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Abstract. By using periodic functions from the nonnegative integers to the complex numbers, we general-
ize the generating function of the q–Apostol type Eulerian polynomials and numbers attached the character
defined in [1]. Then using this generating function, we a construct new L–type series. By using periodic
functions, we derive decomposition of the generating functions for the q–Euler numbers and polynomials.
Applying the Mellin transformation to the decomposition of the generating functions, we introduce and
investigate the various properties of a certain new family of the Dirichlet type L–series and the Dirichlet
L–function. Finally, we derive many potentially useful results involving these functions polynomials and
numbers.

1. Introduction and Main Definition

A Dirichlet Lk-series is defined by the following the form

Lk(s) =

∞∑
n=1

χk(n)
ns ,

where χk, the number theoretic character, is an integer function with period k and s a complex variable
with real part greater than 1. If χk is a Dirichlet character, then Lk(s) is reduces to the well-known the
Dirichlet L–function. These series are used in many branches of Mathematics. These series especially are
very important in additive number theory and in analytic number theory. These series were used to prove
Dirichlet’s theorem and also related to the modular forms, the automorphic form, the Dirichlet L–functions,
the Lerch transcendental function, the Riemann zeta function, and the other special functions. All of these
functions are fundamentally important in Analytic Number Theory and in Complex Analysis. The family
of zeta functions are also appeared in quantum statistics (the Fermi–Dirac and the Bose-Einstein integral
functions) and quantum interference and entanglement (cf. [7], [24]).

In this paper, replacing a Dirichlet character with a periodic function from the nonnegative integers to
the complex numbers, we modify the generating function of the q–Apostol type Eulerian polynomials and
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numbers attached the character defined in [1]. Using the generating function of the q–Eulerian polynomials
attached a periodic function χ, we construct a new L–type series. We get some fundamental properties of
these series and also decompose the generating functions for the q–Eulerian polynomials attached to the
periodic function. This decomposition provided us to compute the q–Apostol–type Eulerian polynomials
more easily. By using this inspiration, we derive some new decompositions for the q–Apostol–type Eulerian
polynomials and L–type series attached to the periodic function with the period f . These decompositions
are related to the period of the periodic function. We summarize our results in detail as follows;

In Section 1, we give generating function for the q–Apostol type Eulerian polynomials and numbers
attached a periodic function χ. By applying the Mellin transformation to these generating functions, we
define interpolation functions for the q–Apostol type Eulerian numbers and polynomials. We also define a
family of Dirichlet type L–series related to the family of Dirichlet type zeta function.

In Section 3, we give some algebraic concepts which are related to the sets and some properties of
subgroups. By using these concepts, we decompose a family of Dirichlet type L–series which interpolate
generalized Eulerian numbers and polynomials at negative integers. We also give one example which are
related to our decomposition theorem.

Throughout this paper, we use the following standard notions:
N = {1, 2, · · · }, N0 = {0, 1, 2, · · · } = N ∪ {0} and also, as usual, R denotes the set of real number, R+

denotes the set of positive real number and C denotes the set of complex numbers.
If q ∈ R then we assume that 0 < q < 1. If q ∈ C then we assume that

∣∣∣q∣∣∣ < 1. Then

[x] = [x : q] =

{ 1−qx

1−q , if q , 1
x, if q = 1.

2. The q-Eulerian Polynomials and Numbers

Let χ be a function from N0 to C. If there is a positive integer f such that χ( f m + x) = χ(x) and for
m, x ∈ N0, then χ is called a periodic function with the period f . It is clear that any character with the
conductor f is a periodic function with the period f . Then by using the periodic function, we modify our
definition of the q-Apostol type Eulerian polynomials and numbers attached the character χ in [1]:

Definition 2.1. Let a, b ∈ R+ (a , b and a ≥ 1), u ∈ C� {1}, λ, q ∈ C with
∣∣∣q∣∣∣ < 1. Let χ be a function from N0 to

C with the period f .
i) The q–Eulerian numbers attached the character χ:

Hn,χ (u; a, b;λ; q)

are defined by means of the following generating function:

Fλ,q,χ(t,u, a, b)=
(
1−

a[ f ]t

u f

) ∞∑
m=0

(
λ
u

)m

b[m]tχ(m) =

∞∑
n=0

Hn,χ(u; a, b;λ; q)
tn

n!
, (1)

ii) The q–Eulerian polynomials attached the character χ:

Hn,χ(x; u; a, b;λ; q)

are defined by means of the following generating function:

Fλ,q,χ(t, x,u, a, b)=
(
1−

a[ f ]t

u f

) ∞∑
m=0

(
λ
u

)m

b[m+x]tχ(m) =

∞∑
n=0

Hn,χ(x; u; a, b;λ; q)
tn

n!
(2)

where ∣∣∣∣∣λu bt
∣∣∣∣∣ < 1.
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Observe that

Hn,χ(0; u; a, b;λ; q) = Hn,χ(u; a, b;λ; q),

which denotes the q–Eulerian numbers. When q→ 1 and χ(m) ≡ 1 for all m ∈N0 into (2), we have(
1−

at

u

) ∞∑
m=0

(
λ
u

)m

b(m+x)t =

∞∑
n=0

Hn(x; u; a, b;λ)
tn

n!

(cf. [22], [18], [19]). Setting a = λ = 1 and b = e into the above equation, we arrive at the generating function
for the Frobenious-Euler polynomials, Hn(x; u) = Hn(x; u; 1, e; 1) :

1 − u
et − u

etx =

∞∑
n=0

Hn(x; u)
tn

n!
.

Setting u = −1 into the above equation, we have generating function for the classical Euler polynomials

2
et + 1

etx =

∞∑
n=0

En(x)
tn

n!

which of course En(0) = En, denotes the classical Euler numbers (cf. [1]-[23]).
By using the period f of χ with χ( f ) = 1 and combining with Fλ,q(t, x,u, a, b), we modify (1) and (2),

respectively as follows:

Fλ,q,χ(t,u, a, b)=
f−1∑
i=0

(
λ
u

)i

χ(i)Fλ f ,q f

(
t[ f ],

i
f
,u f , a, b

)
and

Fλ,q,χ(t, x,u, a, b)=
f−1∑
i=0

(
λ
u

)i

χ(i)Fλ f ,q f

(
[ f ]t,

i + x
f
,u f , a, b

)
. (3)

We also note that Equation (1) is the unique solution of the following a q–difference equation:

Fλ,q,χ(t,u, a, b)=
(
1−

a[ f ]t

u f

) f−1∑
m=0

(
λ
u

)m

χ(m)b[m]t +
(
λ
u

) f

b[ f]tFλ,q,χ
(
t,u, a, bq f )

.

On the other hand, we get

Fλ,q,χ(t, x,u, a, b)=
∞∑

m=0

(
λ
u

)
mχ(m)

(
e([m+x] ln b)t

−
1

u f
e([ f] ln a+[m+x] ln b)t

)
.

Therefore, by using the expression of expansional function in the above equation, we have

∞∑
n=0

Hn,χ(x; u; a, b;λ; q)
tn

n!
=

∞∑
m=0

∞∑
n=0

(
λ
u

)m

χ(m)(
([m + x] ln b)n

−
1

u f

([
f
]

ln a + [m + x] ln b
)n
) tn

n!
.

Comparing the coefficient of tn

n! on both sides of the above equation, we arrive at the following theorem:
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Theorem 2.2. Let a, b ∈ R+, u ∈ C� {1}, λ, q ∈ C such that
∣∣∣q∣∣∣ < 1,

∣∣∣λ ln b
u

∣∣∣ < 1, a , b and a ≥ 1. For positive integer
n,

Hn,χ(x; u; a, b;λ; q) =

∞∑
n=0

(
λ
u

)m

χ(m)
(
([m + x] ln b)n

−
1

u f

([
f
]

ln a + [m + x] ln b
)n
)
. (4)

Let a, b ∈ R+, u ∈ C� {1}, λ, q ∈ C such that
∣∣∣q∣∣∣ < 1,

∣∣∣λbt

u

∣∣∣ < 1, a , b and a ≥ 1. From [18], we recall the
following generating function:

Fλ,q(t, x,u, a, b) =

(
1 −

at

u

) ∞∑
m=0

(
λ
u

)m

b[m+x]t =

∞∑
m=0

Hm,λ,q(x; u; a; b)
tm

m!
. (5)

By applying the Mellin transformation to the generating function in Equation (5), we get the following
integral representation of the family zeta functions:

ζλ,q(s, x,u, a, b) =
1

Γ(s)

∫
∞

0
ts−1Fλ,q(−t, x,u, a, b)dt (min {R(s),R(x)} > 0), (6)

where the additional constraint R(x) > 0 is required for the convergence of the infinite integral occurring
on the right-hand side at its upper terminal.

By using the above integral representation, we are ready to define the following definition of the
Hurwitz-type zeta function:

Definition 2.3. Let a, b ∈ R+ with a , b(a ≥ 1),u ∈ C� {1}, λ, q ∈ C such that
∣∣∣q∣∣∣ < 1 and

∣∣∣λu ∣∣∣ < 1. We define the
Hurwitz-Lerch type zeta function

ζλ,q(s, x,u, a, b) =

∞∑
m=0

(
λ
u

)m (
1

([m + x] ln b)s −
1

u (ln a + [m + x] ln b)s

)
. (7)

Setting x = 0 in (7), we obtain the Riemann type zeta function as follows;

ζλ,q(s,u, a, b) =

∞∑
m=1

(
λ
u

)m (
1

([m] ln b)s −
1

u (ln a + [m] ln b)s

)
. (8)

By applying the elementary series identity (cf. [23]):

∞∑
n=0

Λ(n) =

f−1∑
j=0

∞∑
m=0

Λ( j + f m) ( f ∈N). (9)

It is not difficult to derive the following alternative form of the definition (8). That is, by the following
theorem, we give a relation between the function ζλ,q(s, x,u, a, b) and the function ζλ,q(s,u, a, b):

Theorem 2.4. For an integer d and s ∈ C, we have

ζλ,q(s,u, a, b) =

(
1

[d]

)s d∑
i=0

(
λ
u

)i

ζλd,qd

(
s,

i
d
,ud, a

u1−d

[d] , b
u1−d

)
.



M.Alkan, Y. Simsek / Filomat 30:7 (2016), 1789–1799 1793

Proof. By applying (9) to (8), we get

ζλ,q(s,u, a, b) =

∞∑
n=1

d−1∑
i=0

(
λ
u

)nd+i ( 1
([nd + i] ln b)s −

1
u (ln a + [nd + i] ln b)s

)

=

(
1

[d]

)s ∞∑
n=1

d−1∑
i=0

(
λ
u

)i (λd

ud

)n

 1([(
n + i

d

)
: qd

]
ln b

)s −
1

ud
(
ln a

u1−d

[d] +
[(

n + i
d

)
: qd

]
ln bu1−d

)s


=

(
1

[d]

)s ∑d

i=0

(
λ
u

)i

ζλd,qd

(
s,

i
d
,ud, a

u1−d

[d] , b
u1−d

)
.

Thus we complete the proof.

When χ( f ) = 1, by applying the Mellin transformation to (3) and using (6), we obtain

Lλ,q,χ(s, x,u, a, b) =

f−1∑
i=0

(
λ
u

)i

χ(i)
1

Γ(s)

∫
∞

0
ts−1Fλ f ,q f

(
[ f ]t,

i + x
f
,u f , a, b

)
dt (10)

(min {R(s),R(x)} > 0).

By using the above integral representation, a relationship between the functions Lλ,q,χ(s, x,u, a, b) and
ζλ,q (s, x,u, a, b) is provided by Theorem 2.5 below.

Theorem 2.5. Let s ∈ C. Also let χ be a periodic function from N0 to C with the period f and χ( f ) = 1. Then

Lλ,q,χ(s, x,u, a, b) =
1

[ f ]s

f−1∑
i=0

(
λ
u

)i

χ(i)ζλ f ,q f

(
s,

i + x
f
,u f , a, b

)
. (11)

Consequently, combining Equation (7) with Equation (11), we are ready to define a two-variable L–series
as follows:

Definition 2.6. Let a, b ∈ R+, u ∈ C� {1}, λ, q ∈ C such that
∣∣∣q∣∣∣ < 1,

∣∣∣λu ∣∣∣ < 1, a , b and a ≥ 1. We define the
following two-variable L-series

Lλ,q,χ(s, x,u, a, b) =

∞∑
m=0

(
λ
u

)m

χ(m)
(

1
([m + x] ln b)s −

1
u f ([ f

]
ln a + [m + x] ln b

)s

)
. (12)

Substituting x = 1 into Equation (12), we get one-variable L–series

Lλ,q,χ(s,u, a, b) = Lλ,q,χ(s, 1,u, a, b)

by

Lλ,q,χ(s,u, a, b) =

∞∑
m=1

(
λ
u

)m

χ(m)
(

1
([m] ln b)s −

1
u f ([ f

]
ln a + [m] ln b

)s

)
.

As asserted by Theorem 2.7 below, the L–series Lλ,q,χ(s, x,u, a, b) can be used to interpolate the generalized
Eulerian polynomialsHn,χ(x; u; a, b;λ; q) defined by the generating function in (3) attached to any periodic
function from N0 to C with the period f .

Substituting s = −n (n ∈ N) into Equation (12), we get Theorem 4. This result gives us the proof of the
following Theorem.

Theorem 2.7. Let n be an positive integer. Then we have

Lλ,q,χ(−n, x,u, a, b) = Hn,χ(x; u; a, b;λ; q).
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3. Decomposition of the Generating Function and L–Functions

In this section, our aim is to decompose L–function attached to any periodic function χ from N0 to
C with the period f . Here we use the notations lcm(x, y) for the least common multiple (1cd(x, y) for the
greatest common divisor) of x and y and we also need the following notations otherwise stated;

i)xA = {xa : a ∈ A} for any subset A ⊆N0 and x ∈N0.
ii)An = ∪n

i=1(dpiN0) where d ∈N, pi is a prime number such that 1cd(dpi, dp j) = d for all i, j ∈ {1, ...,n} and
i , j,

iii)An0 = {dp1, ..., dpn},
iv)Ani = {lcm(a, b) : a, b ∈ An(i−1)}.
We start to recall the fact that

xN0 ∩ yN0 = lcm(x, y)N0

for a positive integers x and y. In particular, we get xN0∩ yN0 = xyN0 whenever x and y are distinct prime
numbers. We recall the following result from [1, Theorem 3.1] with the modified proof .

Theorem 3.1. With the above notations, we get

∑
i∈An

F(i) =

n−1∑
j=0

(−1) j
∑
l∈Anj

∑
i∈lN0

F(i). (13)

Proof. For the proof of this Theorem, we use the induction method.
For i, j ∈ {1, ...,n}, it is clear that lcm(dpi, dp j) = dpip j since gcd(pi, p j) = 1.
If n = 2 in (13), then A20 = {dp1, dp2} and A21 = {dp1p2}. We have

∑
i∈A2

F(i) =

1∑
j=0

(−1) j
∑
l∈A2 j

∑
i∈lN0

F(i). (14)

If n = 3 in (13), then A30 = {dp1, dp2, dp3} = A20 ∪ {dp3}, A31 = p3A20 ∪ A21 = {dp1p2, dp1p3, dp2p3} and
A32 = p3A21 = {dp1p2p3}. By using the De-Morgan’s law of sets, we get the following equality

(dp3N0) ∩ A2 = ∪2
i=1(dp3N0 ∩ dpiN0) = p3A2.

Then ∑
i∈∪2

i=1dp3piN0

F(i) =

1∑
j=0

(−1) j
∑

l∈p3A2 j

∑
i∈lN0

F(i). (15)

By combining Equation (14) with (15), we get∑
i∈A3

F(i) =
∑

i∈p3dN0

F(i) +
∑
i∈A2

F(i) −
∑

i∈∪2
i=1dp3piN0

F(i)

=
∑

i∈p3dN0

F(i) +

 1∑
j=0

(−1) j
∑
l∈A2 j

∑
i∈lN0

F(i)

 −
 1∑

j=0

(−1) j
∑

l∈p3A2 j

∑
i∈lN0

F(i)


=

∑
l∈A30

∑
i∈lN0

F(i) −

∑
l∈A21

∑
i∈lN0

F(i) +
∑

l∈p3A20

∑
i∈lN0

F(i)

 +
∑

l∈p3A21

∑
i∈lN0

F(i)

=
∑
l∈A30

∑
i∈lN0

F(i) −
∑
l∈A31

∑
i∈lN0

F(i) +
∑
l∈A32

∑
i∈lN0

F(i)
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Now we assume the hypothesis is hold for n − 1, and construct the following sets

An0 = {dp1, ..., dpn} = {dpn} ∪ A(n−1)0

Ani = A(n−1)i ∪ pnA(n−1)(i−1)

for all 0 < i < n − 1 and An(n−1) = pnA(n−1)(i−2). It is clear that pnA(n−1)(i−1) ∩ A(n−1)i = ∅ for all i. Moreover, we
have

(dpnN0) ∩ An−1 = pnAn−1.

By the induction on n, we get

∑
i∈An−1

F(i) =

n−2∑
j=0

(−1) j
∑

l∈A(n−1) j

∑
i∈lN0

F(i), (16)

∑
i∈pnAn−1

F(i) =

n−2∑
j=0

(−1) j
∑

l∈pnA(n−1) j

∑
i∈lN0

F(i). (17)

By using Equation (16) and (17), we have∑
i∈An

F(i) =
∑

i∈pndN0

F(i) +

n−2∑
j=0

(−1) j
∑

l∈A(n−1) j

∑
i∈lN0

F(i)

 − ∑
i∈pnAn−1

F(i)

=
∑
l∈An0

∑
i∈lN0

F(i) −

 ∑
l∈A(n−1)1

∑
i∈lN0

F(i) +
∑

l∈pnA(n−1)0

∑
i∈lN0

F(i)

 +

n−2∑
j=2

(−1) j
∑

l∈A(n−1) j

∑
i∈lN0

F(i)

 −
n−2∑

j=1

(−1) j
∑

l∈pnA(n−1) j

∑
i∈lN0

F(i)


=

n−1∑
j=0

(−1) j
∑
l∈Anj

∑
i∈lN0

F(i).

The proof is completed.

Let f =
n∏

i=1
pti

i where pi is a prime number for i ∈N and ti,n ∈N. Then it is easy to prove thatN0 = C∪An

and C ∩ An = �where An = ∪n
i=1(piN0) and

C = {l ∈N0 : gcd( f , l) = 1}.

Therefore, we get the following equation in [1, Theorem 3.4];∑
i∈N0

F(i) =
∑
i∈C

F(i) +
∑
i∈An

F(i). (18)

Now to decompose our generating function, we define the following two periodic functions.
i) Let f = d fd for some positive integer d and fd. Then we define the function

χd(n) := χ(dn).

Then for m ∈N0,

χd(x) = χ(dx) = χ( f m + dx) = χ( fddm + dx) = χ(d
(

fdm + x
)

) = χd( fdm + x).
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Thus its period is fd.
ii) We define the function

χD(n) =

{
χ(n) if gcd(n, f ) = 1

0 otherwise .

It is clear that its period is f .
We are ready to obtain two decompositions of the generating function for the q–Eulerian polynomials

attached to the periodic function χ by the following theorem.

Theorem 3.2. With the above notations. Then

Fλ,q,χ(t, x,u, a, b) =

n−1∑
j=0

(−1) j
∑

d∈Anj

Fλd,qd,χd

(
t,

x
d
,ud, a[d], b[d]

)
+Fλ,q,χD (t, x,u, a, b), (19)

Fλ,q,χ(t, x,u, a, b) =

n−1∑
j=0

(−1) j
∑

d∈Anj

Fλd,qd,χd

(
[d]t,

x
d
,u

d
, a, b

)
+Fλ,q,χD (t, x,u, a, b). (20)

Proof. We note that f = d fd for some positive integer d and fd and observe that∑
n∈dN0

(
λ
u

)n

b[n+x]tχ(n) =
∑

n∈N0

(
λ
u

)dn

b[dn+x]tχ(dn)

=
∑

n∈N0

fd−1∑
i=0

(
λ
u

)d(n fd+i)

b[d(n fd+i)+x]tχ(d(n fd + i))

=
∑

n∈N0

fd−1∑
i=0

(
λd

ud

)n fd+i

bt[d][n fd+i+ x
d ]qdχd(i)

=
∑
i∈N0

(
λd

ud

)i

bt[d][i+ x
d ]qdχd(i).

By using the above equation, we get(
1 −

a[ f ]t

u f

) ∑
n∈(dN0)

(
λ
u

)n

b[n+x]tχ(n)=

1 −
a[d][ fd]qd t

(ud) fd

 ∑
i∈N0

(
λd

ud

)i

b[d][i+ x
d ]qd tχd(i). (21)

Then the Equation (21) equal to both Fλd,qd,χd
(t, x

d ,u
d, a[d], b[d])) and Fλd,qd,χd

([d]t, x
d ,u

d, a, b). Hence combining
Equation (18), Equation (13) and Equation (21), we obtain

Fλ,q,χ(t, x,u, a, b) =

(
1−

a[ f ]t

u f

) ∑
m∈N0

(
λ
u

)m

b[m+x]tχ(m)

=

(
1−

a[ f ]t

u f

) ∑
m∈C

(
λ
u

)m

b[m+x]tχ(m) +
∑

m∈An

(
λ
u

)m

b[m+x]tχ(m)


= Fλ,q,χD (t, x,u, a, b) +

n−1∑
j=0

(−1) j
∑
q∈Anj


(
1−

a[ f ]t

u f

) ∑
i∈qN0

(
λ
u

)i

b[i+x]tχ(i)

 .
Therefore, we obtain Equation (19). Proof of Equation (20) is similar to that of Equation (19), we omit it.
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We also obtain the decomposition of the generating function Fλ,q,χ(t,u, a, b) by substituting x = 0 in to
Equation (19). Moreover, using Equation (19), we have

Fλ,q,χ(t, x,u, a, b) =

∞∑
m=0

n−1∑
j=0

(−1) j
∑

d∈Anj

Hm,χd

(x
d

; ud; a[d], b[d];λd; qd
) tm

m!

+

∞∑
m=0

Hm,χD (x; u; a, b;λ; q)
tm

m!
.

After some elementary calculations in the above equation, we arrive at Equation (23). Similarly from
the Equation (0), we arrive at Equation (22). Therefore we get the following theorem:

Theorem 3.3. Let a, b ∈ R+, u ∈ C� {1}, λ, q ∈ C such that
∣∣∣q∣∣∣ < 1,

∣∣∣λb
u

∣∣∣ < 1, a , b and a ≥ 1. For a positive integer
m, we have that

Hm,χ(x; u; a, b;λ; q) =

n−1∑
j=0

(−1) j
∑

d∈Anj

[d]mHm,χd

(x
d
,ud; a, b;λd; qd

)
+ Hm,χD (x; u; a, b;λ; q) (22)

and

Hm,χ(x; u; a, b;λ; q) =

n−1∑
j=0

(−1) j
∑

d∈Anj

Hm,χd

(x
d
,ud; a[d], b[d];λd; qd

)
+ Hm,χD (x; u; a, b;λ; q). (23)

Theorem 3.4. For s ∈ C, we have

Lλ,q,χ(s, x,u, a, b) =

n−1∑
j=0

(−1) j
∑

d∈Anj

Lλd,qd,χd

(
s,

x
d
,ud, a[d], b[d]

)
+ Lλ,q,χD (s, x,u, a, b) (24)

and

Lλ,q,χ(s, x,u, a, b) =

n−1∑
j=0

(−1) j
∑

d∈Anj

1
[d]s Lλd,qd,χd

(
s,

x
d
,ud, a, b

)
+ Lλ,q,χD (s, x,u, a, b). (25)

Proof. By applying the Mellin transformation to Equation (19) and Equation (20), respectively and using
similar method in (6) and in (10), we easily arrive at the desired results (24) and (25) asserted by Theorem
3.4. So we complete the proof.

If the period of χ is prime then we obtain the following theorem.

Theorem 3.5. Let period of χ be a prime integer p with χ(p) = 1. Then we have

Lλ,q,χ (s, x,u, a, b) = Lλ,q,χD (s, x,u, a, b)+
1[
p
]s ζλp,qp

(
s,

x
p
,up, a, b

)
. (26)

Proof. We note that n = 1 in Equation (24) and χD(m) = χ(m) whenever gcd(m, f ) = 1 and χ(mp) = χp(m) = 1
for all positive integer m. Therefore, we get that

Lλ,q,χ(s, x,u, a, b) =
∑

d∈An0

Lλd,qd,χd

(
s,

x
d
,ud, a[d], b[d]

)
+ Lλ,q,χD (s, x,u, a, b)

= Lλp,qp,1

(
s,

x
p
,up, a[p], b[p]

)
+ Lλ,q,χD (s, x,u, a, b).
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By Equation (12), we have

Lλ,q,χ(s, x,u, a, b) = Lλ,q,χD (s, x,u, a, b)+
∑
∞

m=0

(
λp

up

)m

 1([
m + x

p

]
qp

ln b[p]
)s −

1

up
(
ln a[p] +

[
m + x

p

]
qp

ln b[p]
)s


= Lλ,q,χD (s, x,u, a, b)+

1[
p
]s

∑
∞

m=0

(
λp

up

)m

 1([
m + x

p

]
qp

ln b
)s −

1

up
(
ln a +

[
m + x

p

]
qp

ln b
)s


= Lλ,q,χD (s, x,u, a, b)+

1[
p
]s ζλp,qp

(
s,

x
p
,up, a, b

)
.

Let χ be a periodic function with a period f and χ( f ) = 1 where f = p1p2 for some prime integers
p1 and p2. Then the period of χp1 is p2 and χp1 (i) = χ(p1i) for all i ∈ {1, ..., p2 − 1} and χp1 (p2) = χ(p12) where
p12 = p1p2. Therefore, it follows that

Lλp12 ,qp12 ,χp12

(
s,

x
p12
,up12 , a[p12], b[p12]

)
= ζλp12 ,qp12

(
s,

x
p12
,up12 , a[p12], b[p12]

)
since χ(p1p2) = 1 . On the other hand, by using Equation (24), we get

Lλ,q,χ(s, x,u, a, b) = Lλp1 ,qp1 ,χp1

(
s,

x
p1
,up1 , a[p1], b[p1]

)
+ Lλp2 ,qp2 ,χp2

(
s,

x
p2
,up2 , a[p2], b[p2]

)
−ζλp12 ,qp12

(
s,

x
p2
,up12 , a[p12], b[p12]

)
+ Lλ,q,χD (s, x,u, a, b).

Moreover, by using the same argument, one may obtain some different decompositions for the L–type
function.

Example 3.6. Let the period of χ be pt
1pt2

2 pt3
3 for prime integers pi and ti ∈N. Then we construct the following sets

A30 = {p1, p2, p3},A31 = {p12 = p1p2, p13 = p1p3, p23 = p2p3} and A32 = {p123 = p1p2p3}. Then by using Equation
(23), we decompose the q–Eulerian number attached the periodic function χ :

Hm,χ(u; a, b;λ; q) = Hm,χD (u; a, b;λ; q) +

3∑
i=1

Hm,χpi

(
upi ; a[pi], b[pi];λpi ; qpi

)
−Hm,χp23

(
up23 ; a[p23], b[p23];λp23 ; qp23

)
−

3∑
i=2

Hm,χp1 i

(
up1i ; a[p1i], b[p1i];λp1i ; qp1i

)
+Hm,χp123

(up123 ; a[p123], b[p123];λp123 ; qp123 ).
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By using Equation (22), we obtain a different decomposition for the q–Eulerian number attached the periodic function
χ :

Hm,χ(u; a, b;λ; q) = Hm,χD (u; a, b;λ; q) +

3∑
i=1

[pi]mHm,χpi
(upi ; a, b;λpi ; qpi )

−[p23]mHm,χp23
(up23 ; a, b;λp23 ; qp23 ) −

3∑
i=2

[p1i]mHm,χp1i
(up1i ; a, b;λp1i ; qp1i )

+[p123]mHm,χp123
(up123 ; a, b;λp123 ; qp123 ).
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