ € Ca,b[ol T]/

Mgl()z, z;z)(F Ny) = )i{{}q Mz, z,) E)Y)

Ael
= Jim 170 [ [F 4 A7 Z0 ) + ZinGrar )
Ael (5.6)

_ any, [an; -1/2 -1/2
= Jim 1 [ R+ 272 + 412 2 )

A1, el

I;:xf:xz IaZ;f X1 [ (y + 'Zhl (xlr )+ th x2,' )”

Finally using equations (5.6), (5.5), and (5.3) with G replaced with R, j,, it follows that fors-a.e. y € C, [0, T],

Mfil()Zh Ly )(F)(y) Ti,lv)zh o (F)(J/)/

as desired. [

The following theorem follows by the use of mathematical induction.
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Theorem 5.2. Given h; € Lgb[O, T], jell,...,n}, with||hjllp > O, let Zy,; be the Gaussian processes given by (3.1)
with h replaced with hj, and let Ry, ,. 1, : Capl0, T]1 X [0, T] — R be the Gaussian process given by

+ n
Rin, iy (1) 1= Lo,y (1) + fo | 3 ) = st .. ) ),
j=1

where s(hy, ..., hy) is an element of Lg [0, T] which satisfies the condition

n
$2(hy, ..., ) = zhf.
j=1

for mygp-a.e. on [0, T]. Let F be a scale-invariant measurable functional that the analytic function space transforms
Trz, (F)y) = IZA/ [F(y + 9] j € {l,...,n}, and Thg, , (F)y) = I;IZ [F] exist for every A € C, and s-a.e.

""" S

y € Cap[0, T]. Furthermore assume that the analytic function space integral

121"%[ " [12‘ [F(y + Z Zny(xj, ))” = ]
=1
exists for every (A1, ..., A,) € C} and s-a.e. y € C[0, T]. Then, for a real g € R\ {0} and s-a.e. y € C,,[0,T],

&) * ()
Mz 20O = Tor,, EYG)
We note that the hypotheses (and hence the conclusions) of Lemma 4.1, Theorems 4.3, 5.1, and 5.2 above
are indeed satisfied by many large classes of functionals. These classes of functionals include:

(a) The Banach algebra S(L2, [0, T]) defined by Chang and Skoug in [8].

(b) Various spaces of functionals of the form

F(x) = f(<0(1,x>, ey (a,,,x))

for appropriate f as discussed in [5, 7, 9].
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