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Abstract. In this paper, we prove the existence of a fixed point for some new classes of α-admissible
contraction mappings in fuzzy metric spaces. Our results generalize and extend some well-known results
on the topic in the literature. Moreover, we present some examples to illustrate the usability of the obtained
results.

1. Introduction

The concept of a fuzzy metric space was introduced by Kramosil and Michalek [1]. Afterwards, George
and Veeramani [2] modified the concept of fuzzy metric space due to [1]. Later on, Gregori and Sapene[3]
introduced fuzzy contraction mappings and proved a fixed point theorem in fuzzy metric space in the
sense of George and Veeramani. In particular, Mihet [4] enlarged the class of fuzzy contractive mappings
of Gregori and Sapene[3] in a complete non-Archimedean fuzzy metric space. Over the years, it has been
generalized in different directions by several mathematicians (see [5–14] and the references therein).

On the other hand, Samet et al.[15] first introduced the concept of α-admissible mapping for single
valued mapping and Asl et al. [16] extended the concept of admissible for single valued mappings to multi-
valued mappings. Later on, Salimi et al.[17], established fixed point theorems for α-admissible contractions
mapping with respect to η on metric space. Very recently Hussain et al. [18] generalized the notions of
α-admissible mapping with respect to η for single-valued and set valued contraction mappings

In this paper, we modified the concept of α∗-η∗-admissible mapping for β and ψ contractions mappings
type in fuzzy metric space. Moreover, some examples are given to illustrate the usability of obtained results.

2. Preliminaries

Firstly, we recall the basic definitions and properties about fuzzy metrics.
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Definition 2.1 ([20]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if it satisfies the
following conditions :

(T1) ∗ is associative and commutative,
(T2) ∗ is continuous,
(T3) a ∗ 1 = a for all a ∈ [0, 1],
(T4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Remark 2.2. A t-norm ∗ is called positive, if a ∗ b > 0 for all a, b ∈ (0, 1).

Examples of continuous t-norms are Lukasievicz t-norm, that is, a ∗L b = max{a + b − 1, 0}, product t-norm,
that is, a ∗P b = ab and minimum t-norm, that is, a ∗M b = min{a, b}.

The concept of fuzzy metric space is defined by George and Veeramani [2] as follows.

Definition 2.3 ([2]). Let X be an arbitrary nonempty set, ∗ is a continuous t-norm, and M is a fuzzy set on
X × X × (0,∞).The 3-tuple (X,M, ∗) is called a fuzzy metric space if satisfying the following conditions, for
each x, y, z ∈ X and t, s > 0,

(M1) M(x, y, t) > 0,
(M2) M(x, y, t) = 1 if and only if x = y,
(M3) M(x, y, t) = M(y, x, t),
(M4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t + s),
(M5) M(x, y, ·) : (0,∞)→ [0, 1] is continuous.

Remark 2.4. It is worth pointing out that 0 < M(x, y, t) < 1 (for all t > 0) provided x , y, (see [21]).

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with a center x ∈ X and a radius
0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1 − r}.

A subset A ⊂ X is called open if for each x ∈ A, there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A. Let τ
denote the family of all open subsets of X. Then τ is a topology on X, called the topology induced by the
fuzzy metric M. This topology is metrizable (see in[22]).

Example 2.5 ([2]). Let (X, d) be a metric space. Define a ∗ b = ab (or a ∗ b = min{a, b}) for all a, b ∈ [0, 1], and
define M : X × X × (0,∞)→ [0, 1] as

M(x, y, t) =
t

t + d(x, y)
,

for all x, y ∈ X and t > 0. Then (X,M, ∗) is a fuzzy metric space. We call this fuzzy metric induced by the
metric d the standard fuzzy metric.

Now we give some examples of fuzzy metric space due to Gregori et al. [7].

Example 2.6 ([7]). Let X be a nonempty set, f : X → R+ be a one-one function and 1 : [0,∞) → R+ be an
increasing continuous function. For fixed α, β > 0, define M : X × X × (0,∞)→ [0, 1] as

M(x, y, t) =

(
(min{ f (x), f (y)})α + 1(t)
(max{ f (x), f (y)})α + 1(t)

)β
,

for all x, y ∈ X and t > 0. Then, (X,M, ∗) is a fuzzy metric space on X where ∗ is the product t-norm.

Example 2.7 ([7]). Let (X, d) be a metric space and 1 : R+
→ [0,∞) be an increasing continuous function.

Define M : X × X × (0,∞)→ [0, 1] as

M(x, y, t) = e
(
−

d(x,y)
1(t)

)
,

for all x, y ∈ X and t > 0. Then (X,M, ∗) is a fuzzy metric space on X where ∗ is the product t-norm.
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Example 2.8 ([7]). Let (X, d) be a bounded metric space with d(x, y) < k (for all x, y ∈ X, where k is fixed
constant in (0,∞)) and 1 : R+

→ (k,∞) be an increasing continuous function. Define a function M :
X × X × (0,∞)→ [0, 1] as

M(x, y, t) = 1 −
d(x, y)
1(t)

,

for all x, y ∈ X and t > 0. Then (X,M, ∗) is a fuzzy metric space on X wherein ∗ is a Lukasievicz t-norm.

Definition 2.9 ([2]). Let (X,M, ∗) be a fuzzy metric space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if limn→∞M(xn, x, t) = 1 for all t > 0.
(2) A sequence {xn} in X is called a Cauchy sequence if, for each 0 < ε < 1 and t > 0, there exits n0 ∈N such

that M(xn, xm, t) > 1 − ε for each n,m ≥ n0.
(3) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.
(4) A fuzzy metric space in which every sequence has a convergent subsequence is said to be compact.

Lemma 2.10 ([6]). Let (X,M, ∗) be a fuzzy metric space. For all x, y ∈ X, M(x, y, ·) is non-decreasing function.

Definition 2.11. Let (X,M, ∗) be a fuzzy metric space. Then the mapping M is said to be continuous on
X × X × (0,∞) if

lim
n→∞

M(xn, yn, tn) = M(x, y, t)

when {(xn, yn, tn)} is a sequence in X2
× (0,∞) which converges to a point (x, y, t) ∈ X2

× (0,∞), i.e.,

lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, y, t) = 1 and lim
n→∞

M(x, y, tn) = M(x, y, t).

Lemma 2.12 ([23]). If (X,M, ∗) be a fuzzy metric space, then M is a continuous function on X × X × (0,∞).

On the other hand, the concept of α-admissible mapping introduced by Samet et al. [15] as follows.

Definition 2.13 ([15]). Let X be a nonempty set, T : X → X and α : X × X → [0,∞). We say that T is
α-admissible mapping if for all x, y ∈ X, we have

α(x, y) ≥ 1 =⇒ α(Tx,Ty) ≥ 1.

Next, Samet et al. [15] modified the concept of α-admissible mapping as follows.

Definition 2.14 ([17]). Let X be a nonempty set, T : X → X and α, η : X × X → [0,∞). We say that T is
α-admissible mapping with respect to η if for all x, y ∈ X, we have

α(x, y) ≥ η(x, y) =⇒ α(Tx,Ty) ≥ η(Tx,Ty).

Note that, if we take η(x, y) = 1, then this definition reduces to Definition 2.13. Also, if we take α(x, y) = 1,
then we say that T is an η-subadmissible.

Definition 2.15. Let (X,M, ∗) be a fuzzy metric space. A mapping T : X → X and let α∗ : X × X × (0,∞) →
[0,∞) be function. We say that T is an α∗-admissible mapping if, for all x, y ∈ X and t > 0,

α∗(x, y, t) ≥ 1 =⇒ α∗(Tx,Ty, t) ≥ 1.

Definition 2.16. Let (X,M, ∗) be a fuzzy metric space. A mapping T : X→ X and let α∗, η∗ : X×X× (0,∞)→
[0,∞) be two functions. We say that T is an α∗-η∗-admissible mapping if, for all x, y ∈ X and t > 0,

α∗(x, y, t) ≥ η∗(x, y, t) =⇒ α∗(Tx,Ty, t) ≥ η∗(Tx,Ty, t);

Note that, If η∗(x, y, t) = 1 then this definition reduces to Definition 2.15. Also, if we take α∗(x, y, t) = 1, then
we say that T is an η∗-subadmissible.
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3. Modified α∗-η∗-β-Contractions in Fuzzy Metric Spaces

First, we introduce the following notion:

Definition 3.1. Let (X,M, ∗) be a fuzzy metric space. A mapping T : X→ X and let α∗, η∗ : X ×X × (0,∞)→
[0,∞) be two functions. We say that T is a modified α∗-η∗-β-contractive mapping if there exists a function
β : [0, 1]→ [1,∞) such that, for any sequence {sn} ⊂ [0, 1] of positive reals, β(sn)→ 1 implies sn → 1, for all
x, y ∈ X and t > 0,

α∗(x,Tx, t)α∗(y,Ty, t) ≥ η∗(x,Tx, t)η∗(x,Tx, t)

=⇒ M(Tx,Ty, t) ≥ β
(
M(x, y, t)

)
N(x, y, t), (3.1)

where
N(x, y, t) = min

{
M(x, y, t),max{M(x,Tx, t),M(y,Ty, t)}

}
.

Now, we are ready to state and prove our first main theorem.

Theorem 3.2. Let (X,M, ∗) be a complete fuzzy metric space. The mapping T : X → X is a modified α∗-η∗-β-
contractive mapping. Suppose that the following assertions hold:

(a) T is α∗-η∗-admissible mapping;
(b) there exists x0 ∈ X such that α∗(x0,Tx0, t) ≥ η∗(x0,Tx0, t) for all t > 0;
(c) for any sequence {xn} ⊂ X such that α∗(xn, xn+1, t) ≥ η∗(xn, xn+1, t), for all n ∈N, t > 0 and xn → x as n→∞,

then α∗(x,Tx, t) ≥ η∗(x,Tx, t) for all n ∈N and t > 0.

Then T has a fixed point.

Proof. Let x0 ∈ X such that α∗(x0,Tx0, t) ≥ η∗(x0,Tx0, t) for all t > 0. Define a sequence a sequence {xn}

in X such that xn = Tnx0 = Txn−1, for all n ∈ N. If xn = xn+1, then xn = Txn and so xn is a fixed point
of T and we are finished. Assume that xn , xn+1 for all n ∈ N. Since T is α∗-η∗-admissible mapping and
α∗(x0,Tx0, t) ≥ η∗(x0,Tx0, t) we deduce that

α∗(x1, x2, t) = α∗(Tx0,Tx1, t) ≥ η∗(Tx0,Tx1, t) = η∗(x1, x2, t).

So, we have
α∗(x0,Tx0, t)α∗(x1,Tx1, t) ≥ η∗(x0,Tx0, t)η∗(x1,Tx1, t).

By continuing this process, we have α∗(xn,Txn, t) ≥ η∗(xn,Txn, t). So, we get

α∗(xn−1,Txn−1, t)α∗(xn,Txn, t) ≥ η∗(xn−1,Txn−1, t)η∗(xn,Txn, t)

for all n ∈N and t > 0. Now, from (3.1), we obtain that

M(xn, xn+1, t) = M(Txn−1,Txn, t)

≥ β
(
M(xn−1, xn, t)

)
N(xn−1, xn, t)

where

N(xn−1, xn, t) = min
{
M(xn−1, xn, t),max{M(xn−1,Txn−1, t),M(xn,Txn, t)}

}
= min

{
M(xn−1, xn, t),max{M(xn−1, xn, t),M(xn, xn+1, t)}

}
for all n ∈N and t > 0. If M(xn−1, xn, t) ≤M(xn, xn+1, t) for some n ∈N, then

min
{
M(xn−1, xn, t),max{M(xn−1, xn, t),M(xn, xn+1, t)}

}
= M(xn−1, xn, t).
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Also, if M(xn, xn+1, t) < M(xn−1, xn, t) for some n ∈N, then

min
{
M(xn−1, xn, t),max{M(xn−1, xn, t),M(xn, xn+1, t)}

}
= M(xn−1, xn, t).

That is, for all n ∈N and t > 0, we have

min
{
M(xn−1, xn, t),max{M(xn−1, xn, t),M(xn, xn+1, t)}

}
= M(xn−1, xn, t).

Hence,

M(xn, xn+1, t) ≥ β
(
M(xn−1, xn, t)

)
M(xn−1, xn, t)

≥ M(xn−1, xn, t) (3.2)

for all n ∈N and t > 0. It follows that the sequence {M(xn, xn+1, t)} is an increasing sequence in (0, 1]. Thus,
there exists l ∈ (0, 1] such that limn→∞M(xn, xn+1, t) = l for all t > 0. We shall prove that l = 1 for all t > 0.
From (3.2), we have

M(xn, xn+1, t)
M(xn−1, xn, t)

≥ β
(
M(xn−1, xn, t)

)
≥ 1,

which implies that limn→∞ β
(
M(xn−1, xn, t)

)
= 1. Regarding the property of the function β, which implies

that l = 1 and we conclude that

lim
n→∞

M(xn, xn+1, t) = 1. (3.3)

Next, we prove that {xn} is a Cauchy sequence. Suppose, to the contrary, that {xn} is not a Cauchy
sequence. Then there exist ε ∈ (0, 1) and t0 > 0 such that, for all k ≥ 1, there are m(k),n(k) ∈ N with
m(k) > n(k) ≥ k and

M(xn(k), xm(k), t0) ≤ 1 − ε.

Assume that m(k) is the least integer exceeding n(k) satisfying the above inequality, that is, equivalently,

M(xn(k), xm(k)−1, t0) > 1 − ε.

By the (M4), we derive that

1 − ε ≥ M(xn(k), xm(k), t0)
≥ M(xn(k), xm(k)−1, t0) ∗M(xm(k)−1, xm(k), t0)
> (1 − ε) ∗M(xm(k)−1, xm(k), t0)

for all k ∈N. Taking the limit as k→∞ in the above inequality and using (3.3), we get

lim
k→+∞

M(xn(k), xm(k), t0) = 1 − ε. (3.4)

Again, by M(4), we find that

M(xn(k+1), xm(k+1), t0) ≥ M(xn(k+1), xn(k), t0) ∗M(xn(k), xm(k), t0)
∗M(xm(k), xm(k+1), t0)

and

M(xn(k), xm(k), t0) ≥ M(xn(k), xn(k+1), t0) ∗M(xn(k+1), xm(k+1), t0)
∗M(xm(k+1), xm(k), t0).

Taking the limit as k→∞ in the above inequality, together with (3.3) and (3.4), we deduce that

lim
k→+∞

M(xn(k+1), xm(k+1), t0) = 1 − ε. (3.5)
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Since,
α(xn(k),Txn(k), t)α(xm(k),Txm(k), t) ≤ η(xn(k),Txn(k), t)η(xm(k),Txm(k), t).

Then from (3.1), (3.3), (3.4) and (3.5), we have

M(xn(k+1), xm(k+1), t0) ≥ β
(
M(xn(k), xm(k), t0)

)
N(xn(k), xm(k), t0),

where

N(xn(k), xm(k), t0)

= min
{
M(xn(k), xm(k), t0),max{M(xn(k),Txn(k), t0),M(xm(k),Txm(k), t0)}

}
.

Hence,

M(xn(k+1), xm(k+1), t0)
N(xn(k), xm(k), t0)

≥ β(M(xn(k), xm(k), t0)) ≥ 1.

Letting k→∞ in the above inequality, we get

lim
k→+∞

β(M(xn(k), xm(k), t0)) = 1.

That is,
1 − ε = lim

k→+∞
M(xn(k), xm(k), t0) = 1.

So, ε = 0, which is contradiction. Thus, {xn} is a Cauchy sequence and (X,M, ∗) complete then there exists
x? ∈ X such that xn → x? as n → ∞, that means M(xn, x?, t) = 1 as n → ∞, for each t > 0. By condition (c),
we have α(x∗,Tx?, t) ≥ η(x∗,Tx?, t). So, we get

α(xn,Txn, t)α(x?,Tx?, t) ≥ η(xn,Txn, t)η(x?,Tx?, t)

for all n ∈N ∪ {0} and t > 0. By (3.1), we have

M(Tx?,Txn, t) = M(Tx?, xn+1, t) ≥ β(M(x?, xn, t))N(x?, xn, t)

where

N(x?, xn, t)

= min
{
M(x?, xn, t),max{M(x?,Tx?, t),M(xn,Txn, t)}

}
= min

{
M(x?, xn, t),max{M(x?,Tx?, t),M(xn, xn+1, t)}

}
.

Hence,

M(Tx?, x?, t) ≥ M(Tx?, xn+1, t) ∗M(xn+1, xn, t) ∗M(xn, x?, t)
≥ β(M(x?, xn, t))N(x?, xn, t) ∗M(xn+1, xn, t) ∗M(xn, x?, t)

Letting n→∞ in the above inequality, we get M(Tx?, x?, t) = 1, that is, Tx? = x?. This completes the proof.

By taking η∗(x, y, t) = 1 in Theorem 3.2, we have the following result.

Corollary 3.3. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X → X be α∗-admissible mapping.
Assume that there exists a function β : [0, 1] → [1,∞) such that, for any sequence {sn} ⊂ [0, 1] of positive reals,
β(sn)→ 1 implies sn → 1, and

α∗(x,Tx, t)α∗(y,Ty, t) ≥ 1 =⇒M(Tx,Ty, t) ≥ β
(
M(x, y, t)

)
N(x, y, t),

where
N(x, y, t) = min

{
M(x, y, t),max{M(x,Tx, t),M(y,Ty, t)}

}
,

for all x, y ∈ X and t > 0. Suppose that the following assertions hold:
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(a) there exists x0 ∈ X such that α∗(x0, x1, t) ≥ 1 for all t > 0;
(b) for any sequence {xn} ⊂ X such that α∗(xn, xn+1, t) ≥ 1, for all n ∈ N, t > 0 and xn → x as n → ∞, then

α∗(xn, x, t) ≥ 1 for all n ∈N and t > 0.

Then T has a fixed point.

Corollary 3.4. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X→ X and let α∗ : X ×X × (0,∞)→
[0,∞) be α∗-admissible mapping. Assume that there exists a function β : [0, 1]→ [1,∞) such that, for any sequence
{sn} ⊂ [0, 1] of positive reals, β(sn)→ 1 implies sn → 1 and

α∗(x,Tx, t)α∗(y,Ty, t)M(Tx,Ty, t) ≥ β
(
M(x, y, t)

)
N(x, y, t),

where
N(x, y, t) = min

{
M(x, y, t),max{M(x,Tx, t),M(y,Ty, t)}

}
,

for all x, y ∈ X and t > 0. Suppose that the following assertions hold:

(a) there exists x0 ∈ X such that α∗(x0, x1, t) ≥ 1 for all t > 0;
(b) for any sequence {xn} ⊂ X such that α∗(xn, xn+1, t) ≥ 1, for all n ∈ N, t > 0 and xn → x as n → ∞, then

α∗(xn, x, t) ≥ 1 for all n ∈N and t > 0.

Then T has a fixed point.

By taking α∗(x, y, t) = 1 in Theorem 3.2, we have the following result.

Corollary 3.5. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X→ X be η∗-subadmissible mapping.
Assume that there exists a function β : [0, 1] → [1,∞) such that, for any sequence {sn} ⊂ [0, 1] of positive reals,
β(sn)→ 1 implies sn → 1 and

η∗(x,Tx, t)η∗(x,Tx, t) ≤ 1 =⇒M(Tx,Ty, t) ≥ β
(
M(x, y, t)

)
N(x, y, t),

where
N(x, y, t) = min

{
M(x, y, t),max{M(x,Tx, t),M(y,Ty, t)}

}
,

for all x, y ∈ X and t > 0. Suppose that the following assertions hold:

(a) there exists x0 ∈ X such that η∗(x0, x1, t) ≤ 1 for all t > 0;
(b) for any sequence {xn} ⊂ X such that η∗(xn, xn+1, t) ≤ 1, for all n ∈ N, t > 0 and xn → x as n → ∞, then

η∗(xn, x, t) ≤ 1 for all n ∈N and t > 0.

Then T has a fixed point.

Corollary 3.6. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X→ X be η∗-subadmissible mapping.
Assume that there exists a function β : [0, 1] → [1,∞) such that, for any sequence {sn} ⊂ [0, 1] of positive reals,
β(sn)→ 1 implies sn → 1 and

M(Tx,Ty, t) ≥ η∗(x,Tx, t)η∗(x,Tx, t)β
(
M(x, y, t)

)
N(x, y, t),

where
N(x, y, t) = min

{
M(x, y, t),max{M(x,Tx, t),M(y,Ty, t)}

}
,

for all x, y ∈ X and t > 0. Suppose that the following assertions hold:

(a) there exists x0 ∈ X such that η∗(x0, x1, t) ≤ 1 for all t > 0;
(b) for any sequence {xn} ⊂ X such that η∗(xn, xn+1, t) ≤ 1, for all n ∈ N, t > 0 and xn → x as n → ∞, then

η∗(xn, x, t) ≤ 1 for all n ∈N and t > 0.

Then T has a fixed point.
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If we take α∗(x, y, t) = 1 in Corollary 3.4 and η∗(x, y, t) = 1 in Corollary 3.6, we have the following result
of Geragty type contraction in fuzzy metric space.

Corollary 3.7. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X → X. Assume that there exists a
function β : [0, 1]→ [1,∞) such that, for any sequence {sn} ⊂ [0, 1] of positive reals, β(sn)→ 1 implies sn → 1 and

M(Tx,Ty, t) ≥ β
(
M(x, y, t)

)
N(x, y, t),

where

N(x, y, t) = min
{
M(x, y, t),max{M(x,Tx, t),M(y,Ty, t)}

}
,

for all x, y ∈ X and t > 0. Then T has a fixed point.

Now, we give an example to support Theorem 3.2.

Example 3.8. Let X = [0,∞) and define d(x, y) = |x − y|. Denote a ∗ b = ab for any a, b ∈ [0, 1] and

M(x, y, t) =
( t
t + 1

)d(x,y)

for x, y ∈ X and t > 0. Then it easy to see that (X,M, ∗) is complete fuzzy metric space [2]. Define the
mapping T : X→ X by

Tx =

{
2x
3 , x ∈ [0, 1],

sinh x , x ∈ (1,∞).

Define α, η : X × X × (0,∞)→ [0,∞) by

α∗(x, y, t) =

{
2 , 0 ≤ x, y ≤ 1,
0 , otherwise.

Also, define

η∗(x, y, t) =

{
1 , 0 ≤ x, y ≤ 1,
−2 , otherwise.

We show that T is an α∗-η∗-admissible mapping. Let x, y ∈ X with

α∗(x, y, t) ≥ η∗(x, y, t),

then x, y ∈ [0, 1]. On the other hand, for all x, y ∈ [0, 1], we have Tx ≤ 1. It follows that

α∗(Tx,Ty, t) ≥ η∗(Tx,Ty, t).

Hence, T is an α∗-η∗-admissible mapping. Also, α∗(0,T0, t) ≥ η∗(0,T0, t). Let {xn} is a sequence in X such
that α∗(xn, xn+1, t) ≥ η∗(xn, xn+1, t) for all n ∈ N ∪ {0} and xn → x as n → ∞, then {xn} ⊂ [0, 1], and hence
x ∈ [0, 1]. This implies that α∗(xn, x, t) ≥ η∗(xn, x, t) for all n ∈ N and t > 0. Now, let α∗(x,Tx, t) ≥ η∗(x,Tx, t)
and α∗(y,Ty, t) ≥ η∗(y,Ty, t). Also, we get

α∗(x,Tx, t)α∗(y,Ty, t) ≥ η∗(x,Tx, t)η∗(y,Ty, t).
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Then x, y ∈ [0, 1]. This implies that

M(Tx,Ty, t) =
( t
t + 1

)d(Tx,Ty)

=
( t
t + 1

)|Tx−Ty|

=
( t
t + 1

)| 2x
3 −

2y
3 |

≥ β
(( t

t + 1

) 1
3 |x−y|)( t

t + 1

) 1
3 |x−y|

≥ β
(( t

t + 1

)|x−y|)( t
t + 1

)|x−y|

= β
(( t

t + 1

)d(x,y))( t
t + 1

)d(x,y)

= β
(
M(x, y, t)

)
M(x, y, t).

Therefore, all of conditions in Theorem 3.2 are satisfied with β : [0, 1] → [1,∞). We can see that Corollary
3.3 and Corollary 3.4 can be applicable to this example. In this example, we have 0 ∈ X is a fixed point to
T. This completes the proof.

Next, we show that contractive condition in Corollary 3.7 cannot be applied to this example. Indeed,
for x = 0, y = 3, β(s) = 1 and t > 0, we obtain

M(T0,T3, t) = (
t

t + 1
)sinh 3 < (

t
t + 1

)3 = M(0, 3, t),

Therefore, Corollary 3.7 cannot be applied to this case.

4. Modified α∗-η∗-ψ-Contractions in Fuzzy Metric Spaces

Let Ψ be the class of all mappings ψ : [0, 1] → [0, 1] such that ψ is continuous, nondecreasing and
ψ(s) > s for all s ∈ [0, 1].

Definition 4.1. Let (X,M, ∗) be a fuzzy metric space and ψ ∈ Ψ. A mapping T : X → X and let α∗, η∗ :
X × X × (0,∞) → [0,∞) be two functions. We say that T is a modified α∗-η∗-ψ-contractive mapping if the
following implication takes place:

α∗(x,Tx, t)α∗(y,Ty, t) ≥ η∗(x,Tx, t)η∗(x,Tx, t)

=⇒ M(Tx,Ty, t) ≥ ψ
(
N(x, y, t))

)
, (4.1)

where
N(x, y, t) = min

{
M(x, y, t),max{M(x,Tx, t),M(y,Ty, t)}

}
.

Now, we prove some fixed point theorem for modified α∗-η∗-ψ-contraction mapping in fuzzy metric
spaces.

Theorem 4.2. Let (X,M, ∗) be a complete fuzzy metric space. The mapping T : X → X is a modified α∗-η∗-ψ-
contractive mapping. Suppose that the following assertions hold:

(a) T is α∗-η∗-admissible mapping;
(b) there exists x0 ∈ X such that α∗(x0,Tx0, t) ≥ η∗(x0,Tx0, t) for all t > 0;
(c) for any sequence {xn} ⊂ X such that α∗(xn, xn+1, t) ≥ η∗(xn, xn+1, t), for all n ∈N, t > 0 and xn → x as n→∞,

then α∗(x,Tx, t) ≥ η∗(x,Tx, t) for all n ∈N and t > 0.

Then T has a fixed point.
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Proof. Following the same lines in the proof of Theorem 3.2, we have

α∗(xn,Txn, t) ≥ η∗(xn,Txn, t).

So, we get
α∗(xn−1,Txn−1, t)α∗(xn,Txn, t) ≥ η∗(xn−1,Txn−1, t)η∗(xn,Txn, t)

for all n ∈N and t > 0. It follows from 4.2, we have

M(xn, xn+1, t) = M(Txn−1,Txn, t)

≥ ψ
(
N(xn−1, xn, t))

)
where

N(xn−1, xn, t) = min
{
M(xn−1, xn, t),max{M(xn−1,Txn−1, t),M(xn,Txn, t)}

}
= min

{
M(xn−1, xn, t),max{M(xn−1, xn, t),M(xn, xn+1, t)}

}
= M(xn−1, xn, t)

for all n ∈N and t > 0. Hence,

M(xn, xn+1, t) ≥ ψ
(
M(xn−1, xn, t)

)
> M(xn−1, xn, t)

for all n ∈ N and t > 0. Hence, {M(xn, xn+1, t)} is an increasing sequence in (0, 1]. Thus, there exists l ∈ (0, 1]
such that limn→∞M(xn, xn+1, t) = l for all t > 0. Now, we prove that l = 1 for all t > 0. From (4.2), we have

M(xn, xn+1, t) ≥ ψ
(
M(xn−1, xn, t)

)
.

Since, ψ is continuous, l ≥ ψ(l). This implies that l = 1 and therefore

lim
n→∞

M(xn, xn+1, t) = 1

for all n ∈N and t > 0.
Next, we prove that {xn} is a Cauchy sequence. Since,

α(xn(k),Txn(k), t)α(xm(k),Txm(k), t) ≤ η(xn(k),Txn(k), t)η(xm(k),Txm(k), t).

By (4.2), (3.3), (3.4) and (3.5), we have

M(xn(k+1), xm(k+1), t0) ≥ ψ
(
N(xn(k), xm(k), t0)

)
≥ 1,

where

N(xn(k), xm(k), t0)

= min
{
M(xn(k), xm(k), t0),max{M(xn(k),Txn(k), t0),M(xm(k),Txm(k), t0)}

}
.

Letting k→ +∞ in the above inequality, we get

1 − ε ≥ ψ(1 − ε) > 1 − ε

which is contradiction. Thus, {xn} is a Cauchy sequence and (X,M, ∗) complete then there exists x? ∈ X such
that xn → x? as n → ∞, that means M(xn, x?, t) = 1 as n → ∞, for each t > 0. By condition (c), we have
α(x∗,Tx∗, t) ≥ η(x∗,Tx∗, t). So, we get

α(xn,Txn, t)α(x?,Tx?, t) ≥ η(xn,Txn, t)η(x?,Tx?, t)

for all n ∈N ∪ {0} and t > 0. By (3.1), we have

M(Tx?,Txn, t) = M(Tx?, xn+1, t) ≥ ψ(N(x?, xn, t))
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where

N(x?, xn, t)

= min
{
M(x?, xn, t),max{M(x?,Tx?, t),M(xn,Txn, t)}

}
= min

{
M(x?, xn, t),max{M(x?,Tx?, t),M(xn, xn+1, t)}

}
.

Hence,

M(Tx?, x?, t) ≥ M(Tx?, xn+1, t) ∗M(xn+1, xn, t) ∗M(xn, x?, t)
≥ ψ(N(x?, xn, t)) ∗M(xn+1, xn, t) ∗M(xn, x?, t)

Letting n→∞ in the above inequality, we get M(Tx?, x?, t) = 1, that is, Tx? = x?. This completes the proof.

By taking η∗(x, y, t) = 1 in Theorem 4.2, we have the following result.

Corollary 4.3. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X→ X be α∗-admissible mapping and

α∗(x,Tx, t)α∗(y,Ty, t) ≥ 1 =⇒M(Tx,Ty, t) ≥ ψ(N(x, y, t)),

where
N(x, y, t) = min

{
M(x, y, t),max{M(x,Tx, t),M(y,Ty, t)}

}
.

for all x, y ∈ X and t > 0. Suppose that the following assertions hold:

(a) there exists x0 ∈ X such that α∗(x0, x1, t) ≥ 1 for all t > 0;
(b) for any sequence {xn} ∈ X such that α∗(xn, xn+1, t) ≥ 1, for all n ∈ N, t > 0 and xn → x as n → ∞, then

α∗(xn, x, t) ≥ 1 for all n ∈N and t > 0.

Then T has a fixed point.

Corollary 4.4. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X→ X be α∗-admissible mapping and

α∗(x,Tx, t)α∗(y,Ty, t)M(Tx,Ty, t) ≥ ψ(N(x, y, t)),

where
N(x, y, t) = min

{
M(x, y, t),max{M(x,Tx, t),M(y,Ty, t)}

}
.

for all x, y ∈ X and t > 0. Suppose that the following assertions hold:

(a) there exists x0 ∈ X such that α∗(x0, x1, t) ≥ 1 for all t > 0;
(b) for any sequence {xn} ⊂ X such that α∗(xn, xn+1, t) ≥ 1, for all n ∈ N, t > 0 and xn → x as n → ∞, then

α∗(xn, x, t) ≥ 1 for all n ∈N and t > 0.

Then T has a fixed point.

By taking α∗(x, y, t) = 1 in Theorem 4.2, we have the following result.

Corollary 4.5. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X→ X be η∗-subadmissible mapping
and

η∗(x,Tx, t)η∗(x,Tx, t) ≤ 1 =⇒M(Tx,Ty, t) ≥ ψ(N(x, y, t)),

where
N(x, y, t) = min

{
M(x, y, t),max{M(x,Tx, t),M(y,Ty, t)}

}
,

for all x, y ∈ X and t > 0. Suppose that the following assertions hold:

(a) there exists x0 ∈ X such that η∗(x0, x1, t) ≤ 1 for all t > 0;
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(b) for any sequence {xn} ⊂ X such that η∗(xn, xn+1, t) ≤ 1, for all n ∈ N, t > 0 and xn → x as n → ∞, then
η∗(xn, x, t) ≤ 1 for all n ∈N and t > 0.

Then T has a fixed point.

Corollary 4.6. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X→ X be η∗-subadmissible mapping
and

M(Tx,Ty, t) ≥ η∗(x,Tx, t)η∗(x,Tx, t)ψ(N(x, y, t)),

where
N(x, y, t) = min

{
M(x, y, t),max{M(x,Tx, t),M(y,Ty, t)}

}
,

for all x, y ∈ X and t > 0. Suppose that the following assertions hold:

(a) there exists x0 ∈ X such that η∗(x0, x1, t) ≤ 1 for all t > 0;
(b) for any sequence {xn} ⊂ X such that η∗(xn, xn+1, t) ≤ 1, for all n ∈ N, t > 0 and xn → x as n → ∞, then

η∗(xn, x, t) ≤ 1 for all n ∈N and t > 0.

Then T has a fixed point.

If we take α∗(x, y, t) = 1 in Corollary 4.4 and η∗(x, y, t) = 1 in Corollary 4.6, we have the following result
of Mihet [4] type contraction in fuzzy metric space.

Corollary 4.7. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X→ X. and

M(Tx,Ty, t) ≥ ψ(N(x, y, t)),

where
N(x, y, t) = min

{
M(x, y, t),max{M(x,Tx, t),M(y,Ty, t)}

}
,

for all x, y ∈ X and t > 0. Then T has a fixed point.

Now, we give an example to support Theorem 4.2.

Example 4.8. Let X = [0,∞) and define a ∗ b = ab for any a, b ∈ [0, 1]. The fuzzy metric

M(x, y, t) = e(− |x−y|
t )

for x, y ∈ X and t > 0. Define the mapping T : X→ X by

Tx =

{
x2

4 , x ∈ [0, 1],
2x2 + 1 , x ∈ (1,∞).

Let ψ(s) =
√

s for s ∈ [0, 1], then ψ ∈ Ψ. Define α, η : X × X × (0,∞)→ [0,∞) by α ≡ 1,

η∗(x, y, t) =

{
1
3 , x, y ∈ [0, 1],
1 , x, y ∈ (1,∞).

We show that T is an η∗-subadmissible mapping. Let x, y ∈ X with

η∗(x, y, t) ≤ 1,

then x, y ∈ [0, 1]. On the other hand, for all x, y ∈ [0, 1], we have Tx ≥ 1. It follows that

η∗(Tx,Ty, t) ≤ 1.

Hence, T is an η∗-subadmissible mapping. Also, η∗(1,T1, t) ≤ 1. Let {xn} is a sequence in X such that
α∗(xn, xn+1, t) ≥ η∗(xn, xn+1, t) for all n ∈ N ∪ {0} and xn → x as n → ∞, then {xn} ⊂ [0, 1], which implies that
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x ≥ 1. This implies that η∗(xn, x, t) ≤ 1 for all n ∈ N and t > 0. Now, let η∗(x,Tx, t) ≤ 1 and η∗(y,Ty, t) ≤ 1.
Also, we get

η∗(x,Tx, t)η∗(y,Ty, t) ≤ 1.

Then x, y ∈ [0, 1]. This implies that

M(Tx,Ty, t) = e(− |Tx−Ty|
t ) = e(− |x

2
−y2
|

4t )
≥ e(− |x−y|

2t ) = ψ(M(x, y, t)).

Therefore, all of conditions in Corollary 4.5 and Corollary 4.6 can be applicable to this example. In this
example, we have 0 ∈ X is a fixed point to T. This completes the proof.

Next, we show that contractive condition in Corollary 3.7 cannot be applied to this example. Indeed,
for x = 0, y = 2, ψ(s) > s and t = 1, we obtain

M(T0,T6, t) = e(− |0−9|
t ) = e(− 9

t ) < e(− 1
t ) = ψ(M(0, 2, t)).

Therefore, Corollary 3.7 cannot be applied to this case.
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