
Filomat 30:9 (2016), 2375–2387
DOI 10.2298/FIL1609375F

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. This article first generalizes the ordinary fuzzy hypergraphs to generalized fuzzy hypergraphs
and it makes a connection between generalized fuzzy hypergraphs and fuzzy hyperstructures. We con-
struct a partial fuzzy hypergroupoid associated with it, giving some properties of the associated fuzzy
hyperstructure. Moreover, we construct higher order fuzzy hypergroupoids and study their properties.
Finally, by considering a regular equivalence relation on a (g-f)p-hypergroupoid, we define a quotient (g-f)p-
hypergroupoid and we investigate some relationships between diagonal product of hypergroupoids and
p-product of (g-f)-hypergraphs.

1. Introduction and Preliminaries

The term hypergraph was coined by Berge [3, 5], following a remark by Jean-Marie Pal who had used
the word hyperedge in a seminar. In 1976, Berge enriched the field once more with his lecture notes [6],
also see [4]. After that, many researchers in the field of hyperstructure theory tried to make connections
between hypergraphs and hyperstructures (see for instance [7, 8, 10–12]). In [14], Sen et al. introduced and
studied fuzzy semihypergroups by using the concept of fuzzy hyperoperation. Fuzzy hypergraphs as a
generalization of fuzzy graphs have been studied by many researchers (see for instance [1, 2, 9]). In [13],
there is a very good presentation of fuzzy graph and fuzzy hypergraph theory. In this article, we extend
the concept of fuzzy hypergraphs into generalized fuzzy hypergraphs and we will present a new connection
between generalized fuzzy hypergraphs and fuzzy hyperstructures. First of all, we recall some notions and
results of fuzzy set theory and fuzzy hyperstructures which will be used throughout this article.

A fuzzy subset of a non-empty set X is a mapping µ : X −→ I, where I is the unit interval [0, 1] ⊆ R. A
fuzzy subset µ of X is called empty (denoted by µ = ∅) if µ(x) = 0, for all x ∈ X. The set of all fuzzy subsets of
X will be denoted by IX. For each µ, ν ∈ IX we say ν ⊆ µ if ν(x) ≤ µ(x), for all x ∈ X. Let µα ∈ IX, in the index

set Λ, we define (µ ∪ ν)(x) = max{µ(x), ν(x)}, (µ ∩ ν)(x) = min{µ(x), ν(x)}, (µ\ν)(x) =

{
µ(x) if µ(x) > ν(x),
0 else

and (
⋃
α∈Λ

µα)(x) =
∨
α∈Λ
{µα(x)}, where

∨
α∈Λ
{µα(x)} = sup

α∈Λ
{µα(x)}. It is easy to verify that if µ, ν and η are fuzzy

subsets of a given set X, then from ν ⊆ µ it follows that (µ\ν) ∪ ν = µ. Moreover, from µ ∪ ν = µ ∪ η
it follows that ν\η ⊆ µ. If µ ∈ IX, then the support of µ, is defined by supp(µ) = {x ∈ X | µ(x) > 0}. A
fuzzy h-relation δ on X is a function from X × I∗X to I, where I∗X = IX

− {∅}. Let p ∈ I. The p-domain
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of δ is defined by Domp(δ) = {x ∈ X | δ(x, µ) ≥ p for some µ ∈ I∗X} and p-codomain of δ is defined by
Codp(δ) = {µ ∈ I∗X | δ(x, µ) ≥ p for some x ∈ X}. Also, for any x ∈ X, we define xp

δ = {µ ∈ I∗X | δ(x, µ) ≥ p}.
By a partial fuzzy hyperoperation on a non-empty set X we mean a function ◦ from X × X to IX. In other

words, for any x, y ∈ X, x ◦ y is a fuzzy subset of X. Every mapping from X × X to I∗X is called a fuzzy
hyperoperation. If µ, ν ∈ I∗X, then we define µ ◦ ν =

⋃
{a ◦ b | a ∈ supp(µ), b ∈ supp(ν)}, x ◦ ν = χ{x} ◦ ν and

µ◦ y = µ◦χ{y}, where χX denotes the characteristic function of a given set X. If µ = ∅ or ν = ∅, then we define
µ ◦ ν = ∅. A (partial) fuzzy hypergroupoid is a pair (X, ◦), where X is a non-empty set and ◦ is a (partial) fuzzy
hyperoperation. A fuzzy hypergroupoid (X, ◦) is called a fuzzy semihypergroup if the associative axiom is
valid, i.e., x◦(y◦z) = (x◦y)◦z, for all x, y, z ∈ X and it is called reproductive if supp(x◦χX) = supp(χX◦x) = X,
for all x ∈ X. A fuzzy hypergroup is a reproductive fuzzy semihypergroup. The notion of Hv-structures was
introduced by Vougiouklis [15]. A fuzzy hypergroupoid (X, ◦) is called fuzzy Hv-semigroup if the weak
associative axiom is valid, i.e., x ◦ (y ◦ z)

⋂
(x ◦ y) ◦ z , ∅, for all x, y, z ∈ X and it is called fuzzy Hv-group if it

is reproductive fuzzy Hv-semigroup.

Example 1.1. Let X = {a, b}. Consider the following tables:

◦ a b

a a
0.8 ,

b
0

a
0 ,

b
0.7

b a
0 ,

b
0.7

a
0.8 ,

b
0

∗ a b

a a
0.8 ,

b
0

a
0 ,

b
0.7

b a
0 ,

b
0.6

a
0.9 ,

b
0

It is easy to check that (X, ◦) is a fuzzy hypergroup and (X, ∗) is a fuzzy Hv-group which is not a fuzzy hypergroup.

2. Partial (g-f)
p
-Hypergroupoids

In this section we define the concept of generalized fuzzy hypergraphs and then we associate a partial
fuzzy hypergroupoid to each generalized fuzzy hypergraph. After defining the notion of separable fuzzy
hypergroupoids, we will give a necessary and sufficient condition for a separable fuzzy hypergroupoid to
have a separable fuzzy semihypergroup.

Definition 2.1. A generalized fuzzy hypergraph or, in short, a (g-f)-hypergraph is an ordered pair Γ = (X, δ), where
X is a non-empty set and δ is a fuzzy h-relation on X. The elements of X are called vertices and the fuzzy sets in
E = {µ ∈ I∗X | δ(x, µ) > 0 for some x ∈ X} are called fuzzy hyperedges.

It is worth mentioning that, in this article, we deal only with (g-f)-hypergraphs Γ = (X, δ) in which X is a
finite set. Let p ∈ I. A (g-f)-hypergraph Γ = (X, δ) is called vp-linked if xp

δ , ∅, for all x ∈ X and it is called
p-plenary if

⋃
µ∈Codp(δ)

supp(µ) = X.

Example 2.2. Assume that µ : 1
0.1 ,

2
0.8 ,

3
0.3 ,

4
0 and ν : 1

0.2 ,
2

0.3 ,
3
0 ,

4
0.7 are fuzzy subsets of X = {1, 2, 3, 4}. Let δ be a

fuzzy h-relation on X which is denoted in the next figure.

µ

ν

1

2

3

4

0.3

0.5

0.1

0.7
0.4

Figure 1: An example of a (g-f)-hypergraph.
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For instance, in the above figure we have δ(1, µ) = 0.3 and δ(1, ν) = 0. We can see easily that Γ = (X, δ) is not
v0.4-linked but it is 0.4-plenary.

Let Γ = (X, δ) be a (g-f)-hypergraph. For p ∈ I, the partial fuzzy hypergroupoid Xp
Γ

= (X, ◦p), where ◦p is
defined by

x ◦p y = Np(x)
⋃
N

p(y), for all x, y ∈ X,

is called the partial (g-f)p
−hypergroupoid associated with Γ, where Np(x) =

⋃
δ(x,µ)≥p

µ. In the case that ◦p is a

fuzzy hyperoperation, Xp
Γ

is called the (g-f)p
−hypergroupoid associated with Γ.

Lemma 2.3. Xp
Γ

is a (g-f)p-hypergroupoid if and only if Γ is vp-linked.

Proof. It is obvious.

Definition 2.4. A partial fuzzy hypergroupoid (X, ◦) is called separable if the following property holds:

x ◦ y = x ◦ x
⋃

y ◦ y, for all x, y ∈ X.

Remark 2.5. Let (X, ◦) be a separable fuzzy hypergroupoid and p ∈ (0, 1]. For each x ∈ X we define δ(x, µ) =
p if µ = x ◦ x

0 otherwise.
. Then, (X, ◦) is the (g-f)p-hypergroupoid associated with the vp-linked (g-f)-hypergraph Γ = (X, δ).

Therefore, every separable hypergroupoid can be considered as a (g-f)p-hypergroupoid, where p ∈ (0, 1].

The next lemma can be proved easily by using previously defined notions and thus we omit its proof.

Lemma 2.6. Let (X, ◦p) be a partial (g-f)p-hypergroupoid. Then, for all x, y ∈ X and µ ∈ I∗X we have

(1) x ◦p y = y ◦p x,

(2) (x ◦p x) ◦p (x ◦p x) =
⋃

t∈supp(x◦px)
t ◦p t,

(3) (µ ◦p µ) ◦p (µ ◦p µ) =
⋃

t∈supp(µ◦pµ)
t ◦p t.

Lemma 2.7. Every separable fuzzy hypergroupoid is a fuzzy Hv-semigroup.

Proof. Let (X, ◦) be a separable fuzzy hypergroupoid. By Remark 2.5, (X, ◦) can be considered as a (g-f)p-
hypergroupoid, for some p ∈ (0, 1]. Thus, for each x, y, z ∈ X, by using Lemma 2.6, we have

(x ◦ y) ◦ z = (x ◦ x
⋃

y ◦ y) ◦ z = (x ◦ x) ◦ z
⋃

(y ◦ y) ◦ z,

and
x ◦ (y ◦ z) = (y ◦ z) ◦ x = (y ◦ y

⋃
z ◦ z) ◦ x = (y ◦ y) ◦ x

⋃
(z ◦ z) ◦ x.

Moreover,

(x ◦ x) ◦ z =
⋃

t∈supp(x◦x)
t ◦ z =

( ⋃
t∈supp(x◦x)

t ◦ t
)⋃

z ◦ z =
[
(x ◦ x) ◦ (x ◦ x)

]⋃
z ◦ z.

Therefore, we have (x ◦ y) ◦ z =
[
(x ◦ x) ◦ (x ◦ x)

]⋃
z ◦ z

⋃[
(y ◦ y) ◦ (y ◦ y)

]
and moreover

x ◦ (y ◦ z) =
[
(y ◦ y) ◦ (y ◦ y)

]⋃
x ◦ x

⋃[
(z ◦ z) ◦ (z ◦ z)

]
.

As we see, we have ∅ , (y ◦ y) ◦ (y ◦ y) ⊆ (x ◦ y) ◦ z
⋂

x ◦ (y ◦ z) which completes the proof.
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Notice that every partial (g-f)p-hypergroupoid is separable and so we have the following corollaries.

Corollary 2.8. Every (g-f)p-hypergroupoid is a fuzzy Hv-semigroup.

Corollary 2.9. A partial (g-f)p-hypergroupoid Xp
Γ

is a fuzzy Hv-semigroup if and only if Γ is vp-linked.

Theorem 2.10. Let Γ = (X, δ) be a vp-linked (g-f)-hypergraph. Then, the (g-f)p-hypergroupoid Xp
Γ

= (X, ◦p) is a
fuzzy Hv-group if and only if Γ is p-plenary.

Proof. Let Xp
Γ

be a fuzzy Hv-group. It suffices to show that X ⊆
⋃

µ∈Codp(δ)
supp(µ). Let x ∈ X be an arbitrary

element. Since Xp
Γ

is a fuzzy Hv-group, we have supp(x ◦p χX) = X and therefore there is y ∈ X such that
x ∈ supp(x◦p y) = supp(Np(x)

⋃
N

p(y)). Thus, there is µ ∈ Codp(δ) such that x ∈ supp(µ) ⊆
⋃

µ∈Codp(δ)
supp(µ).

Conversely, let Γ be p-plenary. Since Γ is a vp-linked (g-f)-hypergraph, by Lemma 2.3, Xp
Γ

is a (g-f)p-
hypergroupoid and so by Corollary 2.8, it is a fuzzy Hv-semigroup. It is sufficient to show that supp(x◦pχX) =
supp(χX◦

px) = X, for each x ∈ X. Clearly, we have supp(x◦pχX) ⊆ X. We have to show that X ⊆ supp(x◦pχX).
Let z ∈ X be an arbitrary element. Since Γ is p-plenary, there exists µ ∈ Codp(δ) such that z ∈ supp(µ). Since
µ ∈ Codp(δ), there is y ∈ X such that δ(y, µ) ≥ p and so we have z ∈ supp(x ◦p y) ⊆ supp(x ◦p χX). This
implies that X ⊆ supp(x ◦p χX) and therefore supp(x ◦p χX) = X. In a similar way we have supp(χX ◦

p x) = X
and therefore Xp

Γ
is a fuzzy Hv-group.

Corollary 2.11. Xp
Γ

is a reproductive (g-f)p-hypergroupoid if and only if Γ is vp-linked and p-plenary.

Theorem 2.12. Suppose that (X, ◦) is a separable fuzzy hypergroupoid. Then, ◦ is associative if and only if the
following conditions hold:

(1) x ◦ x ⊆ (x ◦ x) ◦ (x ◦ x), for all x ∈ X,

(2) ((x ◦ x) ◦ (x ◦ x))\(x ◦ x) ⊆ (y ◦ y) ◦ (y ◦ y), for all x, y ∈ X.

Proof. Let ◦ be associative and x, y be arbitrary elements of X. First, we prove condition (1). Suppose that
supp(x ◦ x) = {x1, . . . , xn}. Since x ◦ xi = x ◦ x

⋃
xi ◦ xi, for each 1 ≤ i ≤ n, we have

(x ◦ x)(xi) ≤ (x ◦ xi)(xi) ≤ (x ◦ (x ◦ xi))(xi) = ((x ◦ x) ◦ xi)(xi)
= max{(x1 ◦ xi)(xi), . . . , (xn ◦ xi)(xi)}
= max{(x1 ◦ x1)(xi), . . . , (xn ◦ xn)(xi)}
= ((x ◦ x) ◦ (x ◦ x))(xi).

Thus (1) holds. Now, to prove condition (2) we have

(y ◦ y) ◦ x =
⋃

t∈supp(y◦y)
t ◦ x =

( ⋃
t∈supp(y◦y)

t ◦ t
)⋃

x ◦ x =
[
(y ◦ y) ◦ (y ◦ y)

]⋃
x ◦ x,

y ◦ (y ◦ x) =
⋃

t∈supp(y◦x)
y ◦ t =

⋃
t∈supp(y◦x)

(y ◦ y
⋃

t ◦ t)

= y ◦ y
⋃( ⋃

t∈supp(y◦y)
t ◦ t

)⋃ ( ⋃
t∈supp(x◦x)

t ◦ t
)

=
[
(y ◦ y) ◦ (y ◦ y)

]⋃ [
(x ◦ x) ◦ (x ◦ x)

]
.

Now, associativity of ◦ implies that
[
(y◦ y)◦ (y◦ y)

]⋃
x◦x =

[
(y◦ y)◦ (y◦ y)

]⋃ [
(x◦x)◦ (x◦x)

]
. Consequently,

(2) holds.
Conversely, suppose that x, y, z are arbitrary elements of X and that conditions (1) and (2) hold. As in

the proof of Lemma 2.7, we have

(x ◦ y) ◦ z =
[
(x ◦ x) ◦ (x ◦ x)

]⋃
z ◦ z

⋃[
(y ◦ y) ◦ (y ◦ y)

]
,
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and
x ◦ (y ◦ z) =

[
(y ◦ y) ◦ (y ◦ y)

]⋃
x ◦ x

⋃[
(z ◦ z) ◦ (z ◦ z)

]
.

By setting µ =
[
(x ◦ x) ◦ (x ◦ x)

]⋃
z ◦ z and ν =

[
(z ◦ z) ◦ (z ◦ z)

]⋃
x ◦ x we have (x ◦ y) ◦ z =

[
(y ◦ y) ◦ (y ◦

y)
]⋃

µ and x ◦ (y ◦ z) =
[
(y ◦ y) ◦ (y ◦ y)

]⋃
ν. By using conditions (1) and (2) we have

µ =
([

(x ◦ x) ◦ (x ◦ x)
]
\x ◦ x

)⋃
x ◦ x

⋃
z ◦ z ⊆

[
(z ◦ z) ◦ (z ◦ z)

]⋃
z ◦ z

⋃
x ◦ x

=
[
(z ◦ z) ◦ (z ◦ z)

]⋃
x ◦ x = ν.

In a similar way the inverse inclusion is proved and then ◦ is associative.

Theorem 2.13. Suppose that (X, ◦) is a separable fuzzy semihypergroup. Then, ◦ is associative if and only if the
following conditions hold:

(1) µ ◦ µ ⊆ (µ ◦ µ) ◦ (µ ◦ µ), for all µ ∈ I∗X,

(2) ((µ ◦ µ) ◦ (µ ◦ µ))\(µ ◦ µ) ⊆ (ν ◦ ν) ◦ (ν ◦ ν), for all µ, ν ∈ I∗X.

Proof. Let ◦ be associative and µ, ν be arbitrary non-empty fuzzy subsets of X. Then, by using Theorem
2.12 we have

µ ◦ µ =
⋃

x∈supp(µ)
x ◦ x ⊆

⋃
x∈supp(µ)

((x ◦ x) ◦ (x ◦ x)) =
⋃

x∈supp(µ)

( ⋃
t∈supp(x◦x)

t ◦ t
)

=
⋃

t∈supp(µ◦µ)
t ◦ t

= (µ ◦ µ) ◦ (µ ◦ µ).

Hence (1) is true. To prove condition (2), let y ∈ supp(ν) be an arbitrary element. Then, we have

((µ ◦ µ) ◦ (µ ◦ µ))\(µ ◦ µ) ⊆
⋃

x∈supp(µ)

(
((x ◦ x) ◦ (x ◦ x))\(x ◦ x)

)
⊆ (y ◦ y) ◦ (y ◦ y).

On the other hand we have (y ◦ y) ◦ (y ◦ y) ⊆ (ν ◦ ν) ◦ (ν ◦ ν). Hence, condition (2) holds.
Conversely, suppose that conditions (1) and (2) hold. Let x, y be arbitrary elements of X. By setting

µ = χ{x} and ν = χ{y}, conditions (1) and (2) of Theorem 2.12 hold and therefore ◦ is associative.

Corollary 2.14. If a reproductive (g-f)p-hypergroupoid Xp
Γ

= (X, ◦p) satisfies anyone of the following conditions:

(x ◦p x) ◦p (x ◦p x) = x ◦p x, for all x ∈ X,

(x ◦p x) ◦p (x ◦p x) =
⋃
t∈X

t ◦p t, for all x ∈ X,

then it is a fuzzy hypergroup.

Example 2.15. The (g-f)0.3-hypergroupoid associated with the (g-f)-hypergraph of Figure 1 has the following table:

◦
0.3 1 2 3 4
1 µ µ ∪ ν µ ∪ ν µ
2 µ ∪ ν µ µ ∪ ν µ
3 µ ∪ ν µ ∪ ν ν µ ∪ ν
4 µ µ µ ∪ ν µ

It can be seen that 3 ◦0.3 3 = ν and (3 ◦0.3 3) ◦0.3 (3 ◦0.3 3) = ν ◦0.3 ν = µ. Therefore, 3 ◦0.3 3 * (3 ◦0.3 3) ◦0.3 (3 ◦0.3 3).
So, by Theorem 2.12, (X, ◦0.3) is not a fuzzy hypergroup. In that (g-f)-hypergraph we have N0.1(1) = N0.1(4) = µ,
N

0.1(2) = µ ∪ ν and N0.1(3) = ν. It is easy to verify that (x ◦0.1 x) ◦0.1 (x ◦0.1 x) =
⋃
t∈X

t ◦0.1 t, for all x ∈ X. On the

other hand for every x ∈ X we have supp(x ◦0.1 X) = supp(X ◦0.1 x) = X. So, by Corollary 2.14, (X, ◦0.1) is a fuzzy
hypergroup.
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3. Higher-Order Fuzzy Hypergroupoids

Let (X, ◦) be a separable fuzzy hypergroupoid. We construct a sequence of fuzzy hypergroupoids
X0 = (X, ◦0),X1 = (X, ◦1),X2 = (X, ◦2), . . . recursively as follows: for all x, y ∈ X we set x ◦0 y = x ◦ y, x ◦k+1
x = (x ◦k x) ◦k (x ◦k x) and x ◦k+1 y = x ◦k+1 x

⋃
y ◦k+1 y, where k ≥ 0. Set Nk(x) = x ◦k x. We define

Nk(µ) =
⋃

a∈supp(µ)
Nk(a), where µ is a fuzzy subset of X.

Lemma 3.1. Let µ be a fuzzy subset of X. Then, supp(Nk(µ)) =
⋃

a∈supp(µ)
supp(Nk(a)).

Proof. It is straightforward.

The following properties are immediate for k ≥ 0:

(1) Nk(µ) = µ ◦k µ, for all µ ∈ I∗X,

(2) Nk+1(x) = Nk(Nk(x)), for all x ∈ X,

(3) Nk(Nk+1(x)) = Nk+1(Nk(x)), for all x ∈ X,

(4) Nk+1(µ) = Nk(Nk(µ)), for all µ ∈ I∗X,

(5) µ ⊆ ν implies thatNk(µ) ⊆ Nk(ν), for all µ, ν ∈ I∗X,

(6) Nk(x) = Nk+1(x) implies thatNk(x) = Nr(x), for all r ≥ k.

By Theorem 2.12, Xk is a semihypergroup if and only if the following conditions hold:

(α) Nk(x) ⊆ Nk+1(x), for all x ∈ X,

(β) Nk+1(x)\Nk(x) ⊆ Nk+1(y), for all x, y ∈ X.

Lemma 3.2. The fuzzy hyperoperation ◦k defined as above has the following properties:

(1) µ ◦k+1 µ = (µ ◦k µ) ◦k (µ ◦k µ), for all µ ∈ I∗X,

(2) x ◦k+2 x =
(
(x ◦k+1 x) ◦k (x ◦k+1 x)

)
◦k

(
(x ◦k+1 x) ◦k (x ◦k+1 x)

)
, for all x ∈ X.

Proof. (1) Let µ be a non-empty fuzzy subset of X. Then,

µ ◦k+1 µ = Nk+1(µ) = Nk(Nk(µ)) = Nk(µ) ◦k Nk(µ) = (µ ◦k µ) ◦k (µ ◦k µ).

(2) The result follows from part (1) and the definition of ◦k+2.

Theorem 3.3. Let (X, ◦) be a separable fuzzy hypergroupoid. Then, the following assertions hold:

(1) If Xk = (X, ◦k) satisfies condition (α) for some k ≥ 0, thenNr(x) ⊆ Nr+1(x), for all x ∈ X and r ≥ k.

(2) If Xk = (X, ◦k) satisfies condition (β) for some k ≥ 0, thenNr+1(x) ⊆ Nr(x), for all x ∈ X and r > k.

Proof. (1) Let x ∈ X be an arbitrary element. We prove the result by induction on r. If r = k, then there is
nothing to prove. Assume thatNr−1(x) ⊆ Nr(x) for r > k, the induction hypothesis. Then, we have

Nr(x) = Nr−1(Nr−1(x)) ⊆ Nr−1(Nr(x)) = Nr(Nr−1(x)) ⊆ Nr(Nr(x)) = Nr+1(x).

(2) Let x ∈ X be an arbitrary element. First, we show thatNk(Nk+1(x)) ⊆ Nk+1(x). Assume to the contrary
thatNk(Nk+1(x)) * Nk+1(x). Then, there exists t ∈ X such that

Nk(Nk+1(x))(t) > Nk+1(x)(t). (∗)
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By using Lemma 3.1 we have

Nk(Nk+1(x)))(t) =
∨
{Nk(y)(t) | y ∈ supp(Nk+1(x))}

=
∨
{Nk(y)(t) | y ∈

⋃
a∈supp(Nk(x))

supp(Nk(a))}

=
∨

a∈supp(Nk(x))

{Nk(y)(t) | y ∈ supp(Nk(a))}.

So, there exist a ∈ supp(Nk(x) and y ∈ supp(Nk(a)) such that Nk(Nk+1(x))(t) = Nk(y)(t). Thus, by inequality
(∗) we have Nk+1(x)(t) < Nk(y)(t). Obviously, for each y′ ∈ supp(Nk(a)) we have N(y)(t) ≥ Nk(y′)(t) and so
we have

Nk+1(a)(t) = Nk(Nk(a))(t) =
∨
{Nk(y′)(t) | y′ ∈ supp(Nk(a))} = Nk(y)(t).

This implies that Nk(a)(t) ≤ Nk(Nk(x))(t) = Nk+1(x)(t) < Nk(y)(t) = Nk+1(a)(t). Therefore, we have(
Nk+1(a)\Nk(a)

)
(t) = Nk+1(a)(t) = Nk(y)(t). Since Xk satisfies condition (β) we have Nk+1(a)\Nk(a) ⊆ Nk+1(x)

which implies that Nk(y)(t) ≤ Nk+1(x)(t) contradicting to Nk+1(x)(t) < Nk(y)(t). Now, we prove the result
by induction on r. We have Nk+2(x) = Nk(Nk(Nk+1(x))) ⊆ Nk(Nk+1(x)) ⊆ Nk+1(x). So, we are done with the
initial step. Assume thatNr+1(x) ⊆ Nr(x) for r > k, the induction hypothesis. We have

Nr+2(x) = Nr+1(Nr+1(x)) ⊆ Nr+1(Nr(x)) = Nr(Nr+1(x)) ⊆ Nr(Nr(x)) = Nr+1(x).

Corollary 3.4. If (X, ◦k) is a separable fuzzy semihypergroup, thenNr(x) = Nr+1(x), for all x ∈ X and r > k.

Corollary 3.5. If (X, ◦k) is a separable fuzzy semihypergroup, thenNr(µ) = Nr+1(µ), for all µ ∈ I∗X and r > k.

Next example shows that the converse of Corollary 3.4 is not true.

Example 3.6. Let (X = {1, 2, 3}, ◦0) be a separable fuzzy hypergroupoid with the following table:

◦0 1 2 3

1 1
0 ,

2
0.2 ,

3
0

1
0.1 ,

2
0.2 ,

3
0.3

1
0 ,

2
0.2 ,

3
0

2 1
0.1 ,

2
0.2 ,

3
0.3

1
0.1 ,

2
0 ,

3
0.3

1
0.1 ,

2
0.2 ,

3
0.3

3 1
0 ,

2
0.2 ,

3
0

1
0.1 ,

2
0.2 ,

3
0.3

1
0 ,

2
0.2 ,

3
0

We can see thatN0(1)(2) = 0.2 andN1(1)(2) = N0(N0(1))(2) = N0(2)(2) = 0. This implies thatN0(1) * N1(1)
and so by Theorem 2.12, (X, ◦0) is not a separable fuzzy semihypergroup. It is not difficult to see thatNk(x) = Nk+1(x),
for all x ∈ X and k > 0. This means that the converse of Corollary 3.4 is not true.

Next proposition is a direct consequence of Theorem 2.12.

Proposition 3.7. If there exists a natural number k such thatNk(x) = Nk+1(x), for all x ∈ X, then

(1) Xk = (X, ◦k) is a separable fuzzy semihypergroup,

(2) Xr = Xk, for all r ≥ k.
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Let p ∈ (0, 1] and assume that Γ is a vp-linked (g-f)-hypergraph and Xp
Γ

is the (g-f)p-hypergroupoid associated
with Γ. Set X0 = Xp

Γ
. As in the beginning of this section, we can construct a sequence of separable fuzzy

hypergroupoids X0 = (X, ◦0),X1 = (X, ◦1),X2 = (X, ◦2), . . .. For k > 0, we define a fuzzy h-relation δk on X as
follows:

δk(x, µ) =


p if µ = Nk(x),

0 otherwise,

and therefore we will have a sequence Γ0,Γ1,Γ2, . . . of (g-f)-hypergraphs where Γ0 = Γ and Γk = (X, δk), for
k > 0. It is easy to verify that Xk is the (g-f)p-hypergroupoid associated with Γk. Now, by Corollary 3.4 and
Proposition 3.7 we conclude that if Xk is an associative (g-f)p-hypergroupoid, then Γr = Γk+1 and Xr = Xk,
for all r > k. For a given (g-f)-hypergraph Γ we define n(Γ) = min

{
k | Nk(x) = Nk+1(x) for all x ∈ X

}
and

s(Γ) = min
{
k | Xk is a fuzzy semihypergroup

}
. Obviously, s(Γ) ≤ n(Γ). Consider the (g-f)-hypergraph Γ of

Figure 1 . In the Example 2.15 we showed that X0.1
Γ

is a fuzzy hypergroup and so we have s(Γ) = 0 whereas
n(Γ) = 1. This means that the inequality s(Γ) ≤ n(Γ) may be hold strictly.

4. Quotient (g-f)
p

-Hypergroupoids

In this section, by considering a regular equivalence relation on a (g-f)p-hypergroupoid, we define
a quotient (g-f)p-hypergroupoid. Next, we investigate some relationships between diagonal product of
hypergroupoids and p-product of (g-f)-hypergraphs. In this regards we recall some definitions and results
which we need for development of our paper.

Let (X, ∗) be a fuzzy hypergroupoid and ρ be an equivalence relation on X. If A and B are non-empty
subsets of X, then AρB means that for all a ∈ A, there exists b ∈ B such that aρb and for all b′ ∈ B there exists
a′ ∈ A such that a′ρb′. We say that ρ is regular if for all a ∈ X, from xρ y it follows that supp(a ∗ x)ρ supp(a ∗ y)
and supp(x ∗ a)ρ supp(y ∗ a). For an equivalence relation ρ on X, we may use ρ(x) to denote the equivalence
class of x ∈ X. Moreover, generally, if A is a non-empty subset of X, then ρ(A) = {ρ(a) | a ∈ A}. We let X/ρ
denotes the family {ρ(x) | x ∈ X} of classes of ρ. It is easy to verify that for a regular relation ρ on a fuzzy
hypergroupoid (X, ∗), the following fuzzy hyperoperation on X/ρ is well defined:

ρ(x) � ρ(y) = χ{ρ(z) | z∈supp(x∗y)}.

Let p ∈ (0, 1] and Γ = (X, δ) be a vp-linked (g-f)-hypergraph and (X, ◦p) be the (g-f)p-hypergroupoid
associated with Γ. We define the relation ρ

Γ
on X as follows:

xρ
Γ

y if and only if xp
δ = yp

δ.

Lemma 4.1. The relation ρ
Γ

is a regular equivalence relation.

Proof. Obviously, ρ
Γ

is an equivalence relation. Let z ∈ X be an arbitrary element and xρ
Γ

y. First, we show
that supp(x ◦p z) = supp(y ◦p z) which will imply that supp(x ◦p z)ρ

Γ
supp(y ◦p z). Let r ∈ supp(x ◦p z) =

supp(Np(x)
⋃
N

p(z)) be an arbitrary element. We know that

supp(Np(x)
⋃
N

p(z)) = supp(Np(x))
⋃

supp(Np(z)) .

In the case that r ∈ supp(Np(z)), there is nothing to prove. If r ∈ supp(Np(x)), then there is a fuzzy hyperedge
µ ∈ xp

δ such that r ∈ supp(µ). By assumption, we have xp
δ = yp

δ and therefore we have δ(y, µ) ≥ p. This
implies that r ∈ supp(Np(y)). Hence, we have supp(x ◦p z) ⊆ supp(y ◦p z). The reverse inclusion can be
shown similarly. In a similar way we can show that supp(z ◦p x)ρ

Γ
supp(z ◦p y).
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Let µ and ν be non-empty fuzzy subsets of X1 and X2, respectively. We define the fuzzy subset µ × ν on
X1 × X2 as follows:

µ × ν(x1, x2) = min{µ(x1), ν(x2)}.

It is easy to see that supp(µ × ν) = supp(µ) × supp(ν).

Definition 4.2. Let Γ1 = (X1, δ1) and Γ2 = (X2, δ2) be two (g-f)-hypergraphs and p ∈ (0, 1]. Set

T(p) = {µ × ν | δ1(x1, µ) ≥ p and δ2(x2, ν) ≥ p, for some x1 ∈ X1 and x2 ∈ X2}.

Then, p-product of Γ1 and Γ2 is the (g-f)-hypergraph Γ1 × Γ2 = (X1 × X2, δ1 × δ2) where δ1 × δ2 is a fuzzy h-relation
on X1 × X2 which is defined as follows:

δ1 × δ2

(
(x1, x2), η

)
=


min{δ1(x1, µ), δ2(x2, ν)} if η = µ × ν, for some µ × ν ∈ T(p),

0 otherwise.

Lemma 4.3. Let p ∈ (0, 1]. Let Γ1 = (X1, δ1) and Γ2 = (X2, δ2) be two vp-linked (g-f)-hypergraphs. If Γ1 × Γ2 is the
p-product of Γ1 and Γ2, then

(1) Γ1 × Γ2 is a vp-linked (g-f)-hypergraph,

(2) for (x, y), (u, v) ∈ X1 × X2 we have

(x, y)ρ
Γ1×Γ2

(u, v)⇐⇒ xρ
Γ1

u and yρ
Γ2

v.

Proof. It is straightforward.

Definition 4.4. Let (X1, ∗) and (X2, ◦) be two fuzzy hypergroupoids. We define a fuzzy hyperoperation ×d on the
Cartesian product X1 × X2 as follows:

(x1, y1) ×d (x2, y2) = ∆
(
(x1, y1)

)⋃
∆
(
(x2, y2)

)
,

where ∆
(
(x, y)) = (x ∗ x) × (y ◦ y). The fuzzy hypergroupoid (X1 × X2,×d) is called diagonal product of (X1, ∗) and

(X2, ◦).

Theorem 4.5. Let p ∈ (0, 1]. Let (X1, ∗) and (X2, ◦) be the (g-f)p-hypergroupoids associated with the vp-linked
(g-f)-hypergraphs Γ1 = (X1, δ1) and Γ2 = (X2, δ2), respectively. Then, diagonal product of (X1, ∗) and (X2, ◦) is the
(g-f)p-hypergroupoid associated with the p-product of Γ1 and Γ2.

Proof. Let (X1 × X2,×d) be the diagonal product of (X1, ∗) and (X2, ◦). It suffices to show that

(x, y) ×d (x, y) =
⋃{

µ × ν | δ1 × δ2

(
(x, y), µ × ν

)
≥ p

}
,

where (x, y) is an arbitrary element of X1 × X2. This can be seen by the following argument. Let (x1, x2) ∈
X1 × X2 be an arbitrary element. Then,(

(x, y) ×d (x, y)
)
(x1, x2) = ∆

(
(x, y)

)
(x1, x2)

=
(
(x ∗ x) × (y ◦ y)

)
(x1, x2)

= min{(x ∗ x)(x1), (y ◦ y)(x2)}

= min
{

max{µ(x1) | δ1(x, µ) ≥ p},max{ν(x2) | δ2(y, ν) ≥ p}
}

= max
{

min{µ(x1), ν(x2)} | δ1(x, µ) ≥ p, δ2(y, ν) ≥ p
}

= max
{
µ × ν(x1, x2) | δ1(x, µ) ≥ p, δ2(y, ν) ≥ p

}
= max

{
µ × ν(x1, x2) | δ1 × δ2

(
(x, y), µ × ν

)
≥ p

}
.
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Definition 4.6. Let (X1, ∗) and (X2, ◦) be two fuzzy hypergroupoids. A mapϕ : X1 −→ X2 is called a homomorphism
if for all x, y ∈ X1 we haveϕ(supp(x∗y)) = supp(ϕ(x)◦ϕ(y)). Ifϕ is one to one (onto) we say thatϕ is a monomorphism
(epimorphism). If there exists a one to one epimorphism from X1 onto X2 we say that X1 is isomorphic to X2 and we
write X1 � X2.

Theorem 4.7. Let p ∈ (0, 1]. Let (X1, ∗) and (X2, ◦) be the (g-f)p-hypergroupoids associated with the vp-linked
(g-f)-hypergraphs Γ1 = (X1, δ1) and Γ2 = (X2, δ2), respectively. Then,

X1/ρ
Γ1
×d X2/ρ

Γ2
� (X1 ×d X2)/ρ

Γ1×Γ2
.

Proof. We equip X1/ρ
Γ1

, X2/ρ
Γ2

and (X1 ×d X2)/ρ
Γ1×Γ2

with fuzzy hyperoperations �, � and �, respectively.
We define ϕ : X1/ρ

Γ1
×d X2/ρ

Γ2
−→ (X1 ×d X2)/ρ

Γ1×Γ2
by

ϕ
(
(ρ

Γ1
(x), ρ

Γ2
(y))

)
= ρ

Γ1×Γ2

(
(x, y)

)
, ∀(x, y) ∈ X1 × X2.

We prove firstly thatϕ is well defined. If (ρ
Γ1
(x), ρ

Γ2
(y)) = (ρ

Γ1
(x′), ρ

Γ2
(y′)), then we have xp

δ1
= x′pδ2

and yp
δ2

= y′pδ2
.

Since

µ × ν ∈ (x, y)p
δ1×δ2

⇐⇒ δ1 × δ2

(
(x, y), µ × ν

)
≥ p

⇐⇒ δ1(x, µ) ≥ p and δ2(y, ν) ≥ p
⇐⇒ µ ∈ xp

δ1
and ν ∈ yp

δ2

⇐⇒ µ ∈ x′pδ1
and ν ∈ y′pδ2

⇐⇒ δ1(x′, µ) ≥ p and δ2(y′, ν) ≥ p

⇐⇒ δ1 × δ2

(
(x′, y′), µ × ν

)
≥ p

⇐⇒ µ × ν ∈ (x′, y′)p
δ1×δ2

,

we obtain ρ
Γ1×Γ2

(
(x, y)

)
= ρ

Γ1×Γ2

(
(x′, y′)

)
, i.e., ϕ is well defined. Now, we check that ϕ is one to one. Suppose

that ρ
Γ1×Γ2

(
(x, y)

)
= ρ

Γ1×Γ2

(
(x′, y′)

)
. We have

µ ∈ xp
δ1

and ν ∈ yp
δ2
⇐⇒ δ1(x, µ) ≥ p and δ2(y, ν) ≥ p

⇐⇒ δ1 × δ2

(
(x, y), µ × ν

)
≥ p

⇐⇒ µ × ν ∈ (x, y)p
δ1×δ2

⇐⇒ µ × ν ∈ (x′, y′)p
δ1×δ2

⇐⇒ δ1 × δ2

(
(x′, y′), µ × ν

)
≥ p

⇐⇒ δ1(x′, µ) ≥ p and δ2(y′, ν) ≥ p
⇐⇒ µ ∈ x′pδ1

and ν ∈ y′pδ2
.

This implies that (ρ
Γ1
(x), ρ

Γ2
(y)) = (ρ

Γ1
(x′), ρ

Γ2
(y′)). Clearly ϕ is onto. We need only to show that ϕ is a

homomorphism. Before doing that we show that

ϕ
(
supp

(
∆
(
(ρ

Γ1
(x), ρ

Γ2
(y))

)))
= ρ

Γ1×Γ2

(
supp(∆(x, y))

)
, ∀(x, y) ∈ X1 × X2.

We know that

supp
(
∆
(
(ρ

Γ1
(x), ρ

Γ2
(y))

))
= supp

(
ρ

Γ1
(x) � ρ

Γ1
(x) × ρ

Γ2
(y) � ρ

Γ2
(y)

)
= supp

(
ρ

Γ1
(x) � ρ

Γ1
(x)

)
× supp

(
ρ

Γ2
(y) � ρ

Γ2
(y)

)
=

{
ρ

Γ1
(z) | z ∈ supp(x ∗ x)

}
×

{
ρ

Γ2
(t) | t ∈ supp(y ◦ y)

}
,
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and so we have

ϕ
(
supp

(
∆
(
(ρ

Γ1
(x), ρ

Γ2
(y))

)))
=

{
ϕ
(
(ρ

Γ1
(z), ρ

Γ2
(t))

)
| z ∈ supp(x ∗ x) and t ∈ supp(y ◦ y)

}
=

{
ρ

Γ1×Γ2

(
(z, t)

)
| (z, t) ∈ supp

(
∆(x, y)

)
}

=ρ
Γ1×Γ2

(
supp

(
∆(x, y)

))
.

Now, by using the above argument, for every elements (x, y), (x′, y′) ∈ X1 × X2 we have

ϕ
(
supp

(
(ρ

Γ1
(x) , ρ

Γ2
(y)) ×d (ρ

Γ1
(x′), ρ

Γ2
(y′))

))
= ϕ

(
supp

(
∆
(
(ρ

Γ1
(x), ρ

Γ2
(y))

)⋃
∆
(
(ρ

Γ1
(x′), ρ

Γ2
(y′))

)))
= ϕ

(
supp

(
∆
(
(ρ

Γ1
(x), ρ

Γ2
(y))

)))⋃
ϕ

(
supp

(
∆
(
(ρ

Γ1
(x′), ρ

Γ2
(y′))

)))
= ρ

Γ1×Γ2

(
supp

(
∆(x, y)

))⋃
ρ

Γ1×Γ2

(
supp

(
∆(x′, y′)

))
= ρ

Γ1×Γ2

(
supp

(
∆
(
(x, y)

))⋃
supp

(
∆
(
(x′, y′)

)))
= ρ

Γ1×Γ2

(
supp

(
∆
(
(x, y)

)⋃
∆
(
(x′, y′)

)))
= ρ

Γ1×Γ2

(
supp

(
(x, y) ×d (x′, y′)

))
= supp

(
ρ

Γ1×Γ2

(
(x, y)

)
� ρ

Γ1×Γ2

(
(x′, y′)

))
= supp

(
ϕ
(
(ρ

Γ1
(x), ρ

Γ2
(y))

)
� ϕ

(
(ρ

Γ1
(x′), ρ

Γ2
(y′))

))
.

Hence ϕ is an isomorphism.

Theorem 4.8. Let p ∈ (0, 1]. Let Γ be a vp-linked (g-f)-hypergraph and (X2, ◦) be the (g-f)p-hypergroupoid associated
with Γ. If (X1, ∗) is a separable fuzzy hypergroupoid and ϕ : X1 −→ X2 is an epimorphism, then there exists a regular
equivalence relation ρ on X1 such that

X1/ρ � X2/ρ
Γ
.

Proof. We define a relation ρ on X1 as follows:

xρ y⇐⇒ ϕ(x)ρ
Γ
ϕ(y), ∀x, y ∈ X1.

By Lemma 4.1, ρ
Γ

is an equivalence relation on X2 which implies that ρ is an equivalence relation on
X1. Let x, y, z ∈ X1 be arbitrary elements such that xρ y. We show that supp(x ∗ z)ρ supp(y ∗ z). From
xρ y it follows that ϕ(x) ◦ ϕ(x) = ϕ(y) ◦ ϕ(y) which implies that ϕ(supp(x ∗ x)) = ϕ(supp(y ∗ y)). Let
r ∈ supp(x∗z) be an arbitrary element. Then, we haveϕ(r) ∈ ϕ(supp(x∗z)) = ϕ(supp(x∗x))

⋃
ϕ(supp(z∗z)) =

ϕ(supp(y ∗ y))
⋃
ϕ(supp(z ∗ z)) = ϕ(supp(y ∗ z)). Therefore, there is t ∈ supp(y ∗ z) such that ϕ(r) = ϕ(t). This

means that rρ t and so supp(x ∗ z)ρ supp(y ∗ z). In a similar way we can show that supp(z ∗ x)ρ supp(z ∗ y).
Thus ρ is regular. Now, let ψ : X1/ρ −→ X2/ρ

Γ
is defined by ψ

(
ρ(x)

)
= ρ

Γ

(
ϕ(x)

)
. Let x, y ∈ X1. Then, we

have

ρ(x) = ρ(y)⇐⇒ ϕ(x)ρ
Γ
ϕ(y)⇐⇒ ρ

Γ
(ϕ(x)) = ρ

Γ
(ϕ(y))⇐⇒ ψ

(
ρ(x)

)
= ψ

(
ρ(y)

)
.

Thus, ψ is well-defined and one to one. Since ϕ is onto, ψ is onto. We equip X1/ρ and X2/ρ
Γ

with the
fuzzy hyperoperations � and �, respectively. Let x, y ∈ X1. The following argument shows that ψ is a
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homomorphism.

supp
(
ψ
(
ρ(x)

)
� ψ

(
ρ(y)

))
= supp

(
ρ

Γ
(ϕ(x)) � ρ

Γ
(ϕ(y))

)
= ρ

Γ

(
supp(ϕ(x) ◦ ϕ(y))

)
= ρ

Γ

(
ϕ
(
supp(x ∗ y)

))
=

{
ρ

Γ
(ϕ(z)) | z ∈ supp(x ∗ y)

}
= ψ

({
ρ(z) | z ∈ supp(x ∗ y)

})
= ψ

(
supp(ρ(x) � ρ(y))

)
.

Theorem 4.9. Let p ∈ (0, 1]. Let Γ be a vp-linked (g-f)-hypergraph and (X1, ∗) be the (g-f)p-hypergroupoid associated
with Γ. If (X2, ◦) is a separable fuzzy hypergroupoid and ϕ : X1 −→ X2 is a monomorphism, then there exists a
regular equivalence relation ρ′ on ϕ(X1) such that

X1/ρ
Γ
� ϕ(X1)/ρ′.

Proof. We define a relation ρ′ on ϕ(X1) as follows:

ϕ(x)ρ′ϕ(y)⇐⇒ xρ
Γ

y, ∀x, y ∈ X1.

It is obvious that ρ′ is a regular equivalence relation. We define ψ : X1/ρ
Γ
−→ ϕ(X1)/ρ′ by ψ

(
ρ

Γ
(x)

)
=

ρ′(ϕ(x)). One easily checks that ψ is an isomorphism.

Lemma 4.10. Let ρ be a regular equivalence relation on a fuzzy hypergroupoid (X, ◦). Then, π : X −→ X/ρ which
is defined by π(x) = ρ(x), for all x ∈ X, is an epimorphism which is called canonical epimorphism.

Proof. It is straightforward.

Theorem 4.11. Let p ∈ (0, 1]. Let (X1, ∗) and (X2, ◦) be the (g-f)p-hypergroupoids associated with the vp-linked
(g-f)-hypergraphs Γ1 = (X1, δ1) and Γ2 = (X2, δ2), respectively. Let ϕ : X1 −→ X2 be an epimorphism such that
ϕ(x)ρ

Γ2
ϕ(y) implies xρ

Γ1
y. If ρ = {(x, y) ∈ X2

1 | ϕ(x)ρ
Γ2
ϕ(y)

}
and ρ′ = {(ϕ(x), ϕ(y)) ∈ X2

2 | xρΓ1
y
}
, then there

exists a unique homomorphism ϕ∗ : X1/ρ −→ X2/ρ′ such that the following diagram is commutative:

X1 X2

X1/ρ X2/ρ
′

π π′

ϕ

ϕ∗

i.e., π′ ◦ ϕ = ϕ∗ ◦ π, where π and π′ denote the canonical epimorphisms.

Proof. The proof of the fact that ρ and ρ′ are regular equivalence relations is analogous to the corresponding
part of the proof of Theorem 4.8 and we omit the details. We equip X1/ρ and X2/ρ′ with the fuzzy
hyperoperations � and �, respectively. Let ϕ∗ : X1/ρ −→ X2/ρ′ is defined by ϕ∗

(
ρ(x)

)
= ρ′(ϕ(x)), for all

x ∈ X1. First, we show that ϕ∗ is well-defined. Let x, y ∈ X1 and ρ(x) = ρ(y). Then, ϕ(x)ρ
Γ2
ϕ(y) and so by

assumption xρ
Γ1

y. Therefore, ϕ∗ is well-defined. Moreover, it is easy to prove that ϕ∗
(
supp(ρ(x) � ρ(y)

)
=

supp
(
ϕ∗

(
ρ(x)

)
� ϕ∗

(
ρ(y)

))
and π′ ◦ ϕ = ϕ∗ ◦ π. Now, we show that ϕ∗ is unique. Let 1 : X1/ρ −→ X2/ρ′ be

a homomorphism such that π′ ◦ ϕ = 1 ◦ π. Then, for all x ∈ X1, we have 1(ρ(x)) = 1(π(x)) = π′ ◦ ϕ(x) =

ϕ∗ ◦ π(x) = ϕ∗
(
ρ(x)

)
.
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