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Existence of Positive Periodic Solutions in Shifts δ± for a Nonlinear
First Order Functional Dynamic Equation on Time Scales

Erbil Çetina, F. Serap Topala

a Department of Mathematics, Ege University, 35100 Bornova, Izmir-Turkey

Abstract. LetT ⊂ R be a periodic time scale in shifts δ± with period P ∈ [t0,∞)T. In this paper we consider
the nonlinear functional dynamic equation of the form

x∇(t) = a(t)x(t) − λb(t) f (x(h(t))), t ∈ T.

By using the Krasnoselskiı̆, Avery-Henderson and Leggett-Williams fixed point theorems, we present
different sufficient conditions for the nonexistence and existence of at least one, two or three positive
periodic solutions in shifts δ± of the above problem on time scales. We extend and unify periodic differential,
difference, h-difference and q-difference equations and more by a new periodicity concept on time scales.

1. Introduction

Due to their importance in applications such as population dynamics, industrial robotics, the production
of blood cells, and so on, many authors are studying the existence, uniqueness and positivity of solutions
for first order functional differential equations of the form

y′(t) = −a(t)y(t) + λ f (t, y(h(t)))
where a, h and according the first variable the function f are periodic with positive T, see [6, 11] and the
references therein. If h(t) = t − τ(t) with τ ∈ C(R,R+), 0 ≤ τ(t) ≤ t then the above equation takes the form
functional differential equations with delay terms and such equations, directly or after some transformation,
appear in many mathematical ecological and population models, such as:
1. Lasota-Wazewska model [14–17, 25]

y′(t) = −a(t)y(t) + p(t)e−γ(t)y(t−τ(t)),

2. Nicholsan’s blowflies model [16, 18–20]
y′(t) = −a(t)y(t) + b(t)y(t − τ(t))e−γ(t)y(t−τ(t)),

3. model for blood cell production [11, 16, 20, 21]

y′(t) = −a(t)y(t) + b(t) y(t−τ(t))
1+yn(t−τ(t)) .

Since the periodic variation of the environment plays an important role in many biological and ecological
systems, many researchers have been concerned with the study of the existence of periodic solutions of the
above models. The monograph by Kuang [19] gives a nice discussion of such models.
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Chow [22], Freedman and Wu [23], Hadeler and Tomiuk [24], Wang [10], Weng and Sun [13] and many
others studied the existence of at least one and two positive periodic solutions of nonlinear first order
differential equations by several way. On the other hand, it has been observed that very few papers exist in
the literature on the nonexistence and multiplicity existence of nonnegative periodic solutions for the first
order differential equations. For example, see [6, 10, 11, 26, 31].

Because of the study of continuous and discrete systems are very important role in implementation
and application, the theory of dynamic equations on time scales which unifies differential, difference, h-
difference, q-differences equations and more has been received much attention, see [1, 2, 12, 27]. This theory
has become important mathematical branch [4, 5] since it was initiated by Stefan Hilger in 1988 [7]. There
is only a few results concerning periodic solutions of dynamic equations on time scales such as in [2, 9].
Although the former definition of periodicity using in these papers obliges the time scales to be additive
and unbounded above and below, there are many time scales that do not satisfy this condition such as
qZ = {qn : n ∈ Z} ∪ {0} and

√
N = {

√
n : n ∈ N}. M. Adıvar introduced a new periodicity concept in [3]

by using shift operators δ±. With the new periodicity concept, the time scale needn’t be closed under the
operation t±ω for a fixedω > 0. The construction a new equation by using shift operators δ± on time scales
not only covers previously handled equations but also enables to generalize the results to any time scales
having a general rule as well as qZ. There is only a few existence results related with the new periodicity,
see [1]. Also, Wang and Agarwal gave the concept of changing-periodic time scales in [32].

Let T be a periodic time scale in shifts δ± with period P ∈ [t0,∞)T and t0 ∈ T. We are concerned with the
nonexistence, existence and multiplicity of periodic solutions in shifts δ± for nonlinear dynamic equation

x∇(t) = a(t)x(t) − λb(t) f (x(h(t))), t ∈ T (1)

where a ∈ C(T, (−∞, 0)) is ∇-periodic in shifts δ± with period T and a ∈ Rν, λ > 0 is a positive parameter,

b ∈ C(T, [0,∞)) is ∇-periodic in shifts with period T,
∫ δT

+(t0)

t0
b(s)∇s > 0, h ∈ C(T, [0,∞)) is periodic in shifts

with period T, f : C((0,∞), (0,∞)) and T ∈ [P,∞)T.
Hereafter, we use the notation [a, b]T to indicate the time scale interval [a, b] ∩ T. The intervals [a, b)T,

(a, b]T and (a, b)T are similarly defined.
In this study, we shall show that the number of positive periodic solutions in shifts δ± of (1.1) can be

determined by the asymptotic behaviors of the quotient of f (x)
x at zero and infinity. We shall organize this

paper as follows. In section 2, we will state some facts about exponential function on time scales, the
new periodicity concept for time scales and some important theorems which will be needed to show the
existence of at least single, twin or triple periodic solutions in shifts δ±. Besides these, in section 2, we will
give some lemmas about the exponential function and the graininess function with shift operators using
nabla periodicity and nabla differentiability. Finally, we state our main results and give their proofs in
section 3 by using Krasnosel’skiı̆’s, Avery-Henderson and Leggett-Williams fixed point theorems.

2. Preliminaries

In this section, we mention some definitions, lemmas and theorems from calculus on time scales which
can be found in [4–6]. Next, we state some definitions, lemmas and theorems about the shift operators and
the new periodicity concept for time scales which can be found in [3].

Definition 2.1. [5] A function p : T → R is said to be regressive provided 1 − ν(t)p(t) , 0 for all t ∈ Tκ, where
ν(t) = t − ρ(t). The set of all regressive ld-continuous and ν-regressive functions ϕ : T→ R is denoted by Rν while
the set R+

ν is given by R+
ν = {ϕ ∈ Rν : 1 − ν(t)ϕ(t) > 0 f or all t ∈ T}.

If p, q ∈ Rν, then we define circle plus addition by

(p ⊕ν q)(t) = p(t) + q(t) − p(t)q(t)ν(t) for all t ∈ Tκ.

For p ∈ Rν, define circle minus p by

	νp = −
p

1 − pν
,
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and the generalized square of p by

p 2© = (−p)(	νp) =
p2

1 − pν
.

If ϕ ∈ Rν, then the nabla exponential function on T is defined by

êϕ(t, s) = exp
(∫ t

s
ξ̂ν(r)(ϕ(r))∇r

)
(2)

where ξ̂ν(r) is the ν-cylinder transformation given by

ξ̂ν(r)(ϕ(r)) :=
{
−

1
ν(r) Lo1(1 − ϕ(r)ν(r)), if ν(r) > 0;

p(r), if ν(r) = 0.
(3)

Also, the nabla exponential function y(t) = êp(t, s) is the solution to the initial value problem y∇ = p(t)y,
y(s) = 1.Other properties of the exponential function are given in the following lemma ([5], Theorem 3.15).

Lemma 2.2. Let p, q ∈ Rν and s, t, r ∈ T. Then
i. ê0(t, s) ≡ 1 and êp(t, t) ≡ 1;
ii. êp(ρ(t), s) = (1 − ν(t)p(t))êp(t, s);
iii. 1

êp(t,s) = ê	ν (t, s) where, 	νp(t) = −
p(t)

1−ν(t)p(t) ;

iv. êp(t, s) = 1
êp(s,t) = ê	νp(s, t);

v. êp(t, s)êp(s, r) = êp(t, r);
vi. êp(t, s)êq(t, s) = ep⊕νq(t, s);

vii. êp(t,s)
êq(t,s) = êp	νq(t, s);

viii.
(

1
êp(t,s)

)∇
=
−p(t)
êρp (t,s)

.

The following definitions, lemmas, corollaries and examples are about the shift operators and new period-
icity concept for time scales which can be found in [3].

Definition 2.3. [3] Let T∗ be a non-empty subset of the time scale T including a fixed number t0 ∈ T∗ such that
there exist operators δ± : [t0,∞)T × T∗ → T∗ satisfying the following properties:

(P.1) The function δ± are strictly increasing with respect to their second arguments, i.e., if

(T0, t), (T0,u) ∈ D± := {(s, t) ∈ [t0,∞)T × T∗ : δ∓(s, t) ∈ T∗},

then

T0 ≤ t < u implies δ±(T0, t) < δ±(T0,u),

(P.2) If (T1,u), (T2,u) ∈ D− with T1 < T2, then δ−(T1,u) > δ−(T2,u), and if (T1,u), (T2,u) ∈ D+ with T1 < T2,
then δ+(T1,u) < δ+(T2,u),

(P.3) If t ∈ [t0,∞)T, then (t, t0) ∈ D+ and δ+(t, t0) = t. Moreover, if t ∈ T∗, then (t0, t) ∈ D+ and δ+(t0, t) = t holds,
(P.4) If (s, t) ∈ D±, then (s, δ±(s, t)) ∈ D∓ and δ∓(s, δ±(s, t)) = t, respectively,
(P.5) If (s, t) ∈ D± and (u, δ±(s, t)) ∈ D∓, then (s, δ∓(u, t)) ∈ D± and δ∓(u, δ±(s, t)) = δ±(s, δ∓(u, t)), respectively.

Then the operators δ− and δ+ associated with t0 ∈ T∗ (called the initial point) are said to be backward and
forward shift operators on the set T∗, respectively. The variable s ∈ [t0,∞)T in δ±(s, t) is called the shift
size. The value δ+(s, t) and δ−(s, t) in T∗ indicate s units translation of the term t ∈ T∗ to the right and left,
respectively. The setsD± are the domains of the shift operator δ±, respectively. Hereafter, T∗ is the largest
subset of the time scale T such that the shift operators δ± : [t0,∞)T × T∗ → T∗ exist.
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Definition 2.4. [3] (Periodicity in shifts) Let T be a time scale with the shift operators δ± associated with the initial
point t0 ∈ T∗. The time scale T is said to be periodic in shift δ± if there exists a p ∈ (t0,∞)T∗ such that (p, t) ∈ D± for
all t ∈ T∗. Furthermore, if

P := inf{p ∈ (t0,∞)T∗ : (p, t) ∈ D±, ∀t ∈ T∗} , t0

then P is called the period of the time scale T.

Example 2.5. [3] The following time scales are periodic in the sense of shift operators given in Definition 2.4.

i. T1 = {±n2 : n ∈ Z}, δ±(P, t) =


(
√

t ±
√

P)2, t > 0;
±P, t = 0;
−(
√
−t ±

√
P)2, t < 0;

, P = 1, t0 = 0,

ii. T2 = qZ, δ±(P, t) = P±1t, P = q, t0 = 1,
iii. T3 = ∪n∈Z[22n, 22n+1], δ±(P, t) = P±1t, P = 4, t0 = 1,
iv. T4 = {

qn

1+qn : q > 1 is constant and n ∈ Z} ∪ {0, 1},

δ±(P, t) =
q

 ln( t
1−t )±ln( P

1−P )
ln q



1 + q

 ln( t
1−t )±ln( P

1−P )
ln q

 , P =
q

1 + q
.

Notice that the time scale T4 in Example 2.5 is bounded above and below and
T∗4 = {

qn

1+qn : q > 1 is constant and n ∈ Z}.

Remark 2.6. [3] Let T be a time scale that is periodic in shifts with the period P. Thus, by P.4 of Definition 2.3 the
mapping δP

+ : T∗ → T∗ defined by δP
+(t) = δ+(P, t) is surjective. On the other hand, by P.1 of Definition 2.3 shift

operators δ± are strictly increasing in their second arguments. That is, the mapping δP
+(t) = δ+(P, t) is injective.

Hence, δP
+ is an invertible mapping with the inverse (δP

+)−1 = δP
−

defined by δP
−

(t) := δ−(P, t).

We assume that T is a periodic time scale in shift δ± with period P. The operators δP
±

: T∗ → T∗ are
commutative with the backward jump operator ρ : T → T given by ρ(t) := sup{s ∈ T : s < t}. That is,
(δP
±
◦ ρ)(t) = (ρ ◦ δP

±
)(t) for all t ∈ T∗.

Corollary 2.7. [3] δ+(P, ρ(t)) = ρ(δ+(P, t)) and δ−(P, ρ(t)) = ρ(δ−(P, t)) for all t ∈ T∗.

Definition 2.8. [3] (Periodic function in shift δ±) Let T be a time scale that is periodic in shifts δ± with the period
P. We say that a real value function f defined on T∗ is periodic in shifts δ± if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D± and f (δT
±(t)) = f (t) for all t ∈ T∗ (4)

where δT
±

:= δ±(T, t). The smallest number T ∈ [P,∞)T∗ such that (4) holds is called the period of f .

Definition 2.9. (∇-periodic function in shifts δ±) Let T be a time scale that is periodic in shifts δ± with the period P.
We say that a real value function f defined on T∗ is ∇-periodic in shifts δ± if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D± for all t ∈ T∗, (5)
the shi f ts δT

± are ∇-di f f erentiable with ld-continuous derivatives (6)

and

f (δT
±(t))δ∇T

± = f (t) for all t ∈ T∗, (7)

where δT
±

:= δ±(T, t). The smallest number T ∈ [P,∞)T∗ such that (5-7) hold is called the period of f .
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Notice that Definition 2.8 and Definition 2.9 give the classic periodicity definition on time scales whenever
δT
±

:= t ± T are the shifts satisfying the assumptions of Definition 2.8 and Definition 2.9.

Theorem 2.10. [29] Assume ν : T → R is strictly increasing and T̃ := νT is a time scale. If f : T → R is an
ld-continuous function and ν is ∇-differentiable with ld-continuous derivative, then for a, b ∈ T∫ b

a
1(s)ν∇(s)∇s =

∫ ν(a)

ν(b)
( f ◦ ν−1)(s)∇̃s. (8)

Now, we give a theorem which is the substitution rule on periodic time scales in shifts δ±

Theorem 2.11. LetT be a time scale that is periodic in shifts δ± with period P ∈ [t0,∞)T∗ and f a∇-periodic function
in shifts δ± with the period T ∈ [P,∞)T∗ . Suppose that f ∈ Cld(T), then∫ t

t0

f (s)∇s =

∫ δT
±

(t)

δT
±

(t0)
f (s)∇s. (9)

Proof. We will prove this theorem similarly with Theorem 2 in [3]. Substituting ν(s) = δT
+(t) and 1(s) = f (δT

+(t))
in (8) and taking (7) into account we have∫ δT

+(t)

δT
+(t0)

f (s)∇s =

∫ ν(t)

ν(t0)
1(ν−1(s))∇s

=

∫ t

t0

1(s)ν∇(s)∇s

=

∫ t

t0

f (δT
+(t))δ∇T

+ (t)(s)∇s

=

∫ t

t0

f (s)∇s.

The equality∫ δT
−

(t)

δT
−

(t0)
f (s)∇s =

∫ t

t0

f (s)∇s

can be obtained similarly. The proof is complete.
We give some interesting properties of the nabla exponential functions êp(t, t0) and shift operators on

time scales.

Lemma 2.12. Let T be a time scale that is periodic in shifts δ± with the period P. Suppose that the shifts δT
±

are
∇-differentiable on t ∈ T∗ where T ∈ [P,∞)T∗ . Then the backwards graininess function ν : Tκ → [0,∞) satisfies

ν(δT
±(t)) = δ∇T

± (t)ν(t).

Proof. Since δT
±

are ∇-differentiable at t, from the calculus on time scales we know

ν(t)δ∇T
+ (t) = δT

+(t) − δT
+(ρ(t)).

Then by using Corollary 3.5, we have

ν(t)δ∇T
+ (t) = δT

+(t)) − ρ(δT
+(t))

= ν(δT
+(t)).

Similarly, ν(t)δ∇T
−

(t) = ν(δT
−

(t)) can be obtained. Thus, the proof is complete.
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Lemma 2.13. Let T be a time scale that is periodic in shifts δ± with the period P. Suppose that the shifts δT
±

are
∇-differentiable on t ∈ T∗ where T ∈ [P,∞)T∗ and p ∈ Rν is ∇-periodic in shifts δ± with the period T. Then
i. êp(δT

±
(t), δT

±
(t0)) = êp(t, t0) f or t, t0 ∈ T∗,

ii. êp(δT
±

(t), ρ(δT
±

(s))) = êp(t, ρ(s)) =
êp(t,s)

1−ν(t)p(t) f or t, s ∈ T∗.

Proof. (i) Assume that ν(τ) , 0. Set f (τ) =
1
ν(τ)

Lo1(1 − p(τ)ν(τ)). Using Lemma 2.12 and ∇-periodicity of p

in shifts δ± we get

f (δT
+(τ))δ∇T

+ (τ) =
δ∇T

+ (τ)
ν(δT

+(τ))
Lo1(1 − p(δT

+(τ))ν(δT
+(τ)))

=
δ∇T

+ (τ)
ν(δT

+(τ))
Lo1(1 − p(δT

+(τ))δ∇T
+

1
δ∇T

+

ν(δT
+(τ)))

=
1
ν(τ)

Lo1(1 − p(τ)ν(τ))

= f (τ).

Thus, f is ∇-periodic in shifts δ± with the period T. By using Theorem 2.11 we have

êp(δT
+(t), δT

+(t0)) =


exp

− ∫ δT
+(t)

δT
+(t0)

1
ν(τ)

Lo1(1 − p(τ)ν(τ))∇τ

 , if ν(τ) , 0;

exp

∫ δT
+(t)

δT
+(t0)

p(τ)∇τ

 , if ν(τ) = 0,

=


exp

(
−

∫ t

t0

1
ν(τ)

Lo1(1 − p(τ)ν(τ))∇τ
)
, if ν(τ) , 0;

exp
(∫ t

t0

p(τ)∇τ
)
, if ν(τ) = 0,

= êp(t, t0).

Similarly, we can obtain êp(δT
−

(t), δT
−

(t0)) = êp(t, t0).
(ii) From Corollary 3.5, we know ρ(δT

+(s)) = δT
+(ρ(s)). By Lemma 2.12 and Lemma 2.2 we obtain

êp(δT
+(t), ρ(δT

+(s))) = êp(δT
+(t), δT

+(ρ(s))) = êp(t, ρ(s)) =
êp(t, s)

1 − ν(t)p(t)
.

Similarly, we can obtain êp(δT
−

(t), ρ(δT
−

(s))) = êp(δT
−

(t), δT
−

(ρ(s))) = êp(t, ρ(s)).The proof is complete. Let
define us the set

PT := {x ∈ C(T,R) : x(δT
+(t)) = x(t)}

where C(T,R) is the space of all real valued continuous functions. Endowed with the norm

‖x‖ = max
t∈[t0,δT

+(t0)]T
|x(t)|,

then PT is a Banach space.

Lemma 2.14. x(t) ∈ PT is a solution of (1) if and only if

x(t) = λ

∫ δT
+(t)

t
G(t, s)b(s) f (x(h(s)))∇s

where G(t, s) =
êa(s)(t, ρ(s))

êa(t)(t, δT
+(t)) − 1

is the Green’s function of the problem (1).
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Proof. Let x(t) ∈ PT be a solution of (1). We can reform the equation (1) as

x∇(t) = a(t)[x(ρ(t)) + ν(t)x∇(t)] + λb(t) f (x(h(t)))
(1 − ν(t)a(t))x∇(t) = a(t)x(ρ(t)) + λb(t) f (x(h(t)))

x∇(t) =
a(t)

1 − ν(t)a(t)
x(ρ(t)) + λ

b(t) f (x(h(t)))
1 − ν(t)a(t)

x∇(t) + 	ν(a(t))x(ρ(t)) = λêa(t)(t, ρ(t))b(t) f (x(h(t)))

Multiply both sides of the above equation by ê	νa(t)(t, t0) and then integrate from t to δT
+(t), we obtain∫ δT

+(t)

t
[x(s)ê	νa(s)(s, t0)]∇∇s = λ

∫ δT
+(t)

t
ê	νa(s)(s, t0)êa(s)(s, ρ(s))b(s) f (x(h(s)))∇s.

We arrive at

[ê	νa(t)(δT
+(t), t0) − ê	νa(t)(t, t0)]x(t) = λ

∫ δT
+(t)

t
êa(s)(t0, s)êa(s)(s, ρ(s))b(s) f (x(h(s)))∇s.

Dividing both sides of the above equation by êa(t)(t, t0) and using Lemma 2.2 we have

x(t)[ê	νa(t)(δT
+(t), t) − 1] = λ

∫ δT
+(t)

t
êa(s)(t, ρ(s))b(s) f (x(h(s)))∇s.

We get

x(t) = λ

∫ δT
+(t)

t

êa(s)(t, ρ(s))

êa(t)(t, δT
+(t)) − 1

b(s) f (x(h(s)))∆s

The proof is complete.
If we define θ := ea(t0)(t0, δT

+(t0)) we have

0 < α :=
a 2©(t0)

a2(t0)(θ − 1)
≤ G(t, s) ≤

θ
θ − 1

:= β for s ∈ [t, δT
+(t)]T, (10)

and

G(δT
±(t), δT

±(s)) = G(t, s) for t ∈ T∗, s ∈ [t, δT
+(t)]T. (11)

Lemma 2.15. Let G(t, s) be the Green’s function of the problem (1). Then∫ δT
+(t)

t
a(s)G(t, s)∇s = −1

Proof. We consider the following problem

x∇(t) = a(t)x(t) − a(t), t ∈ T (12)

for λ = 1 and b(t) f (x(h(t))) = −a(t) in the problem (1). By Lemma 2.14, x(t) = −

∫ δT
+(t)

t
a(s)G(t, s)∇s is the

solution of the problem (12). Also, x(t) = 1 is the solution of this problem. Now, we show that x(t) = 1 is
the unique solution. If the problem (12) has two solutions such that y1(t), y2(t), then we get

y∇1 (t) = a(t)y1(t) − a(t)

y∇2 (t) = a(t)y2(t) − a(t).
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So we have the first order problem (y1 − y2)∇(t) = a(t)(y1(t) − y2(t)), again by Lemma 2.14 we obtain

(y1 − y2)(t) =

∫ δT
+(t)

t
0G(t, s)∇s = 0, since b(t) f (x(h(t)) = 0. This implies y1(t) = y2(t) for t ∈ T. Thus, the

problem (12) has only unique solution x(t) = 1. Consequently,∫ δT
+(t)

t
a(s)G(t, s)∇s = −1

Define K be a cone in PT by

K := {x ∈ PT : x(t) ≥ γ‖x‖,∀t ∈ [t0, δ
T
+(t0)]T}

where γ :=
a 2©(t0)
θa2(t0)

and an operator A : K→ PT by

Ax(t) = λ

∫ δT
+(t)

t
G(t, s)b(s) f (x(h(s)))∇s.

Also define the numbers

B :=
∫ δT

+(t0)

t0

b(s)∇s, C := sup
t∈[t0,δT

+(t0)]T

a(t). (13)

Lemma 2.16. A(K) ⊂ K and A : K→ K is compact and continuous.

Proof. By using (11), b is ∇-periodic, h is periodic in shifts and Theorem 2.10 and substituting ν(s) = δT
+(t) in

(8) for x ∈ K, we have

(Ax)(δT
+(t)) = λ

∫ δT
+(δT

+(t))

δT
+(t)

G(δT
+(t), s)b(s) f (x(h(s)))∇s

= λ

∫ δT
+(t)

t
G(δT

+(t), δT
+(s))b(δT

+(s))δ∇T
+ (s) f (x(h(δT

+(s))))∇s

= λ

∫ δT
+(t)

t
G(t, s)b(s) f (x(h(s)))∇s

= Ax(t).

We show that, for x ∈ K,

Ax(t) ≥ λ

∫ δT
+(t)

t

a 2©(t0)
a2(t0)(θ − 1)

b(s) f (x(h(s)))∇s

=
a 2©(t0)
θa2(t0)

λ

∫ δT
+(t0)

t0

θ
θ − 1

b(s) f (x(h(s)))∇s

≥ γ‖Ax‖.

Therefore, A(K) ⊂ K.We will prove that A is continuous and compact. Firstly, we will consider the continuity
of A. Let xn ∈ K and ‖xn − x‖ → 0 as n→∞, the x ∈ K and |xn(t)− x(t)| → 0 as n→∞ for any t ∈ [t0, δT

+(t0)]T.
Because of continuity of f , for any t ∈ [t0, δT

+(t0)]T and ε∗ > 0, we have

‖Axn − Ax‖ = max
t∈[t0,δT

+(t0)]T
|Axn − Ax|

≤ max
t∈[t0,δT

+(t0)]T
λ

∫ δT
+(t)

t
G(t, s)b(s)| f (xn(h(s))) − f (x(h(s)))|∇s

≤ λε∗β

∫ δT
+(t0)

t0

b(s)∇s = ε
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where ε∗ =
ε
λβB

. Thus A is continuous on K.

Next, we prove that A is a compact operator. It is equal to proving that A maps bounded sets in to
relatively compact sets.

Let S ⊂ K be an arbitrary bounded set in K, then there exists a number R > 0 such that ‖x‖ < R for any
x ∈ K. We prove AS is compact. In fact, for any {xn}n∈N ∈ K and t ∈ [t0, δT

+(t0)]T, we have

‖Axn‖ ≤ max
t∈[t0,δT

+(t0)]T
λ

∫ δT
+(t)

t
G(t, s)b(s)| f (xn(h(s)))|∇s

≤ λβ

∫ δT
+(t0)

t0

b(s)| f (xn(h(s)))|∇s := D.

Now, we find the ∇-derivative of the operator Ax(t)

(Ax)∇(t) = λ

(
1

êa(t)(t, δT
+(t)) − 1

)∇ ∫ δT
+(t)

t
êa(t)(t, ρ(s))b(s) f (x(h(s)))∇s (14)

+ λ
1

êa(t)(ρ(t), δT
+(ρ(t))) − 1

∫ δT
+(t)

t
êa(t)(t, ρ(s))b(s) f (x(h(s)))∇s

∇ (15)

Firstly, we consider the ∇-derivative in (14)

(
1

êa(t, δT
+(t)) − 1

)∇
= −

ê∇a (t, δT
+(t))

(êa(t, δT
+(t)) − 1)(êa(ρ(t), δT

+(ρ(t))) − 1)

= −
a(t)[êa(t, δT

+(t)) − êa(ρ(t), δT
+(ρ(t)))]

(êa(t, δT
+(t)) − 1)(êa(ρ(t), δT

+(ρ(t))) − 1)

= a(t)
[

1
êa(t, δT

+(t)) − 1
−

1
êa(ρ(t), ρ(δT

+(t))) − 1

]

Secondly, we consider the ∇-derivative in (15)

∫ δT
+(t)

t
êa(t)(t, ρ(s))b(s) f (x(h(s)))∇s

∇

=

∫ τ

t
êa(t)(t, ρ(s))b(s) f (x(h(s)))∇s +

∫ δT
+(t)

τ
êa(t)(t, ρ(s))b(s) f (x(h(s)))∇s

∇
=

(∫ τ

s
êa(t)(t, ρ(s))b(s) f (x(h(s)))∇s

)∇
+

(∫ t

δT
−

(τ)
êa(t)(t, ρ(δT

+(s))b(s) f (x(h(s)))∇s
)∇

= −êa(t)(ρ(t), ρ(t))b(t) f (x(h(t))) +

∫ τ

t
a(t)êa(t)(t, ρ(s))b(s) f (x(h(s)))∇s

+ êa(t)(ρ(t), ρ(δT
+(t)))b(t) f (x(h(t))) +

∫ t

δT
−

(τ)
a(t)êa(t)(t, ρ(δT

+(s))b(s) f (x(h(s)))∇s

= b(t) f (x(h(t)))[êa(t)(ρ(t), ρ(δT
+(t))) − 1] − a(t)

∫ δT
+(t)

t
êa(t)(t, ρ(s)b(s) f (x(h(s)))∇s.
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Thus, we obtain the (Ax)∇(t) by using above equations

(Ax)∇(t) = λa(t)
[

1
êa(t, δT

+(t)) − 1
−

1
êa(ρ(t), ρ(δT

+(t))) − 1

] ∫ δT
+(t)

t
êa(t)(t, ρ(s))b(s) f (x(h(s)))∇s

+ λ
1

êa(t)(ρ(t), ρ(δT
+(t))) − 1

(
b(t) f (x(h(t)))[êa(t)(ρ(t), ρ(δT

+(t))) − 1]

− a(t)
∫ δT

+(t)

t
êa(t)(t, ρ(s)b(s) f (x(h(s)))∇s


= a(t)Ax(t) + λb(t) f (x(h(t))).

Consequently, we have

‖(Axn)∇‖ ≤ max
t∈[t0,δT

+(t0)]T
|a(t)Axn(t) + λb(t) f (xn(h(t)))|

≤ ‖Axn‖ max
t∈[t0,δT

+(t0)]T
|a(t)| + λ max

t∈[t0,δT
+(t0)]T

|b(t)|| f (t, xn(h(t)))|

≤ CD + λ max
t∈[t0,δT

+(t0)]T
|b(t)|| f (xn(h(t)))| := L

which imply that {Axn}n∈N and {A∇xn}n∈N are uniformly bounded on [t0, δT
+(t0)]T. There exists a subsequence

of {Axn}n∈N converges uniformly on [t0, δT
+(t0)]T, namely, A(S) is compact. The proof is complete.

Lemma 2.17. Existence of positive periodic solutions in shifts δ± of (1) is equivalent to the existence of fixed point
problem of Aλ in K.

The proof of the Lemma 2.17 is straight forward and hence omitted.
Let X be a Banach space and K be a cone in X. A mapping ψ is said to be a concave nonnegative

continuous functional on K if ψ : K→ [0,∞) is continuous and

ψ(µx + (1 − µ)y) ≥ µψ(x) + (1 − µ)ψ(y), x, y ∈ K, µ ∈ [0, 1].

Let a, b, c > 0 be constants with K and X as above. Define the convex sets Ka, K(φ, r) and K(ψ, b, c) by

Ka = {x ∈ K : ‖x‖ < a}, K(φ, r) = {x ∈ K : φ(x) < r} and K(ψ, b, c) = {x ∈ K : ψ(x) ≥ b, ‖x‖ ≤ c}.

In order to follow the main results of this paper easily, now we state the following fixed point theorems
in a cone.

Theorem 2.18. (Guo-Krasnoselskiı̆ Fixed Point Theorem [8]) Let X be a Banach space, K ⊂ X be a cone, and suppose
that Ω1 and Ω2 are open, bounded subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose further that A : K∩(Ω2\Ω1)→ K
is a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or

(ii) ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2

holds. Then A has a fixed point in K ∩ (Ω2 \Ω1).

Theorem 2.19. (Avery-Henderson Fixed Point Theorem [30]) Let K be a cone in a real Banach space E. If µ and φ
are increasing, nonnegative, continuous functionals on K, let θ be a nonnegative continuous functional on K with
θ(0) = 0 such that for some positive constants r and M,

φ(u) ≤ θ(u) ≤ µ(u) and ‖u‖ ≤Mφ(u)

for all u ∈ K(φ, r). Suppose that there exist positive numbers p < q < r such that

θ(λu) ≤ λθ(u) for all 0 ≤ λ ≤ 1 and u ∈ ∂K(θ, q).

If A : K(φ, r)→ K is a completely continuous operator satisfying
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(i) φ(Au) > r for all u ∈ ∂K(φ, r),

(ii) θ(Au) < q for all u ∈ ∂K(θ, q),

(iii) K(µ, q) , ∅ and µ(Au) > p for all u ∈ ∂K(µ, p),

then A has at least two fixed points u1 and u2 such that

p < µ(u1) with θ(u1) < q and q < θ(u2) with φ(u2) < r.

Theorem 2.20. (Leggett-Williams Fixed Point Theorem [28]) Let K be a cone in Banach space X. Suppose A : Kr →

Kr be a completely continuous operator and ψ be concave nonnegative continuous functional on K with ψ(u) ≤ u for
all u ∈ Kr. If there exist 0 < p < q < l < r such that the following conditions holds:

(i) {u ∈ K(ψ, q, l) : ψ(u) > q} , ∅ and ψ(Au) > q for all u ∈ K(ψ, q, l);

(ii) ‖Au‖ < p for all ‖u‖ ≤ p;

(iii) ψ(Au) > q for all u ∈ K(ψ, q, r) with ‖Au‖ > l.

Then A has at least three positive solutions u1,u2 and u3 in Kr satisfying

‖u1‖ < p, ψ(u2) > q, p < ‖u3‖ with ψ(u3) < q.

3. Main Results

In this section, we use the notation i0 =number of zeros in the set f0, f∞ and i∞ =number of infinities in

the set f0, f∞ as in the reference [10], where f0 = lim
u→0+

f (u)
u

and f∞ = lim
u→∞

f (u)
u

. It is clear that i0, i∞ = 0, 1 or 2.

Then we shall show that the problem (1) has i0 or i∞ positive periodic solution(s) in shifts δ±.

Theorem 3.1. The problem (1) has at least one positive T-periodic solution in shifts δ± in the case i0 = 1 and i∞ = 1.

Proof. First, we consider the case f0 = 0 and f∞ = ∞. Since f0 = 0, then there exists R1 > 0 such that f (x) ≤ εx
for 0 < x < R1, where ε satisfies

ε ≤ (λβB)−1.

If x ∈ K with ‖x‖ = R1, then

‖Ax‖ ≤ λβ

∫ δT
+(t0)

t0

b(s) f (x(h(s)))∇s

≤ λβ

∫ δT
+(t0)

t0

b(s)εx(h(s))∇s

≤ λβε‖x‖
∫ δT

+(t0)

t0

b(s)∇s

= λβεB‖x‖ ≤ ‖x‖.

It follows that if ΩR1 = {x ∈ PT : ‖x‖ < R1}, then ‖Ax‖ ≤ ‖x‖ for x ∈ K ∩ ∂ΩR1 .
Since f∞ = ∞, there exists R′2 > 0 such that f (x) ≥ ηx for x ≥ R′2 where η > 0 is chosen such that

η ≥ (λαγB)−1.
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Set R2 = max{2R1,
R′2
γ
} and ΩR2 = {x ∈ PT : ‖x‖ < R2}.

If x ∈ K with ‖x‖ = R2 then x(t) ≥ γ‖x‖ ≥ R2. So that

Ax(t) ≥ λα

∫ δT
+(t0)

t0

b(s) f (x(h(s)))∇s

≥ λα

∫ δT
+(t0)

t0

b(s)ηx(h(s))∇s

≥ λαη

∫ δT
+(t0)

t0

b(s)γ‖x‖∇s

= λαηγB‖x‖
≥ ‖x‖.

In other words if x ∈ K∩∂ΩR2 , then ‖Ax‖ ≥ ‖x‖. Thus by the Krasnoselskiı̆’s Fixed Point Theorem, it follows
that A has a fixed point x in x ∈ K ∩ (ΩR2\ΩR1 ) with R1 ≤ x ≤ R2.
Now we consider the case f0 = ∞ and f∞ = 0. Since f0 = ∞, there exists R3 > 0 such that f (x) ≥ mx for
0 < x ≤ R3, where m is such that

m ≥ (λαγB)−1.

If x ∈ K with ‖x‖ = R3, then we have

Ax(t) ≥ λ

∫ δT
+(t0)

t0

αb(s) f (x(h(s)))∇s

≥ λα

∫ δT
+(t0)

t0

b(s)mx(h(s))∇s

≥ λα

∫ δT
+(t0)

t0

b(s)mγ‖x‖∇s

≥ λαmγB‖x‖
≥ ‖x‖.

Thus we let ΩR3 = {x ∈ PT : ‖x‖ < R3}, so that ‖Ax‖ ≥ ‖x‖, for x ∈ K ∩ ∂ΩR3 .
Next consider f∞ = 0. By definition there exists R′4 > 0 such that f (x) ≤ δx for x ≥ R′4, where δ > 0 satisfies

δ ≤ (λβB)−1. (16)

Suppose, f is bounded. Then f (x) ≤ C for all x ≥ 0 for some constant C > 0. Pick

R4 = max{2R3, λβCB}.

If x ∈ K with ‖x‖ = R4, then

‖Ax(t)‖ ≤ λβ

∫ δT
+(t0)

t0

b(s) f (x(h(s)))∇s

≤ λβCB
≤ R4 = ‖x‖.
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Now suppose that f is unbounded. From f ∈ C((0,∞), (0,∞)) it is easy to know that there exists R4 ≥

max{2R3,R′4} such that f (x) ≤ f (R4) for 0 < x ≤ R4. If x ∈ K with ‖x‖ = R4, then by using (16) we have

Ax(t) ≤ λ

∫ δT
+(t0)

t0

βb(s) f (x(h(s)))∇s

≤ λβ

∫ δT
+(t0)

t0

b(s) f (R4)∇s

≤ λβδR4

∫ δT
+(t0)

t0

b(s)∇s

= λβδR4B
≤ R4 = ‖x‖.

Consequently, in either case we take ΩR4 = {x ∈ PT : ‖x‖ < R4}, so that for x ∈ K ∩ ∂ΩR4 , then ‖Ax‖ ≤ ‖x‖.
Thus by the Krasnoselskiı̆ Fixed Point Theorem, it follows that A has a fixed point x in K ∩ (ΩR4\ΩR3 ) with
R3 ≤ x ≤ R4. The proof is complete.

Now, we shall discuss the existence for the positive T-periodic solutions in shifts δ± for the problem (1)
under the condition i0 = 0 and i∞ = 0.

Theorem 3.2. Suppose that the following conditions hold:
(A1) There exists constant r′ > 0 such that f (x) ≤ r′Λ1 for 0 < x < r′, where Λ1 = (λβB)−1,
(A2) There exists constant s′ > 0 such that f (x) ≥ s′Λ2 for γs′ < x < s′, where Λ2 = (λαB)−1, with r′ < s′.
Then the problem (1) has at least one positive T-periodic solution in shifts δ± such that r′ ≤ ‖x‖ ≤ s′.

Proof. Without lost of generality, we assume r′ < s′. Let Ωr′ = {x ∈ PT : ‖x‖ < r′}, for any x ∈ K ∩ ∂Ωr′ .
In view of (A1), we have

Ax(t) ≤ λ

∫ δT
+(t0)

t0

βb(s) f (x(h(s)))∇s

≤ λβ

∫ δT
+(t0)

t0

b(s)r′Λ1∇s

= λβr′Λ1B = r′ = ‖x‖

which yields ‖Ax‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ωr′ .
Now, set Ωs′ = {x ∈ PT : ‖x‖ < s′}, for any x ∈ K ∩ ∂Ωs′ , we have γs′ < x(t) < s′, for t ∈ [t0, δT

+(t0)]. Hence, by
(A2) we can get

Ax(t) ≥ λ

∫ δT
+(t0)

t0

αb(s) f (x(h(s)))∇s

≥ λα

∫ δT
+(t0)

t0

b(s)s′Λ2∇s

= λαs′Λ2B
= s′ = ‖x‖.

Thus, we have ‖Ax‖ ≥ ‖x‖ for x ∈ K∩∂Ωs′ . Krasnoselskiı̆ Fixed Point Theorem guarantees that A has a fixed
point x in K ∩ (Ωs′\Ωr′ ). Moreover, it is a positive periodic solution in shifts δ± of the problem (1) such that
r′ ≤ ‖x‖ ≤ s′ The proof is complete.

Now, we will give the results of the existence for the positive T-periodic solution in shifts of the problem
(1) under i0 = 1 and i∞ = 0 or i0 = 0 and i∞ = 1.

Theorem 3.3. Suppose that f0 ∈ [0,Λ1) and f∞ ∈ ( 1
γΛ2,∞) hold. Then the problem (1) has at least one positive

T-periodic solution in shifts δ±.
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Proof. It is easy to see that under the assumptions, the conditions (A1) and (A2) in Theorem 3.2 are satisfied.
So the proof is omitted.

Theorem 3.4. Suppose that f0 ∈ ( 1
γΛ2,∞) and f∞ ∈ [0,Λ1) hold. Then the problem (1) has at least one positive

T-periodic solution in shifts δ±.

Proof. First, in the view of f0 ∈ ( 1
γΛ2,∞) for ε = f0 − 1

γΛ2 > 0, there exists a sufficiently small s′ > 0 such that

f (x)
x
≥ f0 − ε =

1
γ

Λ2 f or x ∈ (0, s′)

Thus, if x ∈ [γs′, s′], then one has

f (x) ≥
1
γ

Λ2x ≥
1
γ

Λ2γs′ = Λ2s′,

which yieds the condition (A2) in Theorem 3.2.
Next, by f∞ ∈ [0,Λ1), for ε = Λ1 − f∞ > 0 there exists a sufficiently large r′′ > s′ such that

f (x)
x
≤ f∞ + ε = Λ1 for x ∈ [r′′, f∞).

We consider two cases:
Case 1: Suppose that f is bounded, we say f (x) ≤M for x ∈ [0,∞). In this case, take sufficiently large r′ > 0
such that r′ ≥ max{ M

Λ1
, r′′} then we get

f (x) ≤M ≤ Λ1r′ for x ∈ [0, r′].

Then from the above inequality, the condition (A1) of Theorem 3.2 is satisfied.
Case2: Suppose that f is unbounded. Then from f ∈ C([0,∞), [0,∞)), we know that there is r′ > r′′ such
that

f (x) ≤ f (r′) for x ∈ [0, r′].

Since r′ > r′′, we have

f (x) ≤ f (r′) ≤ Λ1r′ for x ∈ [0, r′].

Thus, the condition (A2) of Theorem 3.2 is satisfied. Hence, from Theorem 3.2, the conclusion of this
theorem holds. The proof is complete.

Also we get the following two results.

Corollary 3.5. Suppose that f0 = 0 and condition (A2) in Theorem 3.2 hold. Then the problem (1) has at least one
positive T-periodic solution in shifts δ±.

Corollary 3.6. Suppose that f∞ = 0 and condition (A2) in Theorem 3.2 hold. Then the problem (1) has at least one
positive T-periodic solution in shifts δ±.

Theorem 3.7. Suppose that f0 ∈ (0,Λ1) and f∞ = ∞ hold. Then the problem (1) has at least one positive T-periodic
solution in shifts δ±.

Proof. Since f∞ = ∞, similar to the first part of Theorem 3.1 we get

‖Ax‖ ≥ ‖x‖ for x ∈ K ∩ ∂ΩR2 .

By f0 ∈ (0,Λ1), for ε = Λ1 − f0 > 0, there exists a sufficiently small r′ ∈ (0,R2) such that

f (x) ≤ ( f0 + ε)x = Λ1x ≤ Λ1.r′ f or x ∈ [0, r′].

Similar to the proof of Theorem 3.2, we obtain

‖Ax‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ωr′ .

Thus, we have that A has a fixed point x in K ∩ (ΩR2\Ωr′ ). The proof is complete.
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Theorem 3.8. Suppose that f0 = ∞ and f∞ ∈ (0,Λ1) hold. Then the problem (1) has at least one positive T-periodic
solution in shifts δ±.

Proof. First, in view of f0 = ∞, similar to the second part of Theorem 3.1, we have

‖Ax‖ ≥ ‖x‖ for x ∈ K ∩ ∂ΩR3 .

Next, by f∞ ∈ (0,Λ1), similar to the second part of the proof of Theorem 3.4 and Theorem 3.2, we have

‖Ax‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ωr′ ,

where r′ > R3. Thus, the problem (1) has at least one positive T-periodic solution in shifts δ± and the proof
is complete.

Also, we get the following corollaries easily.

Corollary 3.9. Suppose that f∞ = ∞ and condition (A1) in Theorem 3.2 hold. Then the problem (1) has at least one
positive T-periodic solution in shifts δ±.

Corollary 3.10. Suppose that f0 = ∞ and condition (A1) in Theorem 3.2 hold. Then the problem (1) has at least one
positive T-periodic solution in shifts δ±.

Now, we will give the existence results of multiple positive T-periodic solutions in shifts δ± for the problem
(1) under the conditions i0 = 0 and i∞ = 2 or i0 = 2 and i∞ = 0. The following two theorems are easily
proved combining the proof of Theorem 3.1 and Theorem 3.2.

Theorem 3.11. Suppose that i0 = 0 and i∞ = 2 condition (A1) of Theorem 3.2 hold. Then the problem (1) has at
least two positive T-periodic solutions x1, x2 in shifts δ± such that 0 < ‖x1‖ < r′ < ‖x2‖.

Theorem 3.12. Suppose that i0 = 2 and i∞ = 0 condition (A2) of Theorem 3.2 hold. Then the problem (1) has at
least two positive T-periodic solutions x1, x2 in shifts δ± such that 0 < ‖x1‖ < s′ < ‖x2‖.

Now, we will give the existence of two positive T-periodic solutions in shifts δ± under the more general
case. To get this result, we define the nonnegative increasing continuous functionals θ,ϕ and Φ by

θ(x) = min
t∈[t0,δT

+(t0)]T
x(t), ϕ(x) = max

t∈[t0,δT
+(t0)]T

x(t), Φ(x) = max
t∈T

x(t).

For each x ∈ K, θ(x) ≤ ϕ(x) = Φ(x). Also we define, for each d > 0, the set K(ψ, d) = {x ∈ K : ψ(x) < d}, for a
nonnegative continuous functional ψ on a cone K of areal Banach space PT.

In additional, for each x ∈ K, θ(x) = x(ξ) ≥ γ‖x‖ where ξ ∈ [t0, δT
+(t0)]T. Thus ‖x‖ ≤

1
γ
θ(x) for all x ∈ K.

Finally, we also note that ϕ(λx) = λϕ(x), 0 ≤ λ ≤ 1 and x ∈ ∂K(ϕ, b′).

Theorem 3.13. Suppose that there exist positive numbers 0 < a′ < b′ < c′ such that 0 < a′ < α
β b′ < γαβ c′. Assume

f (x) satisfies the following conditions:

(i) f (x) > c′
λαB , for x ∈ [c′, c′

γ ],

(ii) f (x) < b′
λβB , for x ∈ [0, b′

γ ],

(iii) f (x) > a′
λαB , for x ∈ [γa′, a′

γ ].

Then the problem (1) has at least two positive T-periodic solutions x1, x2 in shifts δ± such that

a′ < max
t∈T

x1(t) with max
t∈[t0,δT

+(t0)]T
x1(t) < b′ andb′ < max

t∈[t0,δT
+(t0)]T

x2(t) with min
t∈[t0,δT

+(t0)]T
x2(t) < c′.
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Proof. By the definition of the operator A and its properties, it suffices to show that the conditions of Theorem
2.19 hold with respect to A. We first show that if x ∈ ∂K(θ, c′), then θ(Ax) > c′. Indeed, if x ∈ ∂K(θ, c′),
then θ(x) = min

t∈[t0,δT
+(t0)]T

x(ξ) < c′, where ξ ∈ [t0, δT
+(t0)]T, one gets x(t) ≥ c′ for t ∈ [t0, δT

+(t0)]T. If we recall that

‖x‖ ≤ 1
γθ(x) ≤ 1

γc′, for t ∈ [t0, δT
+(t0)]T. As a consequence of (i), f (x(t)) > c′

λαB for t ∈ [t0, δT
+(t0)]T.

Also, Ax ∈ K, so we get

θ(Ax) = min
t∈[t0,δT

+(t0)]T
Ax(t)

= min
t∈[t0,δT

+(t0)]T
λ

∫ δT
+(t)

t
G(t, s)b(s) f (x(h(s)))∇s

≥ λα

∫ δT
+(t0)

t0

b(s)
c′

λαB
∇s

≥ λα
c′

λαB
B = c′.

Next, we verifyϕ(Ax) < b′ for x ∈ ∂K(ϕ, b′). Let us choose x ∈ ∂K(ϕ, b′), thenϕ(x) = max
t∈[t0,δT

+(t0)]T
x(t) = x(η) = b′,

where η ∈ [t0, δT
+(t0)]T. This implies 0 ≤ x(t) ≤ b′, for t ∈ [t0, δT

+(t0)]T and since x ∈ K we also have

0 ≤ x(t) ≤ ‖x‖ ≤
1
γ

x(t) ≤
1
γ

x(η) =
1
γ

b′ for t ∈ [t0, δ
T
+(t0)]T.

Using (ii), f (x(t)) ≤ b′
λβB , for t ∈ [t0, δT

+(t0)]T.
Ax ∈ K, and so

ϕ(Ax) = max
t∈[t0,δT

+(t0)]T
Ax(t)

= max
t∈[t0,δT

+(t0)]T
λ

∫ δT
+(t)

t
G(t, s)b(s) f (x(h(s)))∇s

≥ λα

∫ δT
+(t0)

t0

b(s)
b′

λβB
∇s

≥ λβ
b′

λβB
B = b′.

Finally, we prove that K(Φ, a′) , ∅ and Φ(Ax) > a′, for all x ∈ ∂K(Φ, a′).
In fact, the constant function a′

2 ∈ K(Φ, a′). Moreover, for x ∈ ∂K(Φ, a′), we have Φ(x) = maxt∈T x(t) =
maxt∈[t0,δT

+(t0)]T x(t) = x(η) = a′.
This impliesγa′ = γ‖x‖ ≤ x(t) ≤ 1

γx(t) ≤ 1
γx(η) = 1

γa′, for t ∈ [t0, δT
+(t0)]T. Using assumption (iii), f (x(t)) > a′

λαB ,
for t ∈ [t0, δT

+(t0)]T. As before Ax ∈ K, and so

Φ(Ax) = max
t∈T

Ax(t)

= max
t∈T

λ

∫ δT
+(t)

t
G(t, s)b(s) f (x(h(s)))∇s

≥ λα

∫ δT
+(t0)

t0

b(s)
a′

λαB
∇s

≥ λα
a′

λαB
B = a′.

Thus, by Theorem 2.19 there exists two fixed points of A which are at least two positive T-periodic solutions
x1, x2 in shifts δ±, belonging to K(θ, c′), of the problem (1) such that

a′ < Φ(x1) with ϕ(x1) < b′ and b′ < ϕ(x2) with θ(x2) < c′.
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The proof is complete.
Now, we will give the nonexistence results for the problem (1).

Theorem 3.14. If i0 = 0 or i∞ = 0 then the problem (1) has no positive T-periodic solution in shifts δ± for sufficiently
large or small λ > 0, respectively.

Proof. If i0 = 0, then f0 > 0 and f∞ > 0. It follows that there exist positive numbers δ1, δ2, r1 and r2 such that
r1 > r2 and

f (x) ≥ δ1x for x ∈ [0, r1],

f (x) ≥ δ2x for x ∈ [r2,∞].

Let δ = min{δ1, δ2, min
r1≤x≤r1

f (x)
x
} > 0. Thus, we have

f (x) ≥ δx for x ∈ [0,∞].

Assume y(t) is a positive periodic solution in shift δ± of the problem (1). We will show that this leads to a

contraction for λ > λ0 where λ0 =
1
αδB

.

Since Ay(t) = y(t) for t ∈ [t0, δT
+(t0)]T we have

‖y‖ = ‖Ay‖ ≥ λ

∫ δT
+(t0)

t0

αb(s) f (y(h(s)))∇s

≥ λαδ‖y‖
∫ δT

+(t0)

t0

b(s)∇s

> ‖y‖,

which is a contradiction.
If i∞ = 0, then f0 < ∞ and f∞ < ∞. It follows that there exist positive numbers ε1, ε2, r1 and r2 such that
r1 < r2,

f (x) ≤ ε1x for x ∈ [0, r1],

f (x) ≤ ε2x for x ∈ [r2,∞).

Let ε = max{ε1, ε2, max
x∈[r1,r2]

f (x)
x
} > 0. Thus, we have

f (x) ≤ εx for x ∈ [0,∞).

Assume y(t) is a positive periodic solution in shift δ± of the problem (1). We show that this leads to a
contraction for 0 < λ < λ1, where λ1 = 1

βεB . Since Ay(t) = y(t) for t ∈ [t0, δT
+(t0)]T we have

‖y‖ = ‖Ay‖ ≤ λ

∫ δT
+(t0)

t0

βb(s) f (y(h(s)))∇s

≤ λβε‖y‖
∫ δT

+(t0)

t0

b(s)∇s

< ‖y‖,

which is a contraction. The proof is complete.
By using Leggett-Williams multiple fixed point theorem [28], we will prove the existence of at least three

positive solutions of the problem (1).
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Theorem 3.15. Suppose that there exist constants 0 < p < q such that

(H1) f (x) ≤ (θ−1)p
θ , for x ∈ [0, p],

(H2) f (x) ≥ q
γ , for x ∈ [q, q

γ ],

(H3) one of the following conditions holds:

(a) lim sup
x→∞

max
t∈[t0,δT

+(t0)]T

f (x)
a(t)x

> −ξ

(b) there exists a number r > q
γ such that f (x) < (θ−1)r

θ , for x ∈ [0, r].

Then Eq. (1) has at least three positive T-periodic solutions for

θ − 1
θB

< λ <
1

ξ sup
t∈[t0,δT

+(t0)]T

b(t)

where ξ = δT
+(δT

+(t0)) − δT
+(t0).

Proof. By the definition of operator A and its properties, it suffices to show that the conditions of Theorem
2.20 hold with respect to A. We first show that if (a) holds, then there exists a number r > q

γ such that

A : Kr → Kr. From (H3)-(a), it follows that there exist an ε ∈ (−ξ, 0) and δ > 0 such that f (x) ≤ a(t)εx for
x > δ. Let

Γ := max
0≤x≤δ

f (x).

Then f (x) ≤ a(t)εx + Γ for x ≥ 0. Choose

r > max
{

q
γ
,

γθξ

(θ − 1)(ξ + ε)

}
.

Then for x ∈ Kr we have

‖Ax(t)‖ = sup
t∈[t0,δT

+(t0)]T

λ

∫ δT
+(t)

t
G(t, s)b(s) f (x(h(s)))∇s

≤ λ sup
t∈[t0,δT

+(t0)]T

b(t) sup
t∈[t0,δT

+(t0)]T

∫ δT
+(t)

t
G(t, s)[a(t)εx(h(s)) + Γ]∇s

≤ λ sup
t∈[t0,δT

+(t0)]T

b(t)

 sup
t∈[t0,δT

+(t0)]T

∫ δT
+(t)

t
G(t, s)a(t)ε‖x‖∇s + sup

t∈[t0,δT
+(t0)]T

∫ δT
+(t)

t
Γ∇s


≤ λ sup

t∈[t0,δT
+(t0)]T

b(t)
[
γθξ

θ − 1
− r

]
<

1
ξ

[
γθξ

θ − 1
− r

]
< r.

Next, we verify that if there exists a positive number r′ such that if f (x) < (θ−1)r′

θ for x ∈ [0, r′], then



E. Çetin, F. S. Topal / Filomat 30:9 (2016), 2551–2571 2569

A : Kr → Kr. Indeed, if x ∈ Kr then we have

‖Ax(t)‖ = sup
t∈[t0,δT

+(t0)]T

λ

∫ δT
+(t)

t
G(t, s)b(s) f (x(h(s)))∇s

≤ λ sup
t∈[t0,δT

+(t0)]T

b(t) sup
t∈[t0,δT

+(t0)]T

∫ δT
+(t)

t
G(t, s)

(θ − 1)r′

θ
∇s

≤ λr′ sup
t∈[t0,δT

+(t0)]T

b(t) sup
t∈[t0,δT

+(t0)]T

∫ δT
+(t)

t
∇s

≤ λr′ sup
t∈[t0,δT

+(t0)]T

b(t)ξ

< r′

thus, Ax ∈ Kr. Hence we have shown in the previous claim if (a) or (b) holds, then there exists a number
r with r > q

γ such that A : Kr → Kr. It is also note from (H1) with r′ = p that A : Kp → Kp. Therefore the
condition (ii) of Leggett-Williams fixed point theorem is satisfied.
Now, we define a nonnegative continuous function ψ on K by ψ(x) = mint∈[t0,δT

+(t0)]T x(t). Then ψ(x) ≤ ‖x‖.
Let l =

q
γ and ϑ0(t) = ϑ0 is any given number satisfying q < ϑ0 < l. Then ϑ0 ∈ {x : x ∈ K(ψ, q, l), ψ(x) > q}.

Further, for x ∈ K(ψ, q, l), we have by (H2)

ψ(Ax) = min
t∈[t0,δT

+(t0)]T
λ

∫ δT
+(t)

t
G(t, s)b(s) f (x(h(s)))∇s

≥ αλ

∫ δT
+(t0)

t0

b(s) f (x(h(s)))∇s

≥
αλq
γ

∫ δT
+(t0)

t0

b(s)∇s

> q.

Finally, we assert that if x ∈ K(ψ, q, l) and ‖Ax‖ > q
γ then ψ(Ax) > q.

Suppose that x ∈ K(ψ, q, l) and ‖Ax‖ > q
γ . Then we have

l =
q
γ
< ‖Ax‖ ≤

θλ
θ − 1

∫ δT
+(t0)

t0

b(s) f (x(h(s)))∇s

which in turn implies that

ψ(Ax) ≥
a 2©(t0)

a2(t0)(θ − 1)
λ

∫ δT
+(t0)

t0

b(s) f (x(h(s)))∇s

≥
a 2©(t0)
θa2(t0)

‖Ax‖

≥ γ‖Ax‖
≥ q.

Therefore, the condition (iii) of Leggett-Williams fixed point theorem is satisfied.
To sum up, the hypothesises of Leggett-Williams fixed point theorem are satisfied. Hence the Eq. (1) has at
least three positive T-periodic solutions x1, x2, x3 in shifts δ± such that

‖x1‖ < p, q < min
t∈[t0,δT

+(t0)]T
x2(t) and ‖x3‖ > q with min

t∈[t0,δT
+(t0)]T

x3(t) < q.

The proof of Theorem 3.15 is complete.
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Theorem 3.16. Suppose that there exist constants 0 < p1 < q1 <
q1

γ < p2 < q2 <
q2

γ < p3 < ... < pn < qn, n ∈ N,
such that the following conditions are satisfied:

(i) f (x) ≤ (θ−1)pi

θ , for x ∈ [0, pi],

(ii) f (x) ≥ qi

γ , for x ∈ [qi,
qi

γ ].

Then Eq. (1) has at least 2n − 1 positive periodic solutions in shifts δ±.

Proof. When n = 1, it is clear that Theorem 3.2 holds so the operator A has at least one fixed point. When
n = 2, it is clear that Theorem 3.15 holds. Then we can obtain at least three positive T-periodic solutions in
shifts δ±. Following this way, we finish the proof by induction. The proof is complete.

Example 3.17. Let T = {3n
}n∈N0 be a periodic time scale in shift δ±(P, t) = P±t with period P = 3. We consider the

dynamic equation (1) with a(t) = −1/6t, b(t) = 1/8t and h(t) = exp(−1)ln t/ ln 3.

The operators δ−(s, t) = t/s and δ+(s, t) = ts are backward and forward shift operators for (s, t) ∈ D± and
here T∗ = T, the initial point t0 = 1.If we consider the functions a(t), b(t) and h(t) in equation (1), we find
T = 32. It is easy to see that a(t) and b(t) functions are ∇-periodic in shifts with period 9 and the nonnegative
function h(t) is periodic in shifts with period 9. Also a(t) is negative and ν-regressive function and b(t) is

nonnegative and satisfies
∫ δT

+(1)

1 b(s)∇s =
∫ 9

1 b(s)∇s > 0.
We can calculate

B =

∫ 9

1

1
8t
∇s =

∫ 3

1

1
8t
∇s +

∫ 9

3

1
8t
∇s =

1
6
,

θ = êa(t0)(t0, δ
T
+(t0)) = êa(1)(1, 9) = exp

{
−

∫ 1

9

3
2t

log(1 +
t
9

)∇s
}

= exp(log
4
3

+ log 2) =
8
3
,

a 2©(1) =
a2(1)

1 − 2a(1)
3

=
1

36

1 + 1
9

=
1
40
.

Thus we obtain α = 27
50 , β = 8

5 and γ = 27
80 .

(i) Consider the problem (1) with the function f (u) = u2. Since

lim
u→0+

f (u)
u

= lim
u→0+

u2

u
= 0, lim

u→∞

f (u)
u

= lim
u→∞

u2

u
= ∞,

then using Theorem 3.1, the problem (1) has at least one positive 9-periodic solution in shifts δ±.
(ii) Consider the problem (1) with the function f (u) =

√
u. Since

lim
u→0+

f (u)
u

= lim
u→0+

√
u

u
= ∞, lim

u→∞

f (u)
u

= lim
u→∞

√
u

u
= 0,

then using Theorem 3.1, the problem (1) has at least one positive 9-periodic solution in shifts δ±.
(iii) Consider the problem (1) with the function

f (t, x) =

 72(x − 1) + 7, x ≥ 1;
14x2

1 + x
, 0 ≤ x < 1.

We can compute the numbers Λ1 = 15
4 and Λ2 = 100

9 . If we choose r′ = 1
10 the function f satisfies

f (x) < 14
110 <

15
40 = r′Λ1 for 0 < x < 1

10 . If we choose s′ = 160
27 the function f satisfies f (x) > 72 > 160

27
100
9 = s′Λ2

for 2 < x < 160
27 .

All conditions of Theorem 3.2 are satisfied. Thus, the problem (1) has at least one positive 9-periodic
solution in shifts δ± such that 1

10 < ‖x‖ <
160
27 .
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