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Abstract. We study the relation between the holomorphic approximation property and the strong disk
property for an open set of an open Riemann surface or a Stein space of pure dimension 1.

1. Introduction

Let R be a Stein space and D an open set of R. If D is Stein and Runge in R, then D satisfies the strong
disk property in R, that is, if ϕ : ∆ → R is a continuous map holomorphic on ∆ such that ϕ(∂∆) ⊂ D, then
we have that ϕ(∆) ⊂ D, where ∆ := {t ∈ C | |t| < 1} ⊂ C.

The converse of this fact is not true in general even if R = Cn and D is connected. By Nishino [12, 13],
by Duval [6], or by Wold [17], there exists a connected, simply connected, and rationally convex open set
D2 of C2 such that D2 is not Runge in C2. Then D := D2 ×Cn−2 satisfies the strong disk property in Cn but is
not Runge in Cn, where n ≥ 2 (see Abe [1, Theorem 7]). On the other hand, an open set D of C is Runge in
C if and only if D satisfies the strong disk property in C (see Abe [1, Proposition 3]).

In this paper, we study the relation between the Rungeness, or the holomorphic approximation property,
and the strong disk property for an open set of an open Riemann surface or, more generally, a Stein space
of pure dimension 1.

Let R be a planar open Riemann surface and D an open set of R. Then, we prove that every connected
component of D is Runge in R if and only if D satisfies the strong disk property in R (see Theorem 3.3). We
generalize this fact to the case when R has singular points (see Theorem 4.1).

Moreover, we give an example of the pair (R,D) of an open Riemann surface R, which is not planar,
and a connected open set D of R such that D is not Runge in R whereas D satisfies the strong disk property
in R (see Example 3.4). We also give an example of the pair (R,D) of an irreducible Stein space R of pure
dimension 1, whose normalization is planar, and a connected open set D of R such that D is not Runge in
R whereas every irreducible component of D is Runge in R (see Example 4.3).

The paper was submitted for publication in Proceedings of the 22nd ICFIDCAA (Gyeongju, Korea,
August 8–11, 2014) in a Special Issue of Filomat. There are some papers in related areas published also in
the recent ordinary issues of this journal, for example, Srivastava et al. [14, 15].
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2. Preliminaries

Throughout this paper, complex spaces are always supposed to be reduced and second countable.
Let R be a complex space. Let E be a locally analytic set of R, that is, an analytic set of an open set D of R.

Then E is said to be Runge in R or (R,E) is said to be a Runge pair if the image of the restriction O(R)→ O(E)
is dense in O(E), that is, for every f ∈ O(E), for every compact set K of D, and for every ε > 0, there exists
h ∈ O(R) such that

∥∥∥ f − h
∥∥∥

K < ε.
An open set D of a complex space R is said to be O(R)-convex if for every compact set K of D the set

K̂R ∩D is also compact, where

K̂R :=
{
x ∈ R | |h(x)| ≤ ‖h‖K for every h ∈ O(R)

}
is the holomorphically convex hull of K in R.

Lemma 2.1. Let R be a complex space. Let E be a locally analytic set of R such that E is Runge in R. Then for every
compact set K of E we have that K̂R ∩ E = K̂E.

Proof. Apply the argument in lines 16–20 of Stein [16, p. 356].

Lemma 2.2. Let R be a Stein space. Let K be a compact set of R and Q a finite set of R. Then we have that L̂R = K̂R∪Q,
where L := K ∪Q.

Proof. Applying Abe-Tabata [3, Lemma 2.5], the proof proceeds by induction on #Q.

By Stein [16, Satz 1.1], we have the following characterizations of an O(R)-convex open set D of a Stein
space R.

Lemma 2.3. Let R be a Stein space and D an open set of R. Then the following four conditions are equivalent.

(1) D is O(R)-convex.
(2) For every compact set K of D we have that K̂R ⊂ D.
(3) For every compact set K of D we have that K̂R = K̂D.
(4) D is Stein and Runge in R.

Lemma 2.4. Let R be a Stein space. Let π : R̃→ R be the normalization of R. Let D be a Stein open set of R. Let Ẽ
be the connected component of D̃ := π−1(D). If E := π(Ẽ) is Runge in R, then Ẽ is Runge in R̃.

Proof. Let L be an arbitrary compact set of Ẽ. Then K := π(L) is a compact set of E and we have that
L̂R̃ ⊂ π

−1(K̂R). Since E is Stein, the set K̂E is compact. Since π is proper, the set π−1(K̂E) is also compact. Since
K̂R ∩ E = K̂E by Lemma 2.1, we have that L̂R̃ ∩ Ẽ ⊂ π−1(K̂R)∩π−1(E) = π−1(K̂E) ⊂ D̃. Therefore the set L̂R̃ ∩ Ẽ
is compact. It follows that Ẽ is Runge in R̃ by Lemma 2.3.

A non-compact connected complex manifold of dimension 1 is said to be an open Riemann surface. By
Behnke-Stein [4], every open Riemann surface is Stein. We have the following characterization of a Runge
open set of an open Riemann surface, which is also due to Behnke-Stein [4].

Lemma 2.5. Let R be an open Riemann surface and D an open set of R. Then the following two conditions are
equivalent.

(1) D is Runge in R.
(2) No connected component of R \D is compact.

Let ∆ := {t ∈ C | |t| < 1} ⊂ C. An open set D of a complex space R is said to satisfy the strong disk property
in R if D satisfies the condition that ifϕ : ∆→ R is a continuous map holomorphic on ∆ such thatϕ(∂∆) ⊂ D,
then ϕ(∆) ⊂ D (see Abe [1] and Abe et al. [2]).
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Proposition 2.6. Let R be a Stein space and D a Stein open set of R. If every connected component E of D is Runge
in R, then D satisfies the strong disk property in R.

Proof. Let ϕ : ∆→ R be a continuous map holomorphic on ∆ such that ϕ(∂∆) ⊂ D. Let E be the connected
component of D which contains the connected set ϕ(∂∆). Since by assumption E is Runge in R, the open set
E satisfies the strong disk property in R (see Abe [1, Proposition 1]). Therefore, we have that ϕ(∂∆) ⊂ E ⊂ D.
It follows that D satisfies the strong disk property in R.

Remark 2.7. Let D be an open set of a complex space R. If D is Runge in R, then every connected component
of D is also Runge in R. As is noted in Narasimhan [10, p. 159], the converse of this fact is not true in
general even if R is a connected open set of C. As an example, let R := C \ {0}, E1 := {t ∈ C | 0 < |t| < 1},
E2 := {t ∈ C | |t| > 1}, and D := E1 ∪ E2. Then D is not Runge in R whereas both E1 and E2 are Runge in R.

We also need the following simple topological lemma.

Lemma 2.8. Let X be a locally connected topological space and D an open set of X. Let L be the set of connected
components of X \ D. Let C be the set of connected components of ∂D. Let I(L) := {C ∈ C | L ∩ C , ∅} for every
L ∈ L . Then we have the following three statements.

i)
⋃

C∈I(L) C = ∂L for every L ∈ L .
ii)

⋃
L∈L I(L) = C .

iii) If L, L′ ∈ L , L , L′, then we have that I(L) ∩ I(L′) = ∅.

Proof. i) Take an arbitrary L ∈ L . Let C ∈ I(L). Since C is a connected set of X \ D, L is a connected
component of X\D, and L∩C , ∅, we have that C ⊂ L. Since L̊∩C ⊂ (X \D)◦∩∂D = ∅, we have that C ⊂ ∂L.
It follows that

⋃
C∈I(L) C ⊂ ∂L. Let p ∈ ∂L. Assume that p < D. Then there exists a connected neighborhood

U of p in X such that U ∩D = ∅. Since U is a connected set of X \D, L is a connected component of X \D,
and p ∈ U ∩ L, we have that U ⊂ L. It is a contradiction because p < L̊. It follows that p ∈ D and we
have that p ∈ (X \D) ∩ D = ∂D. Therefore there exists C ∈ C such that p ∈ C. Since p ∈ L ∩ C, we have
that C ∈ I(L). Therefore we have that ∂L ⊂

⋃
C∈I(L) C. Thus we proved that

⋃
C∈I(L) C = ∂L. ii) Let C ∈ C .

Since C is a connected set of X \ D, there exists L ∈ L such that C ⊂ L. Then we have that C ∈ I(L). It
follows that

⋃
L∈L I(L) = C . iii) Let L, L′ ∈ L . Assume that there exists C ∈ I(L) ∩ I(L′). By i) we have that

C ⊂ ∂L ∩ ∂L′ ⊂ L ∩ L′, which implies that L = L′. Therefore if L , L′, then I(L) ∩ I(L′) = ∅.

Corollary 2.9. Let X be a connected and locally connected topological space and D an open set of X. If ∂D has only
finitely many connected components, then X \D also has only finitely many connected components.

Proof. We use the notation in Lemma 2.8. We have that
∑

L∈L #I(L) = #C by Lemma 2.8 ii) and iii). Take
an arbitrary L ∈ L . Since X is connected, we have that ∂L , ∅ and therefore #I(L) ≥ 1 by Lemma 2.8 i). It
follows that #L ≤ #C < +∞.

3. Planar Open Riemann Surfaces

Lemma 3.1. Let S be an open Riemann surface. Let R be an open set of S and D a connected open set of R. Then for
every compact connected component L of R \D we have that L̂S = L.

Proof. Let P be a connected component of R which contains D. Since L is a connected component of P \D,
we have that P \ L is connected (see Bourbaki [5, p. 169]). Since S \ P is open and closed in S \ (P \ L), we
have that (P \ L)∪ (S \ P) = S \ L is connected (see Bourbaki [5, p. 169]). Since S \ L is not relatively compact
in S, it follows that L̂S = L (see Guenot-Narasimhan [8, p. 300]).

Lemma 3.2. Let D, E, and R be open sets of C such that D ⊂ E ⊂ R. Assume that D is connected and E satisfies the
strong disk property in R. Then for every open and compact connected component L of R \D we have that L ⊂ E.
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Proof. Let L be an arbitrary open and compact connected component of R \ D. There exists an open set O
of R such that L = O ∩ (R \D). We have that D ∪ L = D ∪O, which is an open set of C. By Lemma 3.1, we
have that L̂C = L. Therefore there exists a Runge open set P of C such that L ⊂ P b D ∪ L. Let W be the
connected component of P which contains L. Since W is simply connected, there exists a biholomorphic
map λ : ∆→W by the Riemann mapping theorem. Take a number ρ ∈ (0, 1) such that L ⊂ λ(

{
t ∈ C | |t| < ρ

}
).

Let ϕ : ∆ → R, t 7→ λ(ρt). Then we have that L ⊂ ϕ(∆) and ϕ(∂∆) ⊂ W \ L ⊂ (D ∪ L) \ L = D ⊂ E. Since E
satisfies the strong disk property in R, we have that ϕ(∆) ⊂ E. It follows that L ⊂ E.

We say that an open Riemann surface R is planar if R is biholomorphic to a connected open set of C. We
have the following theorem.

Theorem 3.3. Let R be a planar open Riemann surface and D an open set of R. Then the following two conditions
are equivalent.

(1) D satisfies the strong disk property in R.
(2) Every connected component E of D is Runge in R.

Proof. (1)→ (2). Let E be an arbitrary connected component of D. Then E satisfies the strong disk property
in R. Take a sequence {Eν}∞ν=1 of connected open sets with C∞ smooth boundaries such that

⋃
∞

ν=1 Eν = E and
Eν b Eν+1 for every ν ∈N. Let K be an arbitrary compact set of E. Then there exists m ∈N such that K ⊂ Em.
Since ∂Em is locally connected and compact, the set ∂Em has only finitely many connected components. Let
L be the set of connected components of R \ Em. Let L ′ :=

{
L ∈ L | L is compact

}
and L ′′ := L \L ′. By

Corollary 2.9, we have that #L < +∞ and therefore every L ∈ L is open in R \ Em. By Lemma 3.2, we have
that G := Em ∪ (

⋃
L∈L ′ L) ⊂ E. Since R \ G =

⋃
L∈L ′′ L, the set G is open and Runge in R. It follows that

K̂R ⊂ G ⊂ E. Thus we proved that E is Runge in R.
(2)→ (1). The assertion is a direct consequence of Proposition 2.6.

We have the following example of the pair (R,D) of an open Riemann surface R and a connected open
set D of R such that D is not Runge in R whereas D satisfies the strong disk property in R.

Example 3.4. Let T := C/Γ be a complex torus of dimension 1, where Γ := 〈α, β〉Z is a lattice in C. Let
π : C→ T be the projection. Let

W̃0 :=
{
xα + yβ | x, y ∈ R, x2 + y2 < ρ2

}
,

where 0 < ρ < 1/2. Let R := T \ {π(0)}, W := π(W̃0), and D := W \ {π(0)}. Then D is a connected open set of
R and satisfies the strong disk property in R. Nevertheless D is not Runge in R.

Proof. It is clear that D is a connected open set of R. Let ϕ : ∆ → R be a continuous map holomorphic on
∆ such that ϕ(∂∆) ⊂ D. Since π : C → T is a topological covering and ∆ is simply connected, there exists
a continuous map ϕ̃ : ∆ → C such that π ◦ ϕ̃ = ϕ. Since π is locally biholomorphic, the map ϕ̃|∆ : ∆ → C
is holomorphic. Since π(ϕ̃(∂∆)) = ϕ(∂∆) ⊂ D ⊂ W, we have that ϕ̃(∂∆) ⊂ W̃ := π−1(W). Since the family{
c + W̃0 | c ∈ Γ

}
is the set of connected components of W̃, there exists c ∈ Γ such that ϕ̃(∂∆) ⊂ c + W̃0. Since

c + W̃0 is simply connected and therefore Runge in C, we have that ϕ̃(∆) ⊂ c + W̃0 by Proposition 2.6.
Therefore ϕ(∆) = π(ϕ̃(∆)) ⊂ π(c + W̃0) = W. Since ϕ(∆) ⊂ R, we have that ϕ(∆) ⊂ W ∩ R = D. Thus we
proved that D satisfies the strong disk property in R. On the other hand, the set R \D = T \W is compact.
It follows that D is not Runge in R by Lemma 2.5.

Problem 3.5. Let R be an open Riemann surface. Assume that for every connected open set D of R the
condition that D satisfies the strong disk property in R implies the condition that D is Runge in R. Then,
we ask whether R is planar.
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4. Stein Space of Dimension 1

By Narasimhan [11], a complex space R of dimension 1 is Stein if and only if R has no compact irreducible
component. We have the following theorem which generalizes Theorem 3.3.

Theorem 4.1. Let R be a Stein space of pure dimension 1. Assume that every connected component of R̃ is planar,
whereπ : R̃→ R is the normalization of R. Then for every open set D of R the following two conditions are equivalent.

(1) D satisfies the strong disk property in R.
(2) Every irreducible component E of D is Runge in R.

Proof. (1) → (2). Let D̃ := π−1(D). Then D̃ satisfies the strong disk property in R̃. Let E be an arbitrary
irreducible component of D. Since π|D̃ : D̃ → D is the normalization of D, there exists a connected
component Ẽ of D̃ such that π(Ẽ) = E. Let P̃ be the connected component of R̃ such that Ẽ ⊂ P̃. Then Ẽ
satisfies the strong disk property in P̃. Since by assumption P̃ is a planar Riemann surface, the open set Ẽ
is Runge in P̃ by Theorem 3.3. Therefore Ẽ is also Runge in R̃. Take an arbitrary compact set K of E and let
L := K̂E. Then the set M :=

(
π|Ẽ

)−1 (L) = π−1(L) ∩ Ẽ is compact and we have that M̂R̃ = M̂Ẽ = M. Let F be
the union of irreducible components of D except E. Since L is compact and E ∩ F is discrete, the set L ∩ F
consists of at most finitely many points. Let N := π−1(L) and Q := π−1(L∩F). Then we have that N = M∪Q.
Since Q is a finite set, we have that N̂R̃ = M̂R̃ ∪ Q = M ∪ Q = N by Lemma 2.2. It follows that L̂R = L ⊂ E
by Mihalache [9, Theorem 3.1]. Thus we obtain that K̂R ⊂ E. Take moreover an arbitrary f ∈ O(E) and
an arbitrary ε > 0. Since E is an analytic set of a Stein space D, there exists 1 ∈ O(D) such that 1|E = f .
By the holomorphic approximation theorem, there exists h ∈ O(R) such that

∥∥∥1 − h
∥∥∥

K̂R
< ε. It follows that∥∥∥ f − h

∥∥∥
K < ε and thus we proved that E is Runge in R.

(2)→ (1). The assertion is a direct consequence of Lemma 4.2 below.

Lemma 4.2. Let R be a Stein space such that the set N(R) of non-normal points of R is discrete in R. Let D be a Stein
open set of R such that every irreducible component E of D is Runge in R. Then D satisfies the strong disk property
in R.

Proof. Let π : R̃ → R be the normalization of R. Let ϕ : ∆ → R be a continuous map holomorphic on ∆

such that ϕ(∂∆) ⊂ D. Let P :=
(
ϕ|∆

)−1 (N(R))◦. Take an arbitrary point p ∈ P ∩ ∆. There exists an open
neighborhood V of ϕ(p) in R, m ∈ N, and an injective holomorphic map λ = (λ1, λ2, . . . , λm) : V → Cm.
Take a connected open neighborhood U of p such that U ⊂ ∆ ∩ ϕ−1(V). Since P ∩ U , ∅ and #ϕ(P ∩ U) ≤
#ϕ(P) ≤ #N(R) ≤ ℵ0, we have that #

(
λν ◦ ϕ

)
(P ∩ U) ≤ ℵ0 for every ν = 1, 2, . . . ,m. If λν ◦ ϕ is not locally

constant on P ∩ U, then, by the open mapping theorem, we have that #
(
λν ◦ ϕ

)
(P ∩ U) = ℵ, which is a

contradiction. Therefore λν is locally constant on P ∩ U for ν = 1, 2, . . . ,m. Then, by the identity theorem,
the holomorphic map ϕ is constant on U. Since ϕ(U) =

{
ϕ(p)

}
= ϕ(P ∩U) ⊂ N(R), we have that p ∈ P. Thus

we proved that P ∩ ∆ = P and ϕ is locally constant on P. If P = ∅, then there exists a holomorphic map
ϕ̃ : ∆ → R̃ such that π ◦ ϕ̃ = ϕ on ∆ (see Grauert-Remmert [7, p. 164]). If P , ∅, then the connectedness
of ∆ implies that ϕ is constant on P = ∆ and therefore the existence of such ϕ̃ is clear. On the other hand,
there exists a number ρ ∈ (0, 1) such that ϕ(

{
t ∈ C | ρ ≤ |t| ≤ 1

}
) ⊂ D. Let D̃ := π−1(D). Then we have

that ϕ̃(
{
t ∈ C | ρ ≤ |t| < 1

}
) ⊂ D̃. Let Ẽ be the connected component of D̃ which contains the connected set

ϕ̃(
{
t ∈ C | ρ ≤ |t| < 1

}
). Since π|D̃ : D̃ → D is the normalization of D, the set E := π(Ẽ) is an irreducible

component of D. Since by assumption E is Runge in R, the open set Ẽ is Runge in R̃ by Lemma 2.4. By
Proposition 2.6, the open set Ẽ satisfies the strong disk property in R̃. Since ϕ̃(

{
t ∈ C | |t| = ρ

}
) ⊂ Ẽ, we have

that ϕ̃(
{
t ∈ C | |t| ≤ ρ

}
) ⊂ Ẽ ⊂ D̃. Therefore we have that ϕ̃(∆) ⊂ D̃ and thus ϕ(∆) = π

(
ϕ̃(∆)

)
∪ ϕ(∂∆) ⊂ D. It

follows that D satisfies the strong disk property in R.

Let R be a Stein space and D a Stein open set of R. If every connected component E of D is Runge in R,
then every irreducible component of D is also Runge in R. However, the converse of this fact is not true in
general even if R is an irreducible Stein space of dimension 1 whose normalization is planar. We have the
following example.
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Example 4.3. Let R :=
{
(z,w) ∈ C2

| w2 = z2 (z + 1)
}
\

{
( 5

4 ,−
15
8 )

}
and R̃ := C \

{
−

3
2

}
. The holomorphic

map π : R̃ → R, t 7→ (t2
− 1, t3

− t), gives a normalization of R. Therefore R is irreducible. Let
Ẽ1 :=

{
t ∈ C | 0 <

∣∣∣t + 3
2

∣∣∣ < 2
}
, Ẽ2 :=

{
t ∈ C |

∣∣∣t + 3
2

∣∣∣ > 2
}
, and D̃ := Ẽ1 ∪ Ẽ2. Both Ẽ1 and Ẽ2 are Runge in

R̃ but D̃ is not Runge in R̃. Let E1 := π(Ẽ1), E2 := π(Ẽ2), and D := π(D̃). Then D is a connected open set of R
and we have that D̃ = π−1(D). The sets E1 and E2 are the irreducible components of D. By the argument in
the proof of Theorem 4.1, we see that both E1 and E2 are Runge in R. On the other hand, D is not Runge in
R.
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