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Abstract. In this paper we study the existence of integrable solutions of the nonlocal problem for
fractional order implicit differential equations with nonlocal condition. Our results are based on
Schauder’s fixed point theorem and the Banach contraction principle fixed point theorem.

1. Introduction

The topic of fractional calculus (integration and differentiation of fractional-order), which con-
cerns singular integral and integro-differential operators, is enjoying interest among mathematicians,
physicists and engineers. Indeed, we can find numerous applications of differential equations of
fractional order in viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc. (see
[5, 13, 16, 17, 19]). There has been a significant development in ordinary and partial fractional dif-
ferential equations in recent years; see the monographs of Abbas et al. [3, 4], Kilbas et al. [14],
Lakshmikantham et al. [15], and the papers by Agarwal et al [1, 2], Belarbi et al. [6], Benchohra et al.
[7], and the references therein.

To our knowledge, the literature on integral solutions for fractional differential equations is very
limited. El-Sayed and Hashem [12] studied the existence of integral and continuous solutions for
quadratic integral equations. El-Sayed and Abd El Salam considered Lp-solutions for a weighted
Cauchy problem for differential equations involving the Riemann-Liouville fractional derivative.

Motivated by the above papers, in this paper we deal with the existence of solutions of the nonlocal
problem, for fractional order implicit differential equation

cDαy(t) = f (t, y(t),c Dαy(t)), a.e, t ∈ J =: (0,T], (1)

m∑
k=1

aky(tk) = y0, (2)
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where f : J × IR × IR→ IR is a given function, y0 ∈ IR, ak ∈ IR, cDα is the Caputo fractional derivative,
and 0 < t1 < t2 < ..., tm < T, k = 1, 2, ...,m.

This paper is organized as follows. In Section 2, we will recall briefly some basic definitions and
preliminary facts which will be used throughout the following section. In Section 3, we give two
results, the first one is based on Schauder’s fixed point theorem (Theorem 3.3) and the second one on
the Banach contraction principle (Theorem 3.4). An example is given in Section 4 to demonstrate the
application of our main results. Let us mention that most of the existing results for fractional order
differential equations are devoted to continuous or Carathéodory solutions. Thus, the main results
of the present paper constitute a contribution to this emerging field.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used through-
out this paper.
Let L1(J) denotes the class of Lebesgue integrable functions on the interval J = [0,T], with the norm
‖u‖L1 =

∫
J |u(t)|dt.

Definition 2.1. .([14, 18]). The fractional (arbitrary) order integral of the function h ∈ L1([a, b],R+) of order
α ∈ R+ is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a
(t − s)α−1h(s)ds,

where Γ(.) is the gamma function. When a = 0, we write Iαh(t) = h(t) ∗ ϕα(t), where ϕα(t) = tα−1

Γ(α) f or t >
0, and ϕα(t) = 0 f or t ≤ 0, and ϕα → δ(t) as α→ 0, where δ is the delta function.

Definition 2.2. . ([14, 18]). The Riemann-Liouville fractional derivative of order α > 0 of function h ∈
L1([a, b],R+), is given by

(Dα
a+h)(t) =

1
Γ(n − α)

( d
dt

)n
∫ t

a
(t − s)n−α−1h(s)ds,

Here n = [α] + 1 and [α] denotes the integer part of α. If α ∈ (0,T], then

(Dα
a+h)(t) =

d
dt

I1−α
a+ h(t) =

1
Γ(1 − α)

d
ds

∫ t

a
(t − s)−αh(s)ds.

Definition 2.3. . ([14]). The Caputo fractional derivative of order α > 0 of function h ∈ L1([a, b],R+) is
given by

(cDα
a+h)(t) =

1
Γ(n − α)

∫ t

a
(t − s)n−α−1h(n)(s)ds,

where n = [α] + 1. If α ∈ (0,T], then

(cDα
a+h)(t) = I1−α

a+

d
dt

h(t) =

∫ t

a

(t − s)−α

Γ(1 − α)
d
ds

h(s)ds.

The following properties are some of the main ones of the fractional derivatives and integrals.

Proposition 2.4. [14] Let α, β > 0. Then we have
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(i) Iα : L1(J,R+)→ L1(J,R+), and if f ∈ L1(J,R+), then

IαIβ f (t) = IβIα f (t) = Iα+β f (t).

(ii) If f ∈ Lp(J,R+), 1 ≤ p ≤ +∞, then ‖Iα f ‖Lp ≤
Tα

Γ(α+1)‖ f ‖Lp .

(iii) limα→n Iα f (t) = In f (t), n = 1, 2, ... uniformly.

The following theorems will be needed.

Theorem 2.5. (Schauder fixed point theorem [10]) Let E a Banach space and Q be a convex subset of E and
T : Q −→ Q is compact, and continuous map. Then T has at least one fixed point in Q.

Theorem 2.6. (Kolmogorov compactness criterion [10]) Let Ω ⊆ Lp([0,T], IR), 1 ≤ p ≤ ∞. If

(i) Ω is bounded in Lp([0,T],R), and

(ii) uh −→ u as h −→ 0 uniformly with respect to u ∈ Ω,
then Ω is relatively compact in Lp([0,T],R),

where

uh(t) =
1
h

∫ t+h

t
u(s)ds.

3. Existence of Solutions

Let us start by defining what we mean by an integrable solution of the nonlocal problem (1)− (2).

Definition 3.1. . A function y ∈ L1([0,T],R) is said to be a solution of problem (1)− (2) if y satisfies (1) and
(2).

In what follows, we assume that
∑m

k=1 ak , 0. Set

a =
1∑m

k=1 ak
.

For the existence of solutions for the nonlocal problem (1) − (2), we need the following auxiliary
lemma.

Lemma 3.2. The nonlocal problem (1) − (2) is equivalent to the integral equation

y(t) = ay0 − a
m∑

k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds +

∫ t

0

(t − s)α−1

Γ(α)
x(s)ds, (3)

where x is the solution of the functional integral equation

x(t) = f

t, ay0 − a
m∑

k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds) +

∫ t

0

(t − s)α−1

Γ(α)
x(s)ds, x(t)

 . (4)
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Proof. Let cDαy(t) = x(t)) in equation (1), then

x(t) = f (t, y(t), x(t)) (5)

and

y(t) = y(0) + Iαx(t))

= y(0) +

∫ t

0

(t − s)α−1

Γ(α)
x(s)ds. (6)

Let t = tk in (6), we obtain

y(tk) = y(0) +

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds,

and
m∑

k=1

aky(tk) =

m∑
k=1

aky(0) +

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds. (7)

Substitute from (2) into (7), we get

y0 =

m∑
k=1

aky(0) +

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds,

and

y(0) = a

y0 −

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds

 . (8)

Substitute from (8) into (6) and (5), we obtain (3) and (4).
For complete the proof, we prove that equation (3) satisfies the nonlocal problem (1) − (2). Differen-
tiating (3), we get

cDαy(t) = x(t) = f (t, y(t),c Dαy(t)).

Let t = tk in (3), we obtain

y(tk) = ay0 − a
m∑

k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds) +

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds

= ay0 +

1 − a
m∑

k=1

ak

 ∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds.

Then
m∑

k=1

aky(tk) =

m∑
k=1

akay0 +

m∑
k=1

ak

1 − a
m∑

k=1

ak

 ∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds = y0.

This complete the proof of the equivalent between the nonlocal problem (1)-(2) and the integral
equation (3).
Leu us introduce the following assumptions:

(H1) f : [0,T] × R2
−→ R is measurable in t ∈ [0,T], for any (u1,u2) ∈ R2 and continuous in

(u1,u2) ∈ R2, for almost all t ∈ [0,T].

(H2) There exist a positive function a ∈ L1[0,T] and constants, bi > 0; i = 1, 2 such that:

| f (t,u1,u2)| ≤ |a(t)| + b1|u1| + b2|u2|,∀(t,u1,u2) ∈ [0,T] ×R2.
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Our first result is based on Schauder fixed point theorem.

Theorem 3.3. Assume that the assumptions (H1) − (H2) are satisfied. If

2b1Tα

Γ(α + 1)
+ b2 < 1, (9)

then the problem (1) − (2) has at least one solution y ∈ L1([0,T], IR).

Proof. Transform the nonlocal problem (1) − (2) into a fixed point problem. Consider the operator

H : L1([0,T], IR) −→ L1([0,T], IR)

defined by:

(Hx)(t) = f

t, ay0 − a
m∑

k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds) +

∫ t

0

(t − s)α−1

Γ(α)
x(s)ds, x(t)

 . (10)

Let

r =
Tab1y0 + ‖a‖L1

1 −
(

2b1Tα
Γ(α+1) + b2

) ,
and consider the set

Br = {x ∈ L1([0,T], IR) : ‖x‖L1 ≤ r}.

Clearly Br is nonempty, bounded, convex and closed.
Now, we will show that HBr ⊂ Br, indeed, for each x ∈ Br, from (9) and (10) we get

‖Hx‖L1 =

∫ T

0
|Hx(t)|dt

=

∫ T

0

∣∣∣∣∣∣∣ f
t, ay0 − a

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds) +

∫ t

0

(t − s)α−1

Γ(α)
x(s)ds, x(t)


∣∣∣∣∣∣∣ dt

≤

∫ T

0

|a(t)| + b1|ay0 − a
m∑

k=1

akIαx(t)|t=tk + Iαx(t)| + b2|x(t)|

 dt

≤ Tab1y0 + ‖a‖L1 +
b1a

∑m
k=1 aktαk

Γ(α + 1)
‖x‖L1 +

b1Tα

Γ(α + 1)
‖x‖L1 + b2‖x‖L1

≤ Tab1y0 + ‖a‖L1 +

(
2b1Tα

Γ(α + 1)
+ b2

)
‖x‖L1

≤ r.

Then HBr ⊂ Br. Assumption (H1) implies that H is continuous. Now, we will show that H is
compact, this is HBr is relatively compact. Clearly HBr is bounded in L1([0,T], IR), i.e condition (i) of
Kolmogorov compactness criterion is satisfied. It remains to show (Hx)h −→ (Hx) in L1([0,T], IR) for
each x ∈ Br.



M. Benchohra, M. S. Souid / Filomat 30:6 (2016), 1485–1492 1490

Let x ∈ Br, then we have

‖(Hx)h − (Hx)‖L1

=

∫ T

0
|(Hx)h(t) − (Hx)(t)|dt

=

∫ T

0

∣∣∣∣∣∣1h
∫ t+h

t
(Hx)(s)ds − (Hx)(t)

∣∣∣∣∣∣ dt

≤

∫ T

0

(
1
h

∫ t+h

t
|(Hx)(s) − (Hx)(t)|ds

)
dt

≤

∫ T

0

1
h

∫ t+h

t
| f

t, ay0 − a
m∑

k=1

ak

∫ sk

0

(sk − τ)α−1

Γ(α)
x(τ)dτ) +

∫ s

0

(s − τ)α−1

Γ(α)
x(τ)dτ, x(s)


− f

t, ay0 − a
m∑

k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds) +

∫ t

0

(t − s)α−1

Γ(α)
x(s)ds, x(t)

 |dsdt.

Since x ∈ Br ⊂ L1([0,T], IR) and assumption (H2) that implies f ∈ L1([0,T], IR), it follows that
1
h

∫ t+h

t

∣∣∣∣ f (
t, ay0 − a

∑m
k=1 ak

∫ sk

0
(sk−τ)α−1

Γ(α) x(τ)dτ +
∫ s

0
(s−τ)α−1

Γ(α) x(τ)dτ, x(s)
)

− f
(
t, ay0 − a

∑m
k=1 ak

∫ tk

0
(tk−s)α−1

Γ(α) x(s)ds +
∫ t

0
(t−s)α−1

Γ(α) x(s)ds, x(t)
) ∣∣∣∣ds→ 0 as h→ 0. Hence

(Hx)h → (Hx) uniformly as h→ 0.

Then by Kolmogorov compactness criterion, HBr is relatively compact. As a consequence of
Schauder’s fixed point theorem the nonlocal problem (1) − (2) has at least one solution in Br.

The following result is based on the Banach contraction principle.

Theorem 3.4. Assume that (H1) and the following condition hold.

(H3) There exist constants k1, k2 > 0 such that

| f (t, x1, y1) − f (t, x2, y2)| ≤ k1|x1 − x2| + k2|y1 − y2|, t ∈ [0,T], x1, x2, y1, y2 ∈ IR.

If

2k1Tα

Γ(α + 1)
+ k2 < 1, (11)

then the problem (1) − (2) has a unique solution y ∈ L1([0,T], IR).

Proof. We shall use the Banach contraction principle to prove that H defined by (10) has a fixed point.
Let x, y ∈ L1([0,T], IR), and t ∈ [0,T]. Then we have,

|(Hx)(t) − (Hy)(t)|

=
∣∣∣∣ f (t, ay0 − a

m∑
k=1

akIαx(t)|t=tk + Iαx(t), x(t))

− f (t, ay0 − a
m∑

k=1

akIαy(t)|t=tk + Iαy(t), y(t))
∣∣∣∣

≤ k1a
m∑

k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
|x(s) − y(s)|ds

+k1

∫ t

0

(t − s)α−1

Γ(α)
|x(s) − y(s)|ds + k2|x − y|.
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Thus

‖(Hx) − (Hy)‖L1 ≤
k1tαk a

∑m
k=1 ak

Γ(α + 1)

∫ T

0
|x(t) − y(t)|dt +

k1Tα

Γ(α + 1)

∫ T

0
|x(t) − y(t)|dt

+k2

∫ T

0
|x(t) − y(t)|dt

≤
2k1Tα

Γ(α + 1)
‖x − y‖L1 + k2‖x − y‖L1

≤

(
2k1Tα

Γ(α + 1)
+ k2

)
‖x − y‖L1 .

Consequently by (11) H is a contraction. As a consequence of the Banach contraction principle, we
deduce that H has a fixed point which is a solution of the nonlocal problem (1) − (2).

4. Example

Let us consider the following fractional nonlocal problem,

cDαy(t) =
1

(et + 5)(1 + |y(t)| + |cDαy(t)|)
, t ∈ J := [0, 1], α ∈ (0, 1], (12)

m∑
k=1

aky(tk) = 1, (13)

where ak ∈ IR, 0 < t1 < t2 < ... < 1.
Set

f (t, y, z) =
1

(et + 5)(1 + y + z)
, (t, y, z) ∈ J × [0,+∞) × [0,+∞).

Let y, z ∈ [0,+∞) and t ∈ J. Then we have

| f (t, y1, z1) − f (t, y2, z2)| =

∣∣∣∣∣∣ 1
et + 5

(
1

1 + y1 + z1
−

1
1 + y2 + z2

)∣∣∣∣∣∣
≤

|y1 − y2| + |z1 − z2|

(et + 5)(1 + y1 + z1)(1 + y2 + z2)

≤
1

(et + 5)
(|y1 − y2| + |z1 − z2|)

≤
1
6
|y1 − y2| +

1
6
|z1 − z2|.

Hence condition (H3) holds with k1 = k2 = 1
6 . We shall check that condition (11) is satisfied. Indeed

2k1

Γ(α + 1)
+ k2 =

1
3Γ(α + 1)

+
1
6
< 1. (14)

Then by Theorem 3.2, the nonlocal problem (12) − (13) has a unique integrable solution on [0, 1].
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[3] S. Abbas, M. Benchohra and G.M. N’Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
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