
Filomat 30:9 (2016), 2413–2423
DOI 10.2298/FIL1609413R

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we first give a density theorem. We will see that, under some suitable conditions,
the set of positive proper efficient solutions is dense in the set of the efficient solutions. Finally, we discuss
about the connectedness for the set of the efficient solutions of a generalized system.

1. Introduction and Preliminaries

Throughout this paper, let X be a real Hausdorff topological vector space and let Y be a real Hausdorff
topological vector space. Let Y∗ be the topological dual space of Y. Let C be a closed convex pointed cone
in Y. The cone C induces a partial ordering in Y defined by

x ≤ y, if and only if y − x ∈ C.

Let
C∗ = { f ∈ Y∗ : f (y) ≥ 0, for all y ∈ C}

be the dual cone of C. Denote the quasi-interior of C∗ by C], i.e.

C] := { f ∈ Y∗ : f (y) > 0 for all y ∈ C \ {0}}.

Let D be a nonempty subset of Y. The cone hull of D is defined as

cone(D) = {td : t ≥ 0, d ∈ D}.

Denote the closure of D by cl(D). A nonempty convex subset M of the convex cone C is called a base of
C if C = cone(M). It is easy to see that C] , ∅ if and only if C has a base.

Let A be a nonempty subset of X and F : A × A → 2Y
\ {∅} be a set-valued mapping. A vector x ∈ A is

called an efficient solution if
F(x, y) < −C \ {0}, for all y ∈ A.
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The set of efficient solutions is denoted by V(A,F).

If int C , ∅, a vector x ∈ A is called a weakly efficient solution if

F(x, y) < −int C, for all y ∈ A.

The set of weakly efficient solutions is denoted by VW(A,F) ( see, for instance, [7]).

Let f ∈ C∗ \ {0}. A vector x ∈ A is called an f−efficient solution if

f (F(x, y)) ≥ 0, for all y ∈ A.

The set of f−efficient solutions is denoted by V f (A,F).

Definition 1.1. A vector x ∈ A is called a positive proper efficient solution if there exists f ∈ C] such that

f (F(x, y)) ≥ 0, for all y ∈ A.

By Definition 1.1, we can get easily the following Proposition.

Proposition 1.2. If int C , ∅, then
V(A,F) ⊂ VW(A,F)

and ⋃
f∈C∗\{0}

V f (A,F) ⊂ VW(A,F).

Lemma 1.3. Suppose that int C , ∅ and for each x ∈ A, F(x,A) =
⋃

y∈A F(x, y) is C−convex, that is F(x,A) + C is a
convex set. Then

VW(A,F) =
⋃

f∈C∗\{0}

V f (A,F).

Proof. In view of Proposition 1.2, it suffices to prove that

VW(A,F) ⊂
⋃

f∈C∗\{0}

V f (A,F).

Let x ∈ VW(A,F). By definition,
F(x, y) < −int C, for all y ∈ A.

Thus,
F(x,A) ∩ (−int C) = ∅,

and hence,
(F(x,A) + C) ∩ (−int C) = ∅.

Because F(x,A) + C is a convex set, by the separation theorem of convex sets (see Theorem 3.21 in [13]), we
can find a function f ∈ Y∗ \ {0} such that

inf{ f (F(x, y) + c) : y ∈ A, c ∈ C} > sup{ f (−c) : c ∈ int C}.

We obtain that f ∈ C∗ \ {0} and
f (F(x, y)) ≥ 0, for all y ∈ A.

Therefore, x ∈ V f (A,F).

Definition 1.4. ([3]) Let E be a topological vector space and K be a subset of it. A mapping F : K → 2E is said to be

a KKM-mapping, if for any {x1, x2, . . . , xn} ⊂ K, co{x1, x2, . . . , xn} ⊂
n⋃

i=1
F(xi), where 2E

\{∅} denotes the family of all

nonempty subsets of E.
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Lemma 1.5. ([3]) Let K be a nonempty subset of a topological vector space X and F : K→ 2X a KKM mapping with
closed values in K. Assume that there exists a nonempty compact convex subset B of K such that

⋂
x∈B

F(x) is compact.

Then ⋂
x∈K

F(x) , ∅.

2. Density and Connectedness

In this section, we first give a density theorem. We will see that, under some suitable conditions, the set
of positive proper efficient solutions is dense in the set of the efficient solutions. Finally, we discuss about
the connectedness for the set of the efficient solutions.

Let ϕ : A × A→ Y be a mapping. The mapping ϕ is called C−monotone on A × A if

ϕ(x, y) + ϕ(y, x) ∈ −C, for all x, y ∈ A.

Proposition 2.1. Let ϕ : A × A → Y be a mapping. If ϕ is C−monotone, then, for any f ∈ C∗ \ {0}, the mapping
f ◦ ϕ is R+

− monotone.

Proof. Assume that ϕ is C−monotone. Then

ϕ(x, y) + ϕ(y, x) ∈ −C, for all x, y ∈ A.

This implies that
f (ϕ(x, y) + ϕ(y, x)) ≤ 0.

So

( f ◦ ϕ)(x, y) + ( f ◦ ϕ)(y, x) = f (ϕ(x, y)) + f (ϕ(y, x))
= f (ϕ(x, y) + ϕ(y, x))
≤ 0.

This completes the proof.

The mapping ϕ is called C−strongly monotone on A × A if ϕ is C−monotone and if x, y ∈ A, x , y, then

ϕ(x, y) + ϕ(y, x) ∈ −int C.

Remark 2.2. It is obvious from the definition that the C−strong monotonicity of ϕ implies the C−monotonicity of
ϕ. While if we take X = R, C = [0,∞) and define ϕ : X × X → R by ϕ(x, y) = {0} then one can check that ϕ is
C−monotonicity and is not C−strongly monotone.

Let ψ : A→ Y be a mapping. The mapping ψ is called C−lower (C−upper) semicontinuous at x0 ∈ A if, for
any neighborhood U of 0( the zero vector) in Y, there is a neighborhood U(x0) of x0 such that

ψ(x) ∈ ψ(x0) + U + C, for all x ∈ U(x0) ∩ A,

(ψ(x) ∈ ψ(x0) + U − C, for all x ∈ U(x0) ∩ A).

The following lemma establishes a link between lower semicontinuity and C− lower semicontinuity.

Lemma 2.3. Let ψ : A→ Y be a mapping and G : A→ 2Y be defined by

G(x) = ψ(x) − C, ∀x ∈ A.

Then G is lower semicontinuous if and only if ψ is C−lower semicontinuous.
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Proof. (⇒) Let G is lower semicontinuous at x0 ∈ A and U0 is a neighborhood of 0. Then

(ψ(x) − C) ∩ (ψ(x0) + U0 + C) , ∅.

Since G is lower semicontinuous at x0, there exists U(x0) such that for all x ∈ Ux0 ,

(ψ(x) − C) ∩ (ψ(x0) + U0 + C) , ∅.

Hence there is an α ∈ C such that
ψ(x) − α ∈ ψ(x0) + U0 + C,

and so
ψ(x) ∈ ψ(x0) + U0 + α + C ⊆ ψ(x0) + U0 + C + C ⊆ ψ(x0) + U0 + C.

Therefore ψ is C−lower semicontinuous.

(⇐) Let G(x0) ∩W = (ψ(x0) − C) ∩W , ∅, where W is an open set. Hence, there is an α ∈ C such that

ψ(x0) − α ∈W.

Then there exists a balanced neighborhood U0 of 0 such that

ψ(x0) − α + U0 ⊆W.

Since ψ is C−lower semicontinuous, then there is a neighborhood Ux0 of x0 such that for all x ∈ Ux0 ,we have

ψ(x) ⊆ ψ(x0) + U0 + C.

Thus
ψ(x) − C ⊆ ψ(x0) + U0.

This implies that
ψ(x) − C − α ⊆ ψ(x0) − α0 + U0 ⊆W.

So (ψ(x) − C − α) ∩W and
ψ(x) − C − α0 ⊆ ψ(x) − C − C = ψ(x) − C.

Therefore
W ∩ (ψ(x) − C) , ∅.

This completes the proof.

Proposition 2.4. For any ψ : A → Y, if f ∈ C∗ \ {0Y∗ } and ψ is C−lower semicontinuous, then f ◦ ψ : A → R is
lower semicontinuous.

Proof. Assume that f ∈ C∗ \ {0Y∗ }. For any λ ∈ R, we prove that

{x ∈ A|( f ◦ ψ)(x) ≤ λ} is a closed set.

To see this, it suffices that we show that the set

M = {x ∈ A|( f ◦ ψ)(x) > λ} = {x ∈ A|( f ◦ ψ)(x) ≤ λ}C is open.

Let x̄ ∈M. Then f (ψ(x̄)) > λ. This implies that

ψ(x̄) ∈ f−1(λ,∞).

Since f−1(λ,∞) − ψ(x̄) is an open set which contains 0, there exists a neighborhood U of 0 such that

U + ψ(x̄) ⊆ f−1(λ,∞).
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Since ψ is C−lower semicontinuous, there is a neighborhood U(x̄) of x̄ such that

ψ(x) ∈ U + ψ(x̄) + C ⊆ f−1(λ,+∞) + C, for all x ∈ U(x̄).

Hence, for each x ∈ U(x̄), there is a c ∈ C such that

ψ(x) − c ∈ f−1(λ,+∞) ⇒ f (ψ(x) − c) ∈ (λ,+∞)
⇒ f (ψ(x)) − f (c) ∈ (λ,+∞)
⇒ f (ψ(x)) ≥ f (ψ(x)) − f (c) > λ.

Therefore
U(x̄) ⊆M.

Then x̄ is an interior point of M and so M is open. This completes the proof.

Proposition 2.5. For any ψ : A → Y, if f ∈ C∗ \ {0Y∗ } and ψ is C−lower semicontinuous, then f ◦ ψ : A → R is
upper semicontinuous.

Proof. Assume that f ∈ C∗ \ {0Y∗ }. For any λ ∈ R, we have to prove that the set

{x ∈ A| − ( f ◦ ψ)(x) ≤ λ} is a closed

or equivalently the set

Q = {x ∈ A| − ( f ◦ ψ)(x) > λ} = {x ∈ A| − ( f ◦ ψ)(x) ≤ λ}C is open.

To see this, let x̄ ∈ Q. Then − f (ψ(x̄)) > λ and so

f (ψ(x̄)) < −λ.

This implies that
ψ(x̄) ∈ f−1(−∞,−λ).

Since f−1(−∞,−λ) − ψ(x̄) is an open set which contains 0, there exists a neighborhood U of 0 such that

U + ψ(x̄) ⊆ f−1(−∞,−λ).

It follows from the −C−lower semicontinuity of ψ that there exists a neighborhood U(x̄) of x̄ such that

ψ(x) ∈ U + ψ(x̄) − C ⊆ f−1(−∞,−λ) − C, for all x ∈ U(x̄).

Consequently, For each x ∈ U(x̄), there is a c ∈ C such that

ψ(x) + c ∈ f−1(−∞,−λ) ⇒ f (ψ(x) + c) ∈ (−∞,−λ)
⇒ f (ψ(x)) + f (c) ∈ (−∞,−λ)
⇒ f (ψ(x)) ≤ f (ψ(x)) + f (c) < −λ,

and so
−( f ◦ ψ)(x) > λ.

Hence
U(x̄) ⊆ Q.

Therefore x̄ is an interior point of Q. This implies that each point of Q is an interior open ( note x̄ was an
arbitrary element of Q) and so Q is an open set. This completes the proof.

Remark 2.6. For any ψ : A→ Y, if f ∈ C∗ and ψ is C−convex, then f ◦ ψ : A→ R is R+
−convex.
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Proposition 2.7. Let Y be a locally convex space and ψ : A→ Y a mapping. If, for any f ∈ C∗ \ {0Y∗ }, f ◦ψ is R+
−

convex, then ψ is C−convex.

Proof. If the result is false then there exist x1, x2 ∈ A and t ∈ [0, 1] such that

z = tψ(x1) + (1 − t)ψ(x2) − ψ(tx1 + (1 − t)x2) < C.

By the separation theorem ( see, for instance, [[8], Theorem 3.4]) there exist f ∈ Y∗ and two real numbers
α, β such that

f (z) < α < β < f (x), ∀x ∈ C. (1)

We deduce from the properties of C and (1) that f ∈ C∗\{0Y∗ } and by taking x = 0 in (1) we get f (z) < 0 and
this means that

f (tψ(x1) + (1 − t)ψ(x2)) = t f (ψ(x1)) + (1 − t) f (ψ(x2)) < f (ψ(tx1 + (1 − t)x2))

which is contradicted by the R+
−convexity of f ◦ ψ. This completes the proof.

Lemma 2.8. (See Theorem 3.1 of [5]) Let A ⊂ X be a nonempty compact convex set. Let ψ : A → Y and
ϕ : A × A→ Y be two mappings. Assume that the following conditions are satisfied:

1. ψ is C−lower semicontinuous;
2. ϕ(x, x) ≥ 0 for all x ∈ A and ϕ is C−monotone;
3. for each x ∈ A, ϕ(x, y) is C−lower semicontinuous in y and for each y ∈ A, ϕ(x, y) is C−upper semicontinuous

in x;
4. for each x ∈ A, ψ(y) + ϕ(x, y) is C−convex mapping in y.

Then, for each f ∈ C∗ \ {0Y∗ },V f (A,F) is a nonempty compact convex set, where

F(x, y) = ψ(y) + ϕ(x, y) − ψ(x), for x, y ∈ A.

The following result establishes an existence and uniqueness theorem for an efficient solution for
bifunctions which one can consider it as an extension of Lemma 2.8 and Theorem 3.1 in [5] by relaxing
the C−lower semicontinuity of the mapping ϕ in the second variable and compactness of the set as well
extending the result for the mapping ψ is a bifunction, that is from one variable to two variables in the
setting of topological vector spaces ( more exact, we replace the locally convex topological vector space Y
by topological vector space). Further, the coercivity ( that is condition (5) in the next result is more general
than the coercivity condition used in Theorem 3.1 of [12].

Lemma 2.9. Let A ⊂ X be a nonempty convex set. Let ψ : A × A → Y and ϕ : A × A → Y be two mappings.
Assume that the following conditions are satisfied:

1. for each y ∈ A, ψ(x, y) + ϕ(x, y) is C− upper semicontinuous ( or (−C)− lower semicontinuous) in x;
2.

ψ(x, x) + ϕ(x, x) = 0, for all x ∈ A;

3. for each x ∈ A, ψ(x, y) + ϕ(x, y) is C−convex mapping in y.
4. ϕ,ψ are C−strongly monotone on A × A.
5. There exist a nonempty compact convex subset B and a compact subset D of A such that

∀y ∈ A\D,∃x ∈ B : ψ(x, y) + ϕ(x, y) ∈ −intC.

Then, for each f ∈ C∗ \ {0Y∗ }, the set of f− efficient solutions, that is V f (A,F) is singleton and so convex and compact,
where

F(x, y) = ψ(x, y) + ϕ(x, y), for all x, y ∈ A.
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Proof. Define Γ : A→ 2A as follows

Γ(y) = {x ∈ A : f ◦ F(x, y) ≥ 0}, ∀y ∈ A.

By Proposition 2.5, Γ(y) is closed for each y ∈ A. We claim that Γ is a KKM mapping. Indeed, let B =
{y1, ..., yn} ⊂ A and z =

∑n
i=1 λiyi ∈ coB. It follows from (2) and (3) that

n∑
i=1

λiF(z, yi) =

n∑
i=1

λiF(z, yi) − F(z, z) ∈ C.

So
n∑

i=1

f (F(z, yi)) ≥ 0.

Therefore, there is an i ∈ {1, 2, ...,n} such that f (F(z, yi)) ≥ 0 and so z ∈ Γ(yi) and this completes the proof
of the assertion. Moreover, it follows from (5) that

⋂
y∈B Γ(y) ⊂ D and so Γ satisfies all the assumptions

of Lemma 1.5. Hence it follows from Lemma 1.5 that
⋂

x∈A Γ(x) , ∅. Then there exists x ∈
⋂

x∈A Γ(x). This
means

f (F(x, y)) ≥ 0, ∀y ∈ A.

Hence x ∈ V f (F,A). It is obvious from the definitions of Γ and V f (F,A) that V f (F,A) =
⋂

x∈A Γ(x) ⊂
⋂

y∈B Γ(y) ⊂
D and since V f (F,A) is a closed subset of the compact set D ( note that the values of Γ are closed) we get
that V f (A,F) is a compact subset of D. Now we are going to show that V f (A,F) is singleton. To verify this,
let x1, x2 ∈ V f (A,F). If we assume that x1 , x2 then it follows from (4) that

F(x1, x2) + F(x2, x1) = ψ(x1, x2) + ϕ(x1, x2) + ψ(x2, x1) + ϕ(x2, x1) =

ψ(x1, x2) + ψ(x2, x1) + ϕ(x1, x2) + ϕ(x2, x1)

∈ (−intC + (−intC)) ⊆ −intC.

Thus, f (F((x1, x2) + F(x2 + x1) < 0 which is contradicted by x1, x2 ∈ V f (A,F). This completes the proof.

Note that if the mappings ψ and ϕ are C− upper semicontinuous ( (−C)− lower semicontinuous and C−
convex) then ψ+ϕ is C− upper semicontinuous ( (−C)− lower semicontinuous and C-convex). Also we can
omit condition (5) in Lemma 2.9 when A is compact.

The following result is the main goal of the paper that provides a density theorem between the solution
set of efficient solutions and properly f− efficient solutions which extends the corresponding result in
[5, 6, 8–10, 10, 11].

Theorem 2.10. Let A ⊂ X be a nonempty compact convex set. Let ψ : A × A → Y and ϕ : A × A → Y be two
mappings. Assume that the following conditions are satisfied:

1. for each y ∈ A, ψ(x, y) + ϕ(x, y) is C− upper semicontinuous ( or (−C)− lower semicontinuous) in x;
2.

ψ(x, x) + ϕ(x, x) = 0, for all x ∈ A;

3. for each x ∈ A, ψ(x, y) + ϕ(x, y) is C−convex mapping in y.
4. ϕ,ψ are C−strongly monotone on A × A.
5. Ψ(A × A) and D = {ϕ(x, y) : x, y ∈ A} are bounded subsets of Y.
6. C] , ∅ and intC , ∅

Then, ⋃
f∈C]V f (A,F) ⊂ V(A,F) ⊂ cl(

⋃
f∈C]V f (A,F))

where
F(x, y) = ψ(x, y) + ϕ(x, y), for all x, y ∈ A.



M. Rahimi et al. / Filomat 30:9 (2016), 2413–2423 2420

Proof. It follows from our hypothesis and Lemma 2.9 that

V f (A,F) , ∅, ∀ f ∈ C∗ \ {0}.

It is obvious from the definitions of an efficient solution, f− proper solution and weakly solution that,⋃
f∈C]V f (A,F) ⊂ V(A,F) ⊂ VW(A,F).

We claim that
V(A,F) ⊂

⋃
f∈C∗\{0}

V f (A,F).

Indeed, let x ∈ V(A,F). It is easy to check from the condition (3) that the set F(x,A)+C is convex and since
x ∈ V(A,F) and −C − intC ⊂ −intC we get that (F(x,A) + C) ∩ −intC = ∅. Then by applying the separation
theorem ( note that we can separate the convex sets F(x,A) + C and −C) that there exist f ∈ X∗ and real
number α such that

f (a) ≤ α ≤ f (F(x, y) + b), ∀(a, b, y) ∈ (−C) × C × A.

Now by taking (a, b) = (0, 0) one can deduce that

0 ≤ α ≤ f (F(x, y)), ∀y ∈ A.

This means that x ∈ V f (A,F) which completes the proof of the assertion.
Now we are going to prove that⋃

f∈C∗\{0}V f (A,F) ⊂ cl(
⋃

f∈C]V f (A,F)).

To verify the inclusion let us define the mapping H : C∗ \ {0} → 2A by

H( f ) = V f (A,F), f ∈ C∗ \ {0}.

By using the proof as given in Lemma 2.9 one can see that the values of H are nonempty and compact.
We show that the graph of H is closed and so it is upper semicontinuous ( note that the values of H are
compact). Let {( f α, xα) : α ∈ I} be a net in the graph of H, i.e.,

{( f α, xα) : α ∈ I} ⊂ Graph(H) = {( f , x) ∈ C∗ \ {0} × A : x ∈ H( f )},

with
( f α, xα)→ ( f , x) ∈ C∗ \ {0} × A,

where f α → f means that { f α} converges to f with respect to the topology induced by the bounded subsets
of Y on Y∗ which is denoted by β(Y∗,Y) and a neighborhood base of the zero is as

{

m⋂
i=1

{ f ∈ Y∗ : sup
y∈Bi

| f (y) | < ε}}Bi∈B(Y),

where B(Y) denotes all the nonempty bounded subsets of Y. From

xα ∈ H( f α) = V f α (A,F), α ∈ I,

we have
f α(ψ(xα, y)) + f α(ϕ(xα, y)) ≥ 0

Next, we show that
f (ψ(x, y)) + f (ϕ(x, y)) ≥ 0
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By (5) the sets ψ(A × A) and D = {ϕ(x, y) : x, y ∈ A} are bounded subsets of Y. Define

Pψ(A×A)+D(y∗) = sup u∈ψ(A×A)+D | y∗(u) | for y∗ ∈ Y∗.

It is easy to check that Pψ(A×A)+D is a seminorm of Y∗ ( note that y∗(B) is bounded when B is a bounded subset
of Y because if we take {xn} ⊂ B then 1

n y∗(xn) = y∗( 1
n xn) and ( 1

n xn)→ 0. Hence it follows from the continuity
of y∗ that y∗( 1

n xn) converges to zero and this completes the proof of the claim). Let ε be an arbitrary positive
real number. Put

U = {y∗ ∈ Y∗ : Pψ(A×A)+D(y∗) < ε}

which is a neighborhood of 0 with respect to β(Y∗,Y). Since f α − f → 0 ( in β(Y∗,Y)) there exists α0 ∈ I such
that f α − f ∈ U for all α ≥ α0. It implies that

Pψ(A×A)+D = sup u∈ψ(A×A)+D | ( f α − f )(u) | < ε, whenever α ≥ α0.

Therefore, for any y ∈ A and α ≥ α0 we have, for all (y, β) ∈ A × I,

| ( f α − f )(ψ(xβ, y) + ϕ(xβ, y)) | = | f α(ψ(xβ, y) + ϕ(xβ, y)) − f (ψ(xβ, y) + ϕ(xβ, y)) |< ε.

Hence

lim
α

fα(ψ(xβ, y) + ϕ(xβ, y)) = f (ψ(xβ, y) + ϕ(xβ, y)) ∀(y, β) ∈ A × I.

So
lim sup

α
fα(ψ(xβ, y) + ϕ(xβ, y)) = f (ψ(xβ, y) + ϕ(xβ, y)) ∀(y, β) ∈ A × I.

Then

0 ≤ lim sup
α

fα(ψ(xβ, y) + ϕ(xβ, y)) = f (ψ(xβ, y) + ϕ(xβ, y)) ∀(y, β) ∈ A × I.

Then we deduce , since ψ and ϕ are C− lower semicontinuous in the second variable, that

0 ≤ lim inf
β

f (ψ(xβ, y) + ϕ(xβ, y)) ≤ f (ψ(x, y) + ϕ(x, y)),

That is,
x ∈ V f (A,F) = H(F)

Thus, H is closed ( i.e., H has closed graph).
Now we assume that x0 ∈

⋃
f∈C∗\{0}V f (A,F). Then, there exists f0 ∈ C∗ \ {0} such that

{x0} = V f0 (A,F) = H( f0).

Since C] , ∅, let 1 ∈ C] and set
fn = f0 + (1 \ n)1.

Then, it is obvious that fn ∈ C]. Because Y∗ together with β(Y∗,Y) is a topological vector space and so it
follows from the continuity of scalar multiplication and sum we get that { fn} converges to f0 with respect to
the topology β(Y∗,Y). In the other words, for any neighborhood U of 0 with respect to β(Y∗,Y), there exist
bounded subsets Bi ⊂ Y(i = 1, 2, ...,m) and ε > 0 such that

m⋂
i=1

{ f ∈ Y∗ : sup
y∈Bi

| f (y) | < ε} ⊂ U.

Since Bi is bounded and 1 ∈ Y∗, | 1(Bi) | is bounded for i = 1, 2, ...,m. Thus, there exists N such that

sup
y∈Bi

| (1 \ n)1(y) | < ε, i = 1, 2, ...,m,n ≥ N.
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Hence (1 \ n)1(y) ∈ U, that is, fn − f0 ∈ U. This means that { fn} converges to f0 with respect to β(Y∗,Y).
Since, for each natural number n, the set V fn (A,F) is nonempty we can choose xn ∈ V fn (A,F) ⊂ A. Hence

{xn} is a sequence in the compact set A and so there exists a converges subsequence xnk of {xn}. Let xnk → x.
Because H is closed, ( fnk , xnk ) ∈ Graph(H) and ( fnk , xnk )→ ( f0, x) then

x ∈ H( f0) = V f0 (F,A).

Hence, since x0 ∈ V f0 (A,F) and V f0 (A,F) is singleton we obtain

x0 = x ∈ cl(
⋃
f∈C]

V f (A,F))

and this completes the proof.

Theorem 2.11. Let X,Y,A,C, ψ, ϕ, F be as in Theorem 2.10. Then, the set V(A,F) is connected.

Proof. Define the set-valued mapping H : C] → 2A by

H( f ) = V f (A,F), f ∈ C].

By Lemma 2.9, for each f ∈ C∗ \ {0},V f (A,F) , ∅. It is easy to see that C] is a convex set. Hence, it is a path
connected set. It is easy from our hypothesis that the mapping H is upper semicontinuous on C]. We show
that,

⋃
f∈C]V f (A,F) is connected.

Suppose that
⋃

f∈C]V f (A,F) is separated; that is, there exist open sets A and B such that⋃
f∈C]V f (A,F) ⊂ A ∪ B, A1 = A ∩ (

⋃
f∈C]V f (A,F)),

B1 = B ∩ (
⋃

f∈C]V f (A,F)), A1 ∩ B1 = ∅.

Let f ∈ C]. Since H( f ) is connected by Lemma 2.9 and

∅ , H( f ) ⊂ A1 ∪ B1,

it follows that either H( f ) ⊂ A1 or H( f ) ⊂ B1, but not both. Let

V = { f ∈ C]|H( f ) ⊂ A1},

W = { f ∈ C]|H( f ) ⊂ B1}.

Clearly,
C] = V ∪W.

Let f belong to the closure of V. If f ∈W, we have

H( f ) ⊂ B1 ⊂ B.

Thus, by the upper semicontinuity of H there exists a neighborhood U of f such that

H( f ) ⊂ B1, ∀ f ∈ U ∩ V.

But U must contain f of W, since f in the closure of V f (A,F).While H( f ) ⊂ A1 for such points, contradicting
H( f ) ⊂ B1. Hence,

V ∩W = ∅.
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That is, the intersection of the set V with the closure of W is empty. Similarly, no point of the closure of V
belongs to W. We then have that

C] = V ∪W,

is separated which is contradicted by the connectedness of C] ( note that C] is convex). Consequently, the
set ⋃

f∈C]V f (A,F)

is connected. Hence it follows from Theorem 2.10 that⋃
f∈C]V f (A,F) ⊂ V(A,F) ⊂ cl(

⋃
f∈C]V f (A,F)).

and so V(A,F) is a connected set.
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