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Abstract. In the present paper, we consider Stancu type generalization of Baskakov-Kantorovich operators
based on the q-integers and obtain statistical and weighted statistical approximation properties of these
operators. Rates of statistical convergence by means of the modulus of continuity and the Lipschitz type
function are also established for said operators. Finally, we construct a bivariate generalization of the
operator and also obtain the statistical approximation properties.

1. Introduction

In the last decade, some new generalizations of well known positive linear operators based on q-integers
were introduced and studied by several authors. Our aim is to investigate statistical approximation prop-
erties of a Stancu type q-Baskakov-Kantorovich operators. Firstly, Baskakov-Kantorovich operators based
on q-integers was introduced by Gupta and Radu in [14] and they established some approximation results.

Later, I. Büyükyazici and Atakut [5] introduced a new Stancu type generalization of q-Baskakov opera-
tors which is defined as

L
(α,β)
n ( f ; q, x) =

∞∑
k=0

q
k(k−1)

2
Dk

q(φn(x))

[k]q!
(−x)k f

( 1
qk−1

[k]q + qk−1α

[n]q + β

)
, (1)

where 0 ≤ α ≤ β, q ∈ (0, 1), f ∈ C[0,∞).
Let {φn} (n = 1, 2, 3, . . .), φn : R→ R be sequence which satisfies following conditions:

(i) φn (n = 1, 2, 3, . . .) k-times continuously q-differentiable in any closed interval [0,A], where A > 0,

2010 Mathematics Subject Classification. Primary 41A10, 41A25; Secondary 41A36
Keywords. q-integers, q-Baskakov-Kantorovich operators, rate of statistical convergence, modulus of continuity, Lipschitz type

functions
Received: 16 October 2014; Accepted: 03 March 2015
Communicated by Hari M. Srivastava
The research is supported by Ministry of Human Resource Development, India.
Email addresses: vishnunarayanmishra@gmail.com (Vishnu Narayan Mishra), preeti.iitan@gmail.com (Preeti Sharma),
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(ii) φn(0) = 1, (n = 1, 2, . . .),

(iii) for all x ∈ [0,A] and (k = 1, 2, . . . ; n = 1, 2, . . .), (−1)kDk
q(φn(x)) ≥ 0,

(iv) there exist a positive integer m(n), such that

Dk
q(φn(x)) = −[n]qDk−1

q φm(n)(x), (k = 1, 2, . . . ; n = 1, 2, . . .),

(v) lim
n→∞

[n]q

[m(n)]q
= 1.

We first start by recalling some basic definitions and notations of q-calculus. We consider q as a real number
satisfying 0 < q < 1.
For each non negative integer n, we define the q-integer [n]q as

[n]q =

{ 1−qn

1−q , q , 1,
n, q = 1.

The q-factorial is defined as

[n]q! =

{
[n]q[n − 1]q[n − 2]q...[1]q, n = 1, 2, ...,
1, n = 0.

We observe that

(1 + x)n
q = (−x; q)n =

{
(1 + x)(1 + qx)(1 + q2x)...(1 + qn−1x), n = 1, 2, ...,
1, n = 0.

Also, for any real number α, we have

(1 + x)αq =
(1 + x)∞q

(1 + qαx)∞q
.

In special case, when α is a whole number, this definition coincides with the above definition.
The q-binomial coefficients are given by(

n
k

)
q

=
[n]q!

[k]q![n − k]q!
, 0 ≤ k ≤ n.

The q-derivative Dq f of a function f is given by

Dq( f (x)) =
f (x) − f (qx)

(1 − q)x
, x , 0.

The q-Jackson integral is defined as∫ a

0
f (x)dqx = (1 − q)a

∞∑
n=0

f (aqn)qn, a > 0.

Over a general interval [a, b], 0 < a < b, one defines

∫ b

a
f (x)dqx =

∫ b

0
f (x)dqx −

∫ a

0
f (x)dqx.

Throughout the paper, we use ei the test functions defined by ei(t) := ti, where i = 0, 1, 2. First we need the
following auxiliary result.

Let {φn} be a sequence of real functions on R+ = [0,∞) which are k-times continuously q-differentiable
on R+ satisfying following conditions:
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(p1) φn(0) = 1, (n = 1, 2, . . .),

(p2) for k ∈N0 =N ∪ {0} and n ∈N, (−1)kDk
q(φn(x)) ≥ 0, x ∈ R+,

(p3) there exist a positive integer m(n), such that

Dk
q(φn(x)) = −[n]qDk−1

q φm(n)(x), (k = 1, 2, . . . ; n = 1, 2, . . .),

(p4) lim
n→∞

[n]q

[m(n)]q
= 1.

Under the condition (p1) - (p4), Ç. Atakut and İ. Büyükyazici [3] defined a new generalization of
Stancu type q-Baskakov-Kantorovich operators as follows

L
∗(α,β)
n ( f ; q, x) = ([n]q + β)

∞∑
k=0

qk(k−1)/2
Dk

q(φn(x))

[k]q!
(−x)k

∫ [k+1]q+qkα
[n]q+β

q
(

[k]q+qk−1α
[n]q+β

) f (q−k+1t)dqt, (2)

where x ∈ R+, n ∈N, 0 ≤ α ≤ β.
To obtain the approximation results we need the following Lemmas in what follows.

Lemma 1.1. [5] L(α,β)
n be defined by (1). Then the following identities hold

L
(α,β)
n (e0; q, x) = 1,

L
(α,β)
n (e1; q, x) =

[n]q

[n]q + β
x +

α
[n]q + β

,

L
(α,β)
n (e2; q, x) =

[n]q[m(n)]q

q([n]q + β)2 x2 +
[n]q(2α + 1)
([n]q + β)2 x +

α2

([n]q + β)2 .

Lemma 1.2. [3] The following relations are satisfied:

∫ [k+1]q+qkα
[n]q+β

q
(

[k]q+qk−1α
[n]q+β

) dqt =
1

[n]q + β
,

∫ [k+1]q+qkα
[n]q+β

q
(

[k]q+qk−1α
[n]q+β

) tdqt =
[2]q[k]q + qk(1 + 2α)

[2]q([n]q + β)2 ,

∫ [k+1]q+qkα
[n]q+β

q
(

[k]q+qk−1α
[n]q+β

) t2dqt =
[3]q[k]2

q + qk[k]q

(
(1 + 3α)[2]q + 1

)
+ (1 + 3α + 3α2)q2k

[3]q([n]q + β)3 .

Lemma 1.3. [3] Let ei = ti, where i = 0, 1, 2. For all x ∈ R+, n ∈N, α, β ≥ 0 and 0 < q < 1, we have

L
∗(α,β)
n (e0; q, x) = 1,

L
∗(α,β)
n (e1; q, x) =

[n]q

[n]q + β
x +

q(1 + 2α)
[2]q([n]q + β)

,

L
∗(α,β)
n (e2; q, x) =

[n]q[m(n)]q

q([n]q + β)2 x2 +
[n]q

[
[3]q + q

(
(1 + 3α)[2]q + 1

)]
[3]q([n]q + β)2 x +

q2(1 + 3α + 3α2)
[3]q([n]q + β)2 .
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Remark 1.4. From Lemma (1.3), we have

αn(x) = L
∗(α,β)
n (t − x; q, x) =

(
[n]q

[n]q + β
− 1

)
x +

qn(1 + 2α)
[2]q([n]q + β)

,

δn(x) = L
∗(α,β)
n ((t − x)2; q, x) =

 [n]q[m(n)]q

q([n]q + β)2 + 1 −
2[n]q

[n]q + β

 x2

+
( [n]q

[
[3]q + q

(
(1 + 3α)[2]q + 1

)]
([n]q + β)2[3]q

−
2q(1 + 2α)

[2]q([n]q + β)

)
x +

(q2(1 + 3α + 3α2)

[3]q([n]q + β)2

)
.

Remark 1.5. If we put q=1, we get the moment of Stancu type Baskakov-Kantorovich operators as

L
∗(α,β)
n (e1; 1, x) =

n
(n + β)

x +
(1 + 2α)
2(n + β)

,

L
∗(α,β)
n (e2; 1, x) =

n m(n)
(n + β)2 x2 +

2n(α + 1)
(n + β)2 x +

1 + 3α + 3α2

3(n + β)2 ,

L
∗(α,β)
n (t − x; 1, x) =

(
n

(n + β)
− 1

)
x +

(1 + 2α)
2(n + β)

,

L
∗(α,β)
n ((t − x)2; 1, x) =

 n m(n)

(n + β)2 + 1 −
2n

(n + β)

 x2 +

2n(1 + α)

(n + β)2 −
(1 + 2α)
(n + β)

 x +

 (1 + 3α + 3α2)

3(n + β)2

 .
2. Korovkin Type Statistical Approximation Properties

The idea of statistical convergence was introduced independently by Steinhaus [31], Fast [11] and
Schoenberg [32]. The study of the statistical convergence for sequences of linear positive operators was
attempted in the year 2002 by A.D. Gadjiev and C. Orhan [12]. Recently the idea of statistical convergence
has been used in proving some approximation theorems. It was shown that the statistical versions are
stronger than the classical ones. Authors have used many types of classical operators and test functions
to study the Korovkin type approximation theorems which further motivate to continue the study. In
particular, Korovkin type approximation theorems [15] was proved by using statistical convergence by
various authors, e.g. [4, 10, 13, 16–18, 33]. In the recent years, Stancu type generalization of the certain
operators and trigonometric approximation of signals by different types of summability operators have
been studied by several other researchers, we refer some of the important papers in this direction as ([19]-
[30]) etc.
Korovkin type approximation theory has also many useful connections, other than classical approximation
theory, in other branches of mathematics (see Altomare and Campiti in [1]).

Now, we recall the concept of statistical convergence for sequences of real numbers which was introduced
by Fast [11] and further studied by many others.

Let K ⊆N and Kn =
{
j ≤ n : j ∈ K

}
. Then the natural density of K is defined by δ(K) = lim

n
n−1
|Kn| if the

limit exists, where |Kn| denotes the cardinality of the set Kn.
A sequence x = (x j) j≥1 of real numbers is said to be statistically conver1ent to L provided that for every

ε > 0 the set { j ∈N : |x j − L| ≥ ε} has natural density zero, i.e. for each ε > 0,

lim
n

1
n
|{ j ≤ n : |x j − L| ≥ ε}| = 0.

It is denoted by st − lim
n

xn = L.
We consider a sequence q = (qn), qn ∈ (0, 1), such that

lim
n→∞

qn = 1. (3)
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The condition (3) guarantees that [n]qn →∞ as n→∞.
Now, let us recall the following theorem given by Gadjiev and Orhan [12].

Theorem 2.1. If the sequence of linear positive operators An : CM[a, b]→ C[a, b] satisfies the conditions

st − lim
n
‖An(eν; ·) − eν‖C[a,b] = 0, eν(t) = tν for ν = 0, 1, 2, (4)

then, for any function f ∈ CM[a, b], we have

st − lim
n
‖An( f ; ·) − f ‖C[a,b] = 0,

where CM[a, b] denotes the space of all functions f which are continuous in [a, b] and bounded on the all positive axis.

In [6] Doğru and Kanat defined the Kantorovich-type modification of Lupaş operators as follows:

R̃n( f ; q; x) = [n + 1]
n∑

k=0

( ∫ [k+1]
[n+1]

[k]
[n+1]

f (t)dqt
) ( n

k

)
q−kqk(k−1)/2xk(1 − x)(n−k)

(1 − x + qx) · · · (1 − x + qn−1x)
. (5)

Doğru and Kanat [6] proved the following statistical Korovkin-type approximation theorem for operators
(5).

Theorem 2.2. Let q := (qn), 0 < q < 1, be a sequence satisfying the following conditions:

st − lim
n

qn = 1, st − lim
n

qn
n = a (a < 1) and st − lim

n

1
[n]q

= 0, (6)

then if f is any monotone increasing function defined on [0, 1], for the positive linear operator R̃n( f ; q; x), then

st − lim
n
‖R̃n( f ; q; ·) − f ‖C[0,1] = 0

holds.

In [7] Doğru gave some examples so that (qn) is statistically convergent to 1 but it may not convergent to 1
in the ordinary case.

Theorem 2.3. Let L∗(α,β)
n be the sequence of the operators (2) and the sequence q = (qn) satisfies (6). Then for any

function f ∈ C[0,A] ⊂ C[0,∞), A > 0, we have

st − lim
n
‖L
∗(α,β)
n ( f ; q, ·) − f ‖ = 0, (7)

where C[0,A] denotes the space of all real bounded functions f which are continuous in [0,A].

Proof. Let ei = ti, where i = 0, 1, 2. Using L∗(α,β)
n (1; qn, x) = 1, it is clear that

st − lim
n
‖L
∗(α,β)
n (1; qn, x) − 1‖ = 0.

Now by Lemma (1.3)(ii), we have

lim
n→∞
‖L∗(α,β)

n (t; qn, x) − x‖ =

∥∥∥∥∥∥ [n]q

[n]q + β
x +

q(1 + 2α)
[2]q([n]q + β)

− x

∥∥∥∥∥∥ ≤ β

[n]q + β
x +

q(1 + 2α)
[2]q([n]q + β)

.

For given ε > 0, we define the following sets:

S = {k : ‖L∗(α,β)
n (t; qk, x) − x‖ ≥ ε},
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and

S′ =

{
k :

β

[k]q + β
x +

q(1 + 2α)
[2]q([k]q + β)

≥ ε

}
. (8)

It is obvious that S ⊂ S′, it can be written as

δ
(
{k ≤ n : ‖L∗(α,β)

n (t; qk, x) − x‖ ≥ ε}
)
≤ δ

(
{k ≤ n :

β

[k]q + β
x +

q(1 + 2α)
[2]q([k]q + β)

≥ ε}

)
.

By using (6), we get

st − lim
n

(
β

[n]q + β
x +

q(1 + 2α)
[2]q([n]q + β)

)
= 0.

So, we have

δ
({

k ≤ n :
β

[k]q + β
x +

q(1 + 2α)
[2]q([k]q + β)

≥ ε
})

= 0,

then
st − lim

n
‖L
∗(α,β)
n (t; qn, x) − x‖ = 0.

Similarly, by Lemma (1.3)(iii), we have

‖L∗(α,β)
n (t2; qn, x) − x2

‖ =

∥∥∥∥∥∥∥ [n]q[m(n)]q

q([n]q + β)2 x2 +
[n]q

[
[3]q + q

(
(1 + 3α)[2]q + 1

)]
[3]q([n]q + β)2 x +

q2(1 + 3α + 3α2)
[3]q([n]q + β)2 − x2

∥∥∥∥∥∥∥
≤

∣∣∣∣∣ [n]q[m(n)]q

q([n]q + β)2 − 1
∣∣∣∣∣A2 +

∣∣∣∣∣ [n]q[[3]q + q((1 + 3α)[2]q + 1)]
[3]q([n]q + β)2

∣∣∣∣∣A +

∣∣∣∣∣q2(1 + 3α + 3α2)
[3]q([n]q + β)2

∣∣∣∣∣
≤ µ2

((
1
q
− 1

)
+

( [n]q(2 + 3α)
([n]q + β)2 +

[n]q(q − (1 + 3α))
[3]q([n]q + β)2

)
+

q2(1 + 3α + 3α2)
[3]q([n]q + β)2

)
,

where µ2 = max{A2,A, 1} = A2.
Now, if we choose

αn =

(
1
q
− 1

)
,

βn =
[n]q(2 + 3α)
([n]q + β)2 +

[n]q(q − (1 + 3α))
[3]q([n]q + β)2 ,

γn =
q2(1 + 3α + 3α2)

[3]q([n]q + β)2 ,

then by (6), we can write

st − lim
n→∞

αn = 0 = st − lim
n→∞

βn = st − lim
n→∞

γn. (9)

Now for given ε > 0, we define the following four sets

U = {k : ‖L∗(α,β)
n (t2; qk, x) − x2

‖ ≥ ε},

U1 = {k : αk ≥
ε

3µ2 },



V. N. Mishra et al. / Filomat 30:7 (2016), 1853–1868 1859

U2 = {k : βk ≥
ε

3µ2 },

U3 = {k : γk ≥
ε

3µ2 }.

It is obvious that U ⊆ U1 ∪U2 ∪U3. Then, we obtain

δ
(
{k ≤ n : ‖L∗(α,β)

n (t2; qn, x) − x2
‖ ≥ ε}

)
≤ δ

(
{k ≤ n : αk ≥

ε

3µ2 }
)

+ δ
(
{k ≤ n : βk ≥

ε

3µ2 }
)

+ δ
(
{k ≤ n : γk ≥

ε

3µ2 }
)
.

Using (9), we get

st − lim
n→∞
‖L
∗(α,β)
n (t2; qn, x) − x2

‖ = 0.

Since,

‖L
∗(α,β)
n ( f ; qn, x) − f ‖ ≤ ‖L∗(α,β)

n (t2; qn, x) − x2
‖ + ‖L

∗(α,β)
n (t; qn, x) − x‖ + ‖L

∗(α,β)
n (1; qn, x) − 1‖,

we get

st − lim
n→∞
‖L
∗(α,β)
n ( f ; qn, x) − f ‖ ≤ st − lim

n→∞
‖L
∗(α,β)
n (t2; qn, x) − x2

‖

+ st − lim
n→∞
‖L
∗(α,β)
n (t; qn, x) − x‖

+ st − lim
n→∞
‖L
∗(α,β)
n (1; qn, x) − 1‖,

which implies that

st − lim
n→∞
‖L
∗(α,β)
n ( f ; qn, x) − f ‖ = 0.

This completes the proof of theorem.

3. Weighted Statistical Approximation

Let Bx2 [0,∞) be set of all function f defined on [0,∞) and satisfying the condition | f (x)| ≤M f ρ(x), M f
being a constant depending on f and ρ(x) = (1 + x2) ≥ 1 is called weighted function, it is continuous on
the positive real axis and lim

x→∞
ρ(x) = ∞. By Cx2 [0,∞), we denote the subspace of all continuous function

belonging to Bx2 [0,∞). Also, C∗x2 [0,∞) is subspace of all function f ∈ Cx2 [0,∞) for which lim
x→∞

f (x)
1 + x2 is finite.

The norm on C∗x2 [0,∞) is ‖ f ‖x2 = sup
x∈[0,∞)

| f (x)|
1 + x2 .

Theorem 3.1. Let q = (qn) be a sequence satisfying (6) for 0 < qn ≤ 1. Then, for all non decreasing functions
f ∈ C∗x2 [0,∞), we have

st − lim
n
‖L
∗(α,β)
n ( f ; qn, ·) − f ‖x2 = 0. (10)

Proof. By Lemma (1.3)(iii), we have L∗(α,β)
n (t2; qn, x) ≤ Cx2, where C is a positive constant, L∗(α,β)

n ( f ; qn, x) is a
sequence of positive linear operator acting from C∗x2 [0,∞) to Bx2 [0,∞).

Using L∗(α,β)
n (1; qn, x) = 1, it is clear that

st − lim
n
‖L
∗(α,β)
n (1; qn, x) − 1‖x2 = 0.
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Now, by Lemma (1.3)(ii), we have

‖L
∗(α,β)
n (t; qn, x) − x‖x2 = sup

x∈[0,∞)

|L
∗(α,β)
n (t; qn, x) − x|

1 + x2 ≤
β

[n]q + β
+

q(1 + 2α)
[2]q([n]q + β)

.

Using (6), we get

st − lim
n

(
β

[n]q + β
+

q(1 + 2α)
[2]q([n]q + β)

)
= 0,

then
st − lim

n
‖L
∗(α,β)
n (t; qn, x) − x‖x2 = 0.

Finally, by Lemma(1.3)(iii), we have

‖L
∗(α,β)
n (t2; qn, x) − x2

‖x2 ≤

(
[n]q[m(n)]q

([n]q + β)2 − 1
)

sup
x∈[0,∞)

x2

1 + x2

+

 [n]q

[
[3]q + q

(
(1 + 3α)[2]q + 1

)]
[3]q([n]q + β)2

 sup
x∈[0,∞)

x
1 + x2 +

(
q2(1 + 3α + 3α2)

[3]q([n]q + β)2

)

≤

(
[n]q[m(n)]q

([n]q + β)2 − 1
)

+

 [n]q

[
[3]q + q

(
(1 + 3α)[2]q + 1

)]
[3]q([n]q + β)2

 +

(
q2(1 + 3α + 3α2)

[3]q([n]q + β)2

)

=

(
1
qn
− 1

)
+

( [n]q(2 + 3α)
([n]q + β)2 +

[n]q

(
q − (1 + 3α)

)
[3]q([n]q + β)2

)
+

(
q2(1 + 3α + 3α2)

[3]q([n]q + β)2

)
.

If we choose

αn =

(
1
qn
− 1

)
,

βn =
[n]q(2 + 3α)
([n]q + β)2 +

[n]q(q − (1 + 3α))
[3]q([n]q + β)2 ,

γn =
q2(1 + 3α + 3α2)

[3]q([n]q + β)2 ,

then by (6), we can write

st − lim
n→∞

αn = 0 = st − lim
n→∞

βn = st − lim
n→∞

γn. (11)

Now for given ε > 0, we define the following four sets:

S = {k : ‖L∗(α,β)
n (t2; qk, x) − x2

‖x2 ≥ ε},

S1 = {k : αk ≥
ε
3
},

S2 = {k : βk ≥
ε
3
},

S3 = {k : γk ≥
ε
3
}.
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It is obvious that S ⊆ S1 ∪ S2 ∪ S3. Then, we obtain

δ
(
{k ≤ n : ‖L∗(α,β)

n (t2; qn, x) − x2
‖ ≥ ε}

)
≤ δ

(
{k ≤ n : αk ≥

ε
3
}

)
+ δ

(
{k ≤ n : βk ≥

ε
3
}

)
+ δ

(
{k ≤ n : γk ≥

ε
3
}

)
.

Using (11), we get

st − lim
n→∞
‖L
∗(α,β)
n (t2; qn, x) − x2

‖x2 = 0.

Since

‖L
∗(α,β)
n ( f ; qn, x) − f ‖x2

≤ ‖L
∗(α,β)
n (t2; qn, x) − x2

‖x2 + ‖L
∗(α,β)
n (t; qn, x) − x‖x2 + ‖L

∗(α,β)
n (1; qn, x) − 1‖x2 ,

we get

st − lim
n→∞
‖L
∗(α,β)
n ( f ; qn, x) − f ‖x2 ≤ st − lim

n→∞
‖L
∗(α,β)
n (t2; qn, x) − x2

‖x2

+ st − lim
n→∞
‖L
∗(α,β)
n (t; qn, x) − x‖x2

+ st − lim
n→∞
‖L
∗(α,β)
n (1; qn, x) − 1‖x2 ,

which implies that

st − lim
n→∞
‖L
∗(α,β)
n ( f ; qn, x) − f ‖x2 = 0.

This completes the proof of the theorem.

4. Rates of Statistical Convergence

In this section, using the modulus of continuity, we study rates of statistical convergence of operator
(2) and Lipschitz functions are introduced.

Lemma 4.1. Let 0 < q < 1 and a ∈ [0, bq], b > 0. The inequality∫ b

a
|t − x|dqt ≤

(∫ b

a
|t − x|2dqt

)1/2 (∫ b

a
dqt

)1/2

(12)

is satisfied.

Let CB[0,∞), the space of all bounded and continuous functions on [0,∞) and x ≥ 0. Then, for δ > 0, the
modulus of continuity of f denoted by ω( f ; δ) is defined to be

ω( f ; δ) = sup
|t−x|≤δ

| f (t) − f (x)|, t ∈ [0,∞).

It is known that lim
δ→0

ω( f ; δ) = 0 for f ∈ CB[0,∞) and also, for any δ > 0 and each t, x ≥ 0, we have

| f (t) − f (x)| ≤ ω( f ; δ)
(
1 +
|t − x|
δ

)
. (13)



V. N. Mishra et al. / Filomat 30:7 (2016), 1853–1868 1862

Theorem 4.2. Let (qn) be a sequence satisfying (6). For every non-decreasing f ∈ CB[0,∞), x ≥ 0 and n ∈ N, we
have

|L
∗(α,β)
n ( f ; qn, x) − f (x)| ≤ 2ω

(
f ;

√
δn(x)

)
,

where

δn(x) =

 [n]qn [m(n)]qn

qn([n]qn + β)2 + 1 −
2[n]qn

[n]qn + β

 x2

+

 [n]qn

[
[3]qn + qn((1 + 3α)[2]qn + 1)

]
([n]qn + β)2[3]qn

−
2qn(1 + 2α)

[2]qn ([n]qn + β)

 x

+

qn
2(1 + 3α + 3α2)

[3]qn ([n]qn + β)2

 . (14)

Proof. Let non-decreasing f ∈ CB[0,∞) and x ≥ 0. Using linearity and positivity of the operatorsL∗(α,β)
n and

then applying (13), we get for δ > 0 and n ∈N that

|L
∗(α,β)
n ( f ; qn, x) − f (x)| ≤ L

∗(α,β)
n

(
| f (t) − f (x)|; qn, x

)
≤ ω( f , δ)

{
L
∗(α,β)
n (1; qn, x) +

1
δ
L
∗(α,β)
n (|t − x|; qn, x)

}
.

Taking L∗(α,β)
n (1; qn, x) = 1 and then applying Lemma (4.1) with a = q

(
[k]q+qk−1α

[n]q+β

)
and b =

[k+1]q+qkα
[n]q+β

, we can

write

|L
∗(α,β)
n ( f ; qn, x) − f (x)| ≤ ω( f ; δ)

{
1 +

1
δ

([n]q + β)
∞∑

k=0

qk(k−1)/2
Dk

q(φn(x))

[k]q!
(−x)k

×


∫ [k+1]q+qkα

[n]q+β

q
(

[k]q+qk−1α
[n]q+β

) |q−k+1t − x|
2
dqt


1/2

∫ [k+1]q+qkα
[n]q+β

q
(

[k]q+qk−1α
[n]q+β

) dqt


1/2}

.

≤ ω( f ; δ)
{
1 +

1
δ

(
([n]q + β)

∞∑
k=0

qk(k−1)/2
Dk

q(φn(x))

[k]q!
(−x)k

∫ [k+1]q+qkα
[n]q+β

q
(

[k]q+qk−1α
[n]q+β

) |q−k+1t − x|
2
dqt

)1/2

×

(
([n]q + β)

∞∑
k=0

qk(k−1)/2
Dk

q(φn(x))

[k]q!
(−x)k

∫ [k+1]q+qkα
[n]q+β

q
(

[k]q+qk−1α
[n]q+β

) dqt
)1/2}

≤ ω( f ; δ)
{
1 +

1
δ

(
L
∗(α,β)
n ((t − x)2; qn, x)

)1/2(
L
∗(α,β)
n (1; qn, x)

)1/2
}
.

Taking q = (qn), a sequence satisfying (6), and using δn(x) = L
∗(α,β)
n

(
(t− x)2; qn, x

)
and then choosing δ = δn(x)

as in (14), the theorem is proved.
Observe that by the conditions in (6), st − lim

n
δn = 0. By (13), we have

st − lim
n
ω( f ; δn) = 0.

This gives us the pointwise rate of statistical convergence of the operators L∗(α,β)
n ( f ; qn, x) to f (x).
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Now, we will study the rate of convergence of the operator L∗(α,β)
n with the help of functions of the

Lipschitz class LipM(a), where M > 0 and 0 < a ≤ 1. Recall that a function f ∈ CB[0,∞) belongs to LipM(a) if
the inequality

| f (t) − f (x)| ≤M|t − x|a; ∀ t, x ∈ [0,∞) (15)

holds.
Now, we have the following theorem.

Theorem 4.3. Let the sequence q = (qn) satisfy the condition given in (6), and let f ∈ LipM(a), x ≥ 0 with 0 ≤ a ≤ 1
and M > 0. Then

|L
∗(α,β)
n ( f ; qn, x) − f (x)| ≤Mδa/2

n (x), (16)

where δn(x) is given as in (14).

Proof. Since L∗(α,β)
n ( f ; qn, x) are linear positive operators and f ∈ LipM(a), on x ≥ 0 with 0 < a < 1, we can

write

|L
∗(α,β)
n ( f ; qn, x) − f (x)| ≤ L∗(α,β)

n (| f (t) − f (x)|; qn, x)

≤ML∗(α,β)
n (|t − x|a; qn, x).

Now, we take p = 2
a , q = 2

2−a , applying Lemma 4.1 and Hölder’s inequality, we obtain

|L
∗(α,β)
n ( f ; qn, x) − f (x)| ≤M

{
([n]q + β)

∞∑
k=0

qk(k−1)/2
Dk

q(φn(x))

[k]q!
(−x)k

×


∫ [k+1]q+qkα

[n]q+β

q
(

[k]q+qk−1α
[n]q+β

) |q−k+1t − x|
2
dqt


a/2

∫ [k+1]q+qkα
[n]q+β

q
(

[k]q+qk−1α
[n]q+β

) dqt


(2−a)/2}

≤M
{(

([n]q + β)
∞∑

k=0

qk(k−1)/2
Dk

q(φn(x))

[k]q!
(−x)k

∫ [k+1]q+qkα
[n]q+β

q
(

[k]q+qk−1α
[n]q+β

) |q−k+1t − x|
2
dqt

)a/2

×

(
([n]q + β)

∞∑
k=0

qk(k−1)/2
Dk

q(φn(x))

[k]q!
(−x)k

∫ [k+1]q+qkα
[n]q+β

q
(

[k]q+qk−1α
[n]q+β

) dqt
)(2−a)/2}

≤M
{
1 +

1
δ

(
L
∗(α,β)
n ((t − x)2; qn, x)

)1/2(
L
∗(α,β)
n (1; qn, x)

)1/2
}
.

Taking δn(x) =
(
L
∗(α,β)
n

(
(t − x)2; qn, x

))
, as in (14), we get

|L
∗(α,β)
n ( f ; qn, x) − f (x)| ≤Mδa/2

n (x).

Thus, the proof is complete.

5. The Construction of the Bivariate Operators of Kantorovich Type

The aim of this part is to construct the bivariate extension of the operator (2), introduce the statistical
convergence of the operators to the function f and show the rate of statistical convergence of these operators.

f : C
(
[0,∞)× [0,∞)

)
→ C

(
[0,∞)× [0,∞)

)
and 0 < qn1 , qn2 ≤ 1, let us define the bivariate case of operator

(2) as follows:
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L
∗(α,β)
n1,n2

( f ; qn1 , qn2 , x, y) = ([n1]qn1
+ β)([n2]qn2

+ β)

×

∞∑
k1=0

∞∑
k2=0

qk1(k1−1)/2
n1

Dk1
qn1

(φn1 (x))

[k1]qn1
!

(−x)k1 qk2(k2−1)/2
n2

Dk2
qn2

(φn2 (x))

[k2]qn2
!

(−x)k2

×

∫ [k1+1]qn1
+q

k1
n1
α

[n1]qn1
+β

qn1

(
[k1]qn1

+q
k1−1
n1

α

[n1]qn1
+β

) ∫ [k2+1]qn2
+q

k2
n2
α

[n2]qn2
+β

qn2

(
[k2]qn2

+q
k2−1
n2

α

[n2]qn2
+β

) f
(
q−k1+1

n1
t, q−k2+1

n2
s
)
dqn1

t dqn2
s. (17)

In [9], Erkuş and Duman proved the statistical Korovkin type approximation theorem for the bivariate
linear positive operators to the functions in space Hω2 .

Recently, Ersan and Doğru [8] obtained the statistical Korovkin type theorem and lemma for the
bivariate linear positive operators defined in the space Hω2 as follows

Theorem 5.1. [8] Let Dn1,n2 be the sequence of linear positive operator acting from Hω2 (R2
+) into CB(R+), where

R+ = [0,∞). Then, for any f ∈ Hω2 ,
st − lim

n1,n2
‖Dn1,n2 ( f ) − f ‖ = 0.

Lemma 5.2. The bivariate operators defined in [8] satisfy the following :

(i)Dn1,n2 ( f0; qn1 , qn2 , x, y) = qn1 qn2 ,

(ii)Dn1,n2 ( f1; qn1 , qn2 , x, y) = qn1 qn2

[n1]qn1

[n1 + 1]qn1

x
1 + x

,

(iii)Dn1,n2 ( f2; qn1 , qn2 , x, y) = qn1 qn2

[n2]qn2

[n2 + 1]qn2

y
1 + y

,

(iv)Dn1,n2 ( f3; qn1 , qn2 , x, y) = q3
n1

qn2

[n1]qn1
[n1 − 1]qn1

[n1 + 1]2
qn1

x2

(1 + x)(1 + qn1 x)
+ qn1 qn2

[n1]qn1

[n1 + 1]2
qn1

x
(1 + x)

+ qn1 q3
n2

[n2]qn2
[n2 − 1]qn2

[n2 + 1]2
qn2

y2

(1 + y)(1 + qn2 y)
+ qn1 qn2

[n2]qn2

[n2 + 1]2
qn2

y
1 + y

.

In order to obtain the statistical convergence of bivariate operator (17), we need the following lemma.

Lemma 5.3. The bivariate operators defined in (17) satisfy the following equalities:

L
∗(α,β)
n1,n2

(e0; qn1 , qn2 , x, y) = 1,

L
∗(α,β)
n1,n2

(e1; qn1 , qn2 , x, y) =
[n1]qn1

[n1]qn1
+ β

x +
qn1 (1 + 2α)

[2]qn1
([n1]qn1

+ β)
,

L
∗(α,β)
n1,n2

(e2; qn1 , qn2 , x, y) =
[n2]qn2

[n2]qn2
+ β

y +
qn2 (1 + 2α)

[2]qn2
([n2]qn2

+ β)
,

L
∗(α,β)
n1,n2

(e3; qn1 , qn2 , x, y) =
[n]qn1

[m(n)]qn1

qn1 ([n]qn1
+ β)2 x2 +

[n]qn1

[
[3]qn1

+ qn1 ((1 + 3α)[2]qn1
+ 1)

]
[3]qn1

([n]qn1
+ β)2 x +

q2
n1

(1 + 3α + 3α2)

[3]qn1
([n]qn1

+ β)2

+
[n]qn2

[m(n)]qn2

([n]qn2
+ β)2 y2 +

[n]qn2

[
[3]qn2

+ qn2 ((1 + 3α)[2]qn2
+ 1)

]
[3]qn2

([n]qn2
+ β)2 y +

q2
n2

(1 + 3α + 3α2)

[3]qn2
([n]qn2

+ β)2 .

Proof. The proof can be obtained similar to the proof of bivariate operator in [8]. So, we shall omit this proof.



V. N. Mishra et al. / Filomat 30:7 (2016), 1853–1868 1865

Let q = (qn1 ) and q = (qn2 ) be the sequence that converges statistically to 1 but does not converge in
ordinary sense, so for 0 < qn1 , qn2 ≤ 1, it can be written as

st − lim
n1

qn1 = st − lim
n2

qn2 = 1. (18)

Now, under the condition in (18), let us show the statistical convergence of bivariate operator (17) with the
help of the proof of Theorem 2.3.

Theorem 5.4. Let q = (qn1 ) and q = (qn2 ) be sequence satisfying (18) for 0 < qn1 , qn2 ≤ 1, and let L∗(α,β)
n1,n2

be sequence
of linear positive operator from C(K) into C(K) given by (17). Then, for any function f ∈ C(K1 ×K1) ⊂ C(K×K) and
x ∈ K1 × K1 ⊂ K × K, where K = [0,∞) × [0,∞), K1 = [0,A] × [0,A], we have

st − lim
n1,n2
‖ L

∗(α,β)
n1,n2

( f ) − f ‖C(K1×K1)= 0. (19)

Proof. Using Lemma (5.3), the proof can be obtained similar to the proof of Theorem 2.3. So, we shall omit
this proof.

6. Rates of Convergence of Bivariate Operators

Let K = [0,∞) × [0,∞). Then the sup norm on CB(K) is given by

‖ f ‖ = sup
(x,y)∈K

| f (x, y)|, f ∈ CB(K).

We consider the modulus of continuity ω( f ; δ1, δ2), where δ1, δ2 > 0, for bivariate case given by

ω( f ; δ1, δ2) = {sup | f (x′, y′) − f (x, y)| : (x′, y′), (x, y) ∈ K and |x′ − x| ≤ δ1, |y′ − y| ≤ δ2}. (20)

It is clear that a necessary and sufficient condition for a function f ∈ CB(K) is

lim
δ1, δ2→0

ω( f ; δ1, δ2) = 0

and ω( f ; δ1, δ2) satisfy the following condition:

| f (x′, y′) − f (x, y)| ≤ ω( f ; δ1, δ2)
(
1 +
|x′ − x|
δ1

) (
1 +
|y′ − y|
δ2

)
(21)

for each f ∈ CB(K). Then observe that any function in CB(K) is continuous and bounded on K. Details of
the modulus of continuity for bivariate case can be found in [2].

Now, the rate of statistical convergence of bivariate operator (17) by means of modulus of continuity
in f ∈ CB(K) will be given in the following theorem.

Theorem 6.1. Let q = (qn1 ) and q = (qn2 ) be sequence satisfying (18). So, we have

|L
∗(α,β)
n1,n2

( f ; qn1 , qn2 , x, y) − f (x, y)| ≤ 4ω
(

f ;
√
δn1 (x),

√
δn2 (y)

)
, (22)

where

δn1 (x) =

 [n1]qn1
[m(n1)]qn1

qn1 ([n1]qn1
+ β)2 + 1 −

2[n1]qn1

([n1]qn1
+ β)

 x2

+

 [n1]qn1

[
[3]qn1

+ qn1 ((1 + 3α)[2]qn1
+ 1)

]
([n1]qn1

+ β)2[3]qn1

−
2qn1 (1 + 2α)

[2]qn1
([n1]qn1

+ β)

 x

+

 q2
n1

(1 + 3α + 3α2)

[3]qn1
([n1]qn1

+ β)2

 , (23)
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δn2 (y) =

 [n2]qn2
[m(n2)]qn2

qn2 ([n2]qn2
+ β)2 + 1 −

2[n2]qn2

([n2]qn2
+ β)

 y2

+

 [n2]qn2

[
[3]qn2

+ qn2 ((1 + 3α)[2]qn2
+ 1)

]
([n2]qn2

+ β)2[3]qn2

−
2qn2 (1 + 2α)

[2]qn2
([n2]qn2

+ β)

 y

+

 q2
n2

(1 + 3α + 3α2)

[3]qn2
([n2]qn2

+ β)2

 . (24)

Proof. By using the condition in (21), for δn1 , δn2 > 0 and n ∈N, we get

|L
∗(α,β)
n1,n2

( f ; qn1 , qn2 , x, y) − f (x, y)|

≤ L
∗(α,β)
n1,n2

(| f (x′, y′) − f (x, y)|; qn1 , qn2 , x, y)

≤ ω( f ; δn1 (x), δn2 (y))
(
L
∗(α,β)
n1,n2

( f0; qn1 , qn2 , x, y) +
1
δn1

L
∗(α,β)
n1,n2

(|x′ − x|; qn1 , qn2 , x, y)
)

×

(
L
∗(α,β)
n1,n2

( f0; qn1 , qn2 , x, y) +
1
δn2

L
∗(α,β)
n1,n2

(|y′ − y|; qn1 , qn2 , x, y)
)

If the Cauchy-Schwarz inequality is applied, we have

L
∗(α,β)
n1,n2

(|x′ − x|; qn1 , qn2 , x, y) ≤
(
L
∗(α,β)
n1,n2

((x′ − x)2; qn1 , qn2 , x, y)
)1/2(
L
∗(α,β)
n1,n2

( f0; qn1 , qn2 , x, y)
)1/2

.

So, if it is substituted in the above equation, the proof is completed.

At last, the following theorem represents the rate of statistical convergence of bivariate operator (17)
by means of Lipschitz LipM(α1, α2) functions for the bivariate case, where f ∈ CB[0,∞) and M > 0 and
0 < α1 ≤ 1, 0 < α2 ≤ 1, then let us define LipM(α1, α2) as

| f (x′, y′) − f (x, y)| ≤M|x′ − x|α1
|y′ − y|α2 ; ∀ x, x′, y, y′ ∈ [0,∞).

We have the following theorem.

Theorem 6.2. Let q = (qn1 ) and q = (qn2 ) be sequence satisfying the condition given in (18), and let LipM(α1, α2),
x ≥ 0 and 0 < α1 ≤ 1, 0 < α2 ≤ 1. Then

|L
∗(α,β)
n1,n2

( f ; qn1 , qn2 , x, y) − f (x, y)| ≤M δα1/2
n1

(x) δα2/2
n2

(y), (25)

where δn1 (x) and δn2 (y) are defined in (23), (24).

Proof. Since L∗(α,β)
n1,n2

( f ; qn1 , qn2 , x, y) are linear positive operators and f ∈ LipM(α1, α2), x ≥ 0 and 0 < α1 ≤

1, 0 < α2 ≤ 1, we can write

|L
∗(α,β)
n1,n2

( f ; qn1 , qn2 , x, y) − f (x, y)| ≤ L∗(α,β)
n1,n2

(| f (x′, y′) − f (x, y)|; qn1 , qn2 , x, y)

≤ML∗(α,β)
n1,n2

(|x′ − x|α1 |y′ − y|α2 ; qn1 , qn2 , x, y)

= ML∗(α,β)
n1,n2

(|x′ − x|α1 ; qn1 , qn2 , x, y)L∗(α,β)
n1,n2

(|y′ − y|α2 ; qn1 , qn2 , x, y).
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If we take p1 = 2
α1
, p2 = 2

α2
, q1 = 2

2−α1
, q2 = 2

2−α2
, applying Hölder’s inequality, we obtain

|L
∗(α,β)
n1,n2

( f ; qn1 , qn2 , x, y) − f (x, y)| ≤
(
L
∗(α,β)
n1,n2

(
(x′ − x)α1 ; qn1 , qn2 , x, y

))α1/2(
L
∗(α,β)
n1,n2

( f0; qn1 , qn2 , x, y)
)(2−α1)/2

×

(
L
∗(α,β)
n1,n2

(
(y′ − y)α2 ; qn1 , qn2 , x, y

))α2/2(
L
∗(α,β)
n1,n2

( f0; qn1 , qn2 , x, y)
)(2−α2)/2

= Mδα1/2
n1

(x)δα2/2
n2

(y).

Which is the required result.

Conclusion
Our proposed family of integral operators L∗(α,β)

n are generalization of summation-integral type operators.
The results established here are more general rather than the results of any other previous proved lemmas
and theorems. The strong convergence in weighted spaces is highlighted and Bivariate generalization also
established for said operators. Some special cases are also considered. Problems considered in this paper
may open further research opportunities in these fields. The researchers and professionals working or
intend to work in the areas of analysis and its applications will find this research article to be quite useful.

Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgement
The authors would like to express their deep gratitude to the anonymous learned referee(s) and the editor
for their valuable suggestions and constructive comments, which resulted in the subsequent improvement
of this research article. Special thanks are due to Professor H.M. Srivastava for kind cooperation and timely
reports. The second author PS is thankful to Department of Applied Mathematics and humanities, SVNIT,
Surat (Gujarat) to carry out her research work (Ph.D. in Full-time Institute Research (FIR) category) under
the supervision of Dr. Vishnu Narayan Mishra. The first author VNM acknowledges that this project
was supported by the Cumulative Professional Development Allowance (CPDA), SVNIT, Surat (Gujarat),
India. All the authors carried out the proof of Lemmas and Theorems. Each author contributed equally
in the development of the manuscript. VNM conceived of the study and participated in its design and
coordination. All the authors read and approved the final version of manuscript.

References

[1] F. Altomare, M. Campiti, Korovkin type approximation theory and its applications. de Gruyter Stud. Math. 17, Berlin, 1994.
[2] G.A. Anastassiou, S.G. Gal, Approximation Theory: Moduli of Continuity and Global Smoothness Preservation, Birkhäuser,
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