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Abstract. Recently, Srivastava et al. [Integral Transforms Spec. Funct. 23 (2012), 659–683] introduced the
incomplete Pochhammer symbols that led to a natural generalization and decomposition of a class of hy-
pergeometric and other related functions as well as to certain potentially useful closed-form representations
of definite and improper integrals of various special functions of applied mathematics and mathematical
physics. In the present paper, our aim is to establish several formulas involving integral transforms and frac-
tional derivatives of this family of incomplete hypergeometric functions. As corollaries and consequences,
many interesting results are shown to follow from our main results.

1. Introduction, Definitions and Preliminaries

Throughout this presentation, we shall denote by R and C the sets of real and complex numbers,
respectively. We also set

Z−0 := Z− ∪ {0}; Z− := {−1,−2,−3, · · · }; N := {1, 2, 3, · · · } =N0 \ {0},

In terms of the familiar (Euler’s) gamma function Γ(z) which is defined, for z ∈ C \Z−0 , by

Γ(z) =



∫
∞

0 e−t tz−1 dt
(
<(z) > 0

)
Γ(z + n)

n−1∏
j=0

(z + j)
(z ∈ C \Z−0 ; n ∈N), (1)

a generalized binomial coefficient
(
λ
µ

)
is defined (for real or complex parameters λ and µ) by(

λ
µ

)
:=

Γ(λ + 1)
Γ(µ + 1)Γ(λ − µ + 1)

=:
(
λ

λ − µ

)
(λ, µ ∈ C), (2)
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so that, in the special case when

µ = n (n ∈N0; N0 :=N ∪ {0}),

we have(
λ
n

)
=
λ(λ − 1) · · · (λ − n + 1)

n!
=

(−1)n(−λ)n

n!
(n ∈N0). (3)

Here, and in what follows, (λ)n denotes the Pochhammer symbol which is defined (for λ ∈ C) by

(λ)n :=
Γ(λ + n)

Γ(λ)
=


1 (n = 0)

λ(λ + 1) · · · (λ + n − 1) (n ∈N).
(4)

The familiar incomplete gamma functions γ(s, x) and Γ(s, x) have proved to be important for physicists
and engineers as well as mathematicians. These widely-investigated incomplete gamma functions γ(s, x)
and Γ(s, x), defined by

γ(s, x) :=
∫ x

0
ts−1 e−t dt

(
<(s) > 0; x = 0

)
(5)

and

Γ(s, x) :=
∫
∞

x
ts−1 e−t dt

(
x = 0; <(s) > 0 when x = 0

)
, (6)

respectively, satisfy the following decomposition formula:

γ(s, x) + Γ(s, x) = Γ(s)
(
<(s) > 0; x = 0

)
. (7)

The function Γ(z), and its incomplete versions γ(s, x) and Γ(s, x), are known to play important rôles in
the study of the analytic solutions of a variety of problems in diverse areas of science and engineering (see,
for example, [1], [5], [18] and [29]; see also the recent papers [10], [23], [24], [26], [27], [16], [17], [34], [36],
[37] and [38]).

The theory of the incomplete gamma functions γ(s, x) and Γ(s, x), as a part of the theory of confluent
hypergeometric functions, received its presumably first systematic exposition by Tricomi [41] in the early
1950s. On the other hand, in his investigation of asymptotic expansions of a family of branch-cut integrals
occurring in diffraction theory by means of the Wiener-Hopf technique, Kobayashi (see [13] and [14]) en-
countered an integral representing a function class Γm(u, v) (m ∈ N0), which was referred to as a class of
generalized gamma functions occurring in diffraction theory. Subsequently, by using many different func-
tions of hypergeometric type in the kernel, various further generalizations and extensions of Kobayashi’s
integral were studied by several authors including (for example) Al-Musallam and Kalla (see [3] and [4]),
Srivastava et al. [33], Prieto et al. [19], and others. In fact, Srivastava et al. [33] made the unnoticed
observation that the so-called generalized gamma function Γm(u, v) is closely related as follows [33, p. 932,
Eq. (1.6)]:

Γm(u, v) = vu−m Γ(u)Ψ(u,u −m + 1; v) = Γ(u)Ψ(m, 1 − u + m; v) (8)

with the Tricomi function Ψ(a, c; z), which provides a solution of the confluent hypergeometric equation:

z
d2w
dz2 + (c − z)

dw
dz
− aw = 0. (9)

More importantly, Srivastava et al. [33] made use of the Fox-Wright hypergeometric function pΨq in the
kernel of the aforementioned Kobayashi’s integral for Γm(u, v) in order to present a systematic and unified
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study of these gamma-type functions, together with their applications in the theory of probability and
statistics. Recently, Srivastava et al. [27] introduced and systematically studied several fundamental prop-
erties and characteristics of a family of two potentially useful and generalized incomplete hypergeometric
functions pγq and pΓq, which are defined as follows [27, p. 675, Eqs. (4.1) and (4.2)]:

pγq[z] = pγq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
z

 :=
∞∑

n=0

(a1; x)n (a2)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!
(10)

and

pΓq[z] = pΓq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
z

 :=
∞∑

n=0

[a1; x]n (a2)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!
, (11)

where (a1; x)n and [a1; x]n are interesting generalizations of the Pochhammer symbol (λ)n, which are defined
by

(λ; x)ν :=
γ(λ + ν, x)

Γ(λ)
(x = 0; λ, ν ∈ C) (12)

and

[λ; x]ν :=
Γ(λ + ν, x)

Γ(λ)
(x = 0; λ, ν ∈ C) (13)

in terms of the incomplete gamma type functions γ(λ, x) and Γ(λ, x). These incomplete Pochhammer
symbols (λ; x)ν and [λ; x]ν satisfy the following decomposition relation:

(λ; x)ν + [λ; x]ν = (λ)ν (x = 0; λ, ν ∈ C).

In the definitions (5), (6), (10), (11), (12) and (13), and throughout our present investigation, the argument
x = 0 is independent of the argument z ∈ C which occurs in the definitions (1), (10) and (11) and also
elsewhere in this paper (see [35]). Moreover, as already pointed out by Srivastava et al. [27, p. 675, Remark
7], since

|(λ; x)ν| 5 |(λ)ν| and |[λ; x]ν| 5 |(λ)ν| (x = 0; λ, ν ∈ C), (14)

the precise (sufficient) conditions under which the infinite series in the definitions (10) and (11) would
converge absolutely can be derived from those that are well-documented in the case of the generalized
hypergeometric function pFq (p, q ∈ N0) (see, for details, [20, pp. 72–73] and [28, p. 20]). Indeed, in
their special case when x = 0, pΓq (p, q ∈ N0) would reduce immediately to the extensively-investigated
generalized hypergeometric function pFq (p, q ∈ N0). Furthermore, as an immediate consequence of the
definitions (10) and (11), we have the following decomposition formula (see, for details, [27]):

pγq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
z

 + pΓq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
z


= pFq

 a1, · · · , ap;

b1, · · · , bq;
z

 (15)

in terms of the familiar generalized hypergeometric function pFq (p, q ∈N0).



R. Srivastava et al. / Filomat 31:1 (2017), 125–140 128

Definition 1 below makes use of the classical orthogonal Jacobi polynomials P(α,β)
n (z) defined by (see, for

details, [39, Chapter 4] and [30, Chapters 1 and 2])

P(α,β)
n (z) = (−1)n P(β,α)

n (−z)

=

(
α + n

n

)
2F1

 −n, α + β + n + 1;

α + 1;

1 − z
2

 , (16)

where 2F1 denotes the familiar Gauss hypergeometric function.

Definition 1. (see, for example, [8, p. 501]) The Jacobi transform of a function f (z) is defined as follows:

J(α,β)[ f (z); n] =

∫ 1

−1
(1 − z)α(1 + z)β P(α,β)

n (z) f (z)dz (17)

(
min{<(α),<(β)} > −1; n ∈N0

)
,

provided that the function f (z) is so constrained that the integral in (17) exists.

The Jacobi transform of the power function zρ−1 (see, for example, [25, Eq. (20)]) is given by∫ 1

−1
(1 − z)ξ−1(1 + z)η−1 P(α,β)

n (z) zρ−1 dz

= 2ξ+η−1

(
α + n

n

)
B(ξ, η)

· F1:2;1
1:1;0

 ξ : −n, α + β + n + 1; 1 − ρ;

ξ + η : α + 1; ;
1, 2

 (18)

(
min{<(ξ),<(η)} > 0; ρ ∈ C; n ∈N0

)
,

where Fp: `;u
q:m;v denotes the familiar Kampé de Fériet function (see, for details, [28, p. 27 et seq.]). Indeed, in

its further special case when ρ = m + 1 (m ∈N0), (18) yields the following well-known result for the Jacobi
transform of zm (m ∈N0), which is given by (see, for example, [20, p. 261, Eqs. (14) and (15)])

J(α,β)[zm; n]

:=
∫ 1

−1
(1 − z)α(1 + z)β P(α,β)

n (z) zm dz

=



0 (m = 0, 1, 2, · · · ,n − 1)

2α+β+n+1 B(α + n + 1, β + n + 1) (m = n)

2α+β+n+1

(
m
n

)
B(α + n + 1, β + n + 1)

· 2F1

 n −m, α + n + 1;

α + β + 2n + 2;
2

 (m = n + 1,n + 2,n + 3, · · · )

(19)
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min{<(α),<(β)} > −1; m,n ∈N0

)
.

Many classical orthogonal polynomials (such as the Gegenbauer (or ultraspherical) polynomials Cνn(z),
the Legendre (or spherical) polynomials Pn(z), and the Tchebycheff polynomials Tn(z) and Un(z) of the
first and second kind) follow as special cases of the Jacobi polynomials P(α,β)

n (z) for various choices of the
parameters α and β. For example, we have

Cνn(z) =

(
ν + n − 1

2
n

)−1 (
2ν + n − 1

n

)
P(ν− 1

2 ,ν−
1
2 )

n (z) (20)

and

Pn(z) = C
1
2
n (z) = P(0,0)

n (z), (21)

which, in conjunction with Definition 1, yields the corresponding Gegenbauer transform G(ν)[ f (z); n] given
by

G(ν)[ f (z); n]

=

(
ν + n − 1

2
n

)−1(
2ν + n − 1

n

)
J(ν−

1
2 ,ν−

1
2 )[ f (z); n]

:=
∫ 1

−1

(
1 − z2

)ν− 1
2 Cνn(z) f (z)dz

(
<(ν) > −

1
2

; n ∈N0

)
(22)

and the corresponding Legendre transform L[ f (z); n] defined by

L[ f (z); n] = G( 1
2 )[ f (z); n] :=

∫ 1

−1
Pn(z) f (z)dz (n ∈N0) . (23)

Definition 2. (see [15]) ThePδ-transformPδ[ f (t); s] of a function f (t) (t ∈ R) is a function FP(s) of a complex
variable s, which is defined by

Pδ[ f (t); s] = FP(s) :=
∫
∞

0
[1 + (δ − 1)s]−

t
δ−1 f (t)dt (δ > 1), (24)

provided that the sufficient existence conditions given by Lemma 1 below are satisfied.

Lemma 1. (see [15]) Let the function f (t) be integrable over any finite interval (a, b) (0 < a < t < b). Suppose also
that there exists a real number c such that each of the following assertions holds true:

(i) For any arbitrary b > 0,
∫ %

b e−ct f (t)dt tends to a finite limit as %→∞;

(ii) For any arbitrary a > 0,
∫ a

ς
| f (t)|dt tends to a finite limit as ς→ 0+.

Then the Pδ-transform Pδ[ f (t); s] exists whenever

<

(
ln[1 + (δ − 1)s]

δ − 1

)
> c (s ∈ C).

The Pδ-transform of the power function tρ−1 is given by

Pδ

[
tρ−1; s

]
=

(
δ − 1

ln[1 + (δ − 1)s]

)ρ
Γ(ρ)

(
<(ρ) > 0; δ > 1). (25)
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Furthermore, upon letting δ → 1+ in the definition (24), the Pδ-transform is immediately reduced to the
classical Laplace transform (see, for example, [21]):

L[ f (t); s] :=
∫
∞

0
e−st f (t)dt, (26)

provided that the integral exists.
Remark 1. By closely comparing the definitions in (24) and (26), it is easily observed that the so-called
Pδ-transform is essentially the same as the classical Laplace transform with the following rather trivial
parameter change in (26):

s 7−→
ln[1 + (δ − 1)s]

δ − 1
(δ > 1). (27)

Nevertheless, the current literature on integral transforms, special functions and fractional calculus is
flooded by investigations claiming at least implicitly that the Pδ-transform Pδ[ f (t); s] defined by (24) is a
generalization of the classical Laplace transform defined by (26).

Remark 2. Agarwal et al. [2] made use of thePδ-transform given by Definition 2 in order to solve a fractional
Volterra type integral equation and a non-homogeneous time-fractional heat equation involving a so-called
pathway-type integral transform which is, in fact, the same as the extensively- and widely-investigated
Riemann-Liouville fractional integral with, of course, some obvious parameter and variable changes. On
the other hand, Srivastava et al. [25] found many results involving a family of generalized hypergeometric
functions by using the Pδ-transform given by Definition 2.

Various families of integral transforms and fractional calculus operators play important rôles from the
application viewpoint in several areas of mathematical, physical and engineering sciences. A lot of work has
been done on the theory and applications of integral transforms (see, for example, [7], [8], [9], [15] and [25]).
In recent years, integral transforms involving fractional integral and fractional derivative formulas and
various classes of special functions were investigated by many authors (see, for example, [2], [12], [22] and
[23]). In the present sequel to the aforementioned recent work [25], by using essentially the same techniques
as those that are detailed by Srivastava et al. [25], we establish several (presumably new) integral transform
and fractional derivative formulas involving the generalized incomplete hypergeometric functions pγq
and pΓq given by the equations (10) and (11), respectively.

2. Jacobi and Related Integral Transforms of the Incomplete Hypergeometric Functions

In this section, we prove three results which exhibit the connections between the Jacobi, Gegenbauer
and Legendre transforms with the following incomplete hypergeometric functions:

pγq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
z

 and pΓq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
z

 ,
which are given by the equations (10) and (11), respectively.

Theorem 1. Under the conditions stated already with (10) and (11), the following Jacobi transform formulas hold
true:

J(α,β)
[
zρ−1

pγq[yz]; n
]

= 2α+β+1

(
α + n

n

)
B(α + 1, β + 1)

∞∑
k=0

(a1; x)k(a2)k · · · (ap)k

(b1)k · · · (bq)k

· F1:2;1
1:1;0

 α + 1 : −n, α + β + n + 1; 1 − ρ − k;

α + β + 2 : α + 1; ;
1, 2

 yk

k!
(28)
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x = 0; n ∈N0; min{<(α),<(β)} > −1; ρ ∈ C; p, q ∈N0

)
and

J(α,β)
[
zρ−1

pΓq[yz]; n
]

= 2α+β+1

(
α + n

n

)
B(α + 1, β + 1)

∞∑
k=0

[a1; x]k(a2)k · · · (ap)k

(b1)k · · · (bq)k

· F1:2;1
1:1;0

 α + 1 : −n, α + β + n + 1; 1 − ρ − k;

α + β + 2 : α + 1; ;
1, 2

 yk

k!
(29)

(
x = 0; n ∈N0; min{<(α),<(β)} > −1; ρ ∈ C; p, q ∈N0

)
,

where the coefficients of the incomplete hypergeometric functions pγq and pΓq are given by (10) and (11) and the
Jacobi transforms in (28) and (29) are assumed to exist.

Proof. In order to prove the assertion (28) of Theorem 1, we first apply the definition (17) in conjunction
with (10). Then, upon changing the order of integration and summation (which can be justified easily by
absolute convergence), we make use of the Jacobi transform formula (18) with the parameter ρ replaced by
ρ + k (ρ ∈ C; k ∈N0).

The assertion (29) of Theorem 1 can be proven similarly by using the definition (11) in place of (10). The
details involved are being left as an exercise for the interested reader.

By applying the Jacobi transform formula (19), we can simplify the assertions (28) and (29) of Theorem
1 in their special case when ρ = m + 1 (m ∈ N0). Moreover, in view of the relationship (20), Theorem 1
yields the following corollary by setting α = β = ν − 1

2 .

Corollary 1. Under the conditions stated already with (10) and (11), the following Gegenbauer transform formulas
hold true:

G(ν)
[
zρ−1

pγq[yz]; n
]

= 22ν

(
2ν + n − 1

n

)
B
(
ν +

1
2
, ν +

1
2

) ∞∑
k=0

(a1; x)k(a2)k · · · (ap)k

(b1)k · · · (bq)k

· F1:2;1
1:1;0

 ν + 1
2 : −n, 2ν + n; 1 − ρ − k;

2ν + 1 : ν + 1
2 ; ;

1, 2

 yk

k!
(30)

(
x = 0; n ∈N0; ρ ∈ C; p, q ∈N0

)
and

G
[
zρ−1

pΓq[yz]; n
]

= 22ν

(
2ν + n − 1

n

)
B
(
ν +

1
2
, ν +

1
2

) ∞∑
k=0

[a1; x]k(a2)k · · · (ap)k

(b1)k · · · (bq)k

· F1:2;1
1:1;0

 ν + 1
2 : −n, 2ν + n; 1 − ρ − k;

2ν + 1 : ν + 1
2 ; ;

1, 2

 yk

k!
(31)

(
x = 0; n ∈N0; min{<(ν)} > −

1
2

; ρ ∈ C; p, q ∈N0

)
,

where it is assumed that the Gegenbauer transforms in (30) and (31) exist.
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For the Legendre transform defined by (23), a special case of Theorem 1 when α = β = 0 (or, alternatively,
a further special case of Corollary 1 when ν = 1

2 ) yields the following result.

Corollary 2. Under the conditions stated already with (10) and (11), the following Legendre transform formulas
hold true:

L
[
zρ−1

pγq[yz]; n
]

= 2
∞∑

k=0

(a1; x)k(a2)k · · · (ap)k

(b1)k · · · (bq)k

· F1:2;1
1:1;0

 1 : −n,n + 1; 1 − ρ − k;

2 : 1; ;
1, 2

 yk

k!
(32)

(
x = 0; n ∈N0; ρ ∈ C; p, q ∈N0

)
and

L
[
zρ−1

pΓq[yz]; n
]

= 2
∞∑

k=0

[a1; x]k(a2)k · · · (ap)k

(b1)k · · · (bq)k

· F1:2;1
1:1;0

 1 : −n,n + 1; 1 − ρ − k;

2 : 1; ;
1, 2

 yk

k!
(33)

(
x = 0; n ∈N0; ρ ∈ C; p, q ∈N0

)
,

where it is assumed that the Legendre transforms in (32) and (33) exist.

3. Pδ-Transforms of the Incomplete Hypergeometric Functions

As we have already mentioned in Remark 1, the following relationship holds true between the so-called
Pδ-transform defined by (24) and the classical Laplace transform given by (26):

Pδ[ f (t) : s] = L

[
f (t) :

(
ln[1 + (δ − 1)s]

δ − 1

)]
(δ > 1) (34)

or, equivalently,

L[ f (t) : s] = Pδ

[
f (t) :

e(δ−1)s
− 1

δ − 1

]
(δ > 1), (35)

which can indeed be applied reasonably simply to convert the table of Laplace transforms into the corre-
sponding table of the Pδ-transform and vice versa.

Theorem 2. Under the conditions stated already with (10) and (11), the following Pδ-transform formulas hold true:

Pδ

[
tρ−1

pγq[zt]; s
]

=
Γ(ρ)

[Λ(δ; s)]ρ p+1γq

 ρ, (a1, x), a2, · · · , ap;

b1, · · · , bq;
z

 (36)

(
|z| < 1; min

{
<(s),<(ρ)

}
> 0; δ > 1; p, q ∈N0

)
and

Pδ

[
tρ−1

pΓq[zt]; s
]

=
Γ(ρ)

[Λ(δ; s)]ρ p+1Γq

 ρ, (a1, x), a2, · · · , ap;

b1, · · · , bq;
z

 (37)
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|z| < 1; min

{
<(s),<(ρ)

}
> 0; δ > 1; p, q ∈N0

)
,

where

Λ(δ; s) :=
ln[1 + (δ − 1)s]

δ − 1
(38)

and it is assumed that the Pδ-transforms in (36) and (37) exist.

Proof. Applying the definitions (24) and (10) on the left-hand side of (36), we find that

Pδ

tρ−1
pγq

[ (a1, x), a2, · · · , ap;

b1, · · · , bq;
zt
]
; s


=

∫
∞

0
tρ−1[1 + (δ − 1)s]−

t
δ−1 pγq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
zt

 dt

=

∫
∞

0
tρ−1[1 + (δ − 1)s]−

t
δ−1

 ∞∑
k=0

(a1; x)k(a2)k · · · (ap)k

(b1)k · · · (bq)k

(zt)k

k!

 dt. (39)

If, upon changing the order of integration and summation in Eq. (39), we make use of Eq. (25) with the
parameter ρ replaced by ρ + k (k ∈N0), we obtain

Pδ

tρ−1
pγq

[ (a1, x), a2, · · · , ap;

b1, · · · , bq;
zt
]
; s


=

∞∑
k=0

(a1; x)k(a2)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!

∫
∞

0
tρ+k−1[1 + (δ − 1)s]−

t
δ−1 dt

=

∞∑
k=0

(a1; x)k(a2)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
Γ(ρ + k)

[Λ(δ; s)]ρ+k
, (40)

where [Λ(δ; s)] is given by (38). The assertion (36) of Theorem 2 now follows when we interpret the last
member of (40) by means of the definition (10).

A similar argument as in the proof of (36) will establish the result (37). This completes the proof of
Theorem 2.

The following corollary is a limit case of Theorem 2 when δ→ 1+.

Corollary 3. Under the conditions stated already with (10) and (11), the following Laplace transform formulas hold
true:

L
[
tρ−1

pγq[zt]; s
]

=
Γ(ρ)
sρ p+1γq

 ρ, (a1, x), a2, · · · , ap;

b1, · · · , bq;

z
s

 (41)

and

L
[
tρ−1

pΓq[zt]; s
]

=
Γ(ρ)
sρ p+1Γq

 ρ, (a1, x), a2, · · · , ap;

b1, · · · , bq;

z
s

 , (42)

(
|z| < 1; min{<(s),<(ρ)} > 0; p, q ∈N0

)
,

where it is assumed that the Laplace transforms in (41) and (42) exist.

Remark 3. By appealing to the relationship (34), it is rather straightforward to deduce the assertions (36)
and (37) of Theorem 2 from the Laplace transform formulas (41) and (42) in Corollary 3 by trivially setting
s 7→ Λ(δ; s) for Λ(δ; s) given by (38).
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4. Fractional Derivative Formulas for the Incomplete Hypergeometric Functions

Here, in this section, we establish several fractional derivative formulas for each of the following
incomplete hypergeometric functions:

pγq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
z

 and pΓq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
z


which are given by (10) and (11). With this purpose in view, we recall the pairs of hypergeometric fractional
derivative operators Dω,ν,η

0+
and Dω,ν,η

∞−
, which are defined below in terms of the corresponding pairs of

hypergeometric fractional integral operators Iω,ν,η0+
and Iω,−ν,η

∞−
, respectively.

Definition 3. (see, for details, [32] and [31]) In terms of the Gauss hypergeometric function 2F1, the left-
sided hypergeometric fractional integral operator Iω,ν,η0+

and the corresponding left-sided hypergeometric
fractional derivative operator Dω,ν,η

0+
are defined, for x > 0 and ω, ν, η ∈ C, by

(
Iω,ν,η0+

f
)

(x) :=
x−ω−ν

Γ(ω)

∫ x

0
(x − t)ω−1

· 2F1

(
ω + ν,−η;ω; 1 −

t
x

)
f (t)dt

(
<(ω) > 0

)
(43)

and (
Dω,ν,η

0+
f
)

(x) =
(
I−ω,−ν,ω+η
0+

f
)

(x)

=
( d

dx

)n {(
I−ω+η,−ν−η,ω+η−n
0+

f
)

(x)
}

(44)

(
<(ω) = 0; n = [<(ω)] + 1

)
,

where, and in what follows, [κ] denotes the largest integer in the real number κ.

The left-sided hypergeometric fractional derivative operator Dω,ν,η
0+

unifies both the Riemann-Liouville
fractional derivative operator RLD

ω
0+ and the left-sided Erdélyi-Kober fractional derivative operator EKD

ω,η
0+

.
In fact, we have the following relationships:

RLD
ω
0+ = Dω,−ω,η

0+
and EKD

ω,η
0+

= Dω,0,η
0+

, (45)

where (see, for details, [9, Chapter 13])

(
RLD

ω
0+ f

)
(x) :=

( d
dx

)n {
1

Γ(n − ω)

∫ x

0

f (t)
(x − t)ω−n+1 dt

}
(46)

(
x > 0; n = [<(ω)] + 1; <(ω) = 0

)
and (

EKD
ω,η
0+

f
)

(x) := xη
( d

dx

)n {
1

Γ(n − ω)

∫ x

0

tω+η f (t)
(x − t)ω−n+1 dt

}
(47)

(
x > 0; n = [<(ω)] + 1; <(ω) = 0

)
.
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Definition 4. (see, for details, [32] and [31]; see also [11]) In terms of the Gauss hypergeometric function
2F1, the right-sided hypergeometric fractional integral operator Iω,ν,η

∞−
and the corresponding right-sided

hypergeometric fractional derivative operator Dω,ν,η
∞−

are defined, for x > 0 and ω, ν, η ∈ C, by(
Iω,ν,η
∞−

f
)

(x) :=
1

Γ(ω)

∫
∞

x
(t − x)ω−1 t−ω−ν

· 2F1

(
ω + ν,−η;ω; 1 −

x
t

)
f (t)dt

(
<(ω) > 0

)
(48)

and (
Dω,ν,η
∞−

f
)

(x) =
(
I−ω,−ν,ω+η
∞ f

)
(x)

=
(
−

d
dx

)n {(
I−ω+η,−ν−η,ω+η−n
∞−

f
)

(x)
}

(49)

(
<(ω) = 0; n = [<(ω)] + 1

)
.

The right-sided hypergeometric fractional derivative operator Dω,ν,η
∞−

unifies both the Weyl fractional
derivative operator WD

ω
∞− and the right-sided Erdélyi-Kober fractional derivative operator EKD

ω,η
∞−

. In fact,
we have the following relationships:

WD
ω
∞− = Dω,−ω,η

∞−
and EKD

ω,η
∞−

= Dω,0,η
∞−

, (50)

where (see, for details, [9, Chapter 13])

(
WD

ω
∞− f

)
(x) :=

(
−

d
dx

)n {
1

Γ(n − ω)

∫ x

0

f (t)
(t − x)ω−n+1 dt

}
(51)

(
x > 0; <(ω) = 0; n = [<(ω)] + 1

)
and

(
EKD

ω
∞− f

)
(x) := xω+η

( d
dx

)n {
1

Γ(n − ω)

∫
∞

x

t−η f (t)
(t − x)ω−n+1 dt

}
(52)

(
x > 0; <(ω) = 0; n = [<(ω)] + 1

)
.

Lemma 2. (see, for example, [11, pp. 327–328]) Each of the following hypergeometric fractional derivative
formulas holds true:

(
Dω,ν,η

0+
tρ−1

)
(x) =

Γ(ρ)Γ(ρ + ω + ν + η)
Γ(ρ + ν)Γ(ρ + η)

xρ+ν−1 (53)

(
x > 0; <(ω) = 0; <(ρ) > −min{0,<(ω + ν + η)}

)
and

(
Dω,ν,η
∞−

tρ−1
)

(x) =
Γ(1 − ρ − ν)(1 − ρ + ω + η)

Γ(1 − ρ)Γ(1 − ρ + η − ν)
xρ+ν−1 (54)

(
x > 0; <(ω) = 0; <(ρ) < 1 + min{−<(ν + η),<(ω + η)}

)
.



R. Srivastava et al. / Filomat 31:1 (2017), 125–140 136

Now, if we appeal appropriately to the assertions (53) and (54) of Lemma 2, we can easily derive each
of the following results.

Theorem 3. Under the conditions stated with (10) and (11), the following left-sided hypergeometric fractional
derivative formulas hold true:Dω,ν,η

0+
tρ−1

pγq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
zt


 (ξ)

= ξρ+ν−1 Γ(ρ)Γ(ρ + ω + ν + η)
Γ(ρ + ν)Γ(ρ + η)

· p+2γq+2

 ρ, ρ + ω + ν + η, (a1, x), a2, · · · , ap;

ρ + ν, ρ + η, b1, · · · , bq;
zξ

 (55)

(
ξ > 0; <(ω) = 0; <(ρ) > −min{0,<(ω + ν + η)}

)
and Dω,ν,η

0+
tρ−1

pΓq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
zt


 (ξ)

= ξρ+ν−1 Γ(ρ)Γ(ρ + ω + ν + η)
Γ(ρ + ν)Γ(ρ + η)

· p+2Γq+2

 ρ, ρ + ω + ν + η, (a1, x), a2, · · · , ap;

ρ + ν, ρ + η, b1, · · · , bq;
zξ

 (56)

(
ξ > 0; <(ω) = 0; <(ρ) > −min{0,<(ω + ν + η)}

)
,

where it is assumed that the left-sided hypergeometric fractional derivatives in (55) and (56) exist.

Proof. Our demonstration of the hypergeometric fractional derivative formulas (55) and (56) is based upon
the known result (53). The details are fairly straightforward and are, therefore, omitted.

Analogously to the proof of Theorem 3 above, Theorem 4 below can be proven by applying the hyper-
geometric fractional derivative formula (54).

Theorem 4. Under the conditions stated already with (10) and (11), the following right-sided hypergeometric
fractional derivative formulas hold true:Dω,ν,η

∞−
tρ−1

pγq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;

z
t


 (ξ)

= ξρ+ν−1 Γ(1 − ρ − ν)1 − ρ + ω + η

Γ(1 − ρ)Γ(1 − ρ + η − ν)

· p+2γq+2

 1 − ρ − ν, 1 − ρ + ω + η, (a1, x), a2, · · · , ap;

1 − ρ, 1 − ρ + η − ν, b1, · · · , bq;

z
ξ

 (57)

(
ξ > 0; <(ω) = 0; <(ρ) < 1 + min{−<(ν + η),<(ω + η)}

)
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and Dω,ν,η
∞−

tρ−1
pΓq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;

z
t


 (ξ)

= ξρ+ν−1 Γ(1 − ρ − ν)(1 − ρ + ω + η)
Γ(1 − ρ)Γ(1 − ρ + η − ν)

· p+2Γq+2

 1 − ρ − ν, 1 − ρ + ω + η, (a1, x), a2, · · · , ap;

1 − ρ, 1 − ρ + η − ν, b1, · · · , bq;

z
ξ

 (58)

(
ξ > 0; <(ω) = 0; <(ρ) < 1 + min{−<(ν + η),<(ω + η)}

)
,

where it is assumed that the right-sided hypergeometric fractional derivatives in (57) and (58) exist.

Upon setting ν = −ω and ν = 0 in Theorem 3, if we use the relationships in (45), we can deduce Corollary
4 and Corollary 5, respectively.

Corollary 4. Under the conditions stated with (10) and (11), the following Riemann-Liouville fractional derivative
formulas hold true:RLDω

0+ tρ−1
pγq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
zt


 (ξ)

= ξρ+ω−1 Γ(ρ)
Γ(ρ − ω)

· p+1γq+1

 ρ, (a1, x), a2, · · · , ap;

ρ − ω, b1, · · · , bq;
zξ

 (59)

(
ξ > 0; <(ω) = 0; <(ρ) > 0

)
and RLDω

0+ tρ−1
pΓq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
zt


 (ξ)

= ξρ+ω−1 Γ(ρ)
Γ(ρ − ω)

· p+1Γq+1

 ρ, [a1, x], a2, · · · , ap;

ρ − ω, b1, · · · , bq;
zξ

 (60)

(
ξ > 0; <(ω) = 0; <(ρ) > 0

)
,

where it is assumed that the Riemann-Liouville fractional derivatives in (59) and (60) exist.

Corollary 5. Under the conditions stated already with (10) and (11), the following left-sided Erdélyi-Kober fractional
derivative formulas hold true:EKD

ω,η
0+

tρ−1
pγq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
zt


 (ξ)

= ξρ−1 Γ(ρ + ω + η)
Γ(ρ + η)

· p+1γq+1

 ρ + ω + η, (a1, x), a2, · · · , ap;

ρ + η, b1, · · · , bq;
zξ

 (61)
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ξ > 0;<(ω) = 0; <(ρ) > −min{0,<(η)}

)
and EKD

ω,η
0+

tρ−1
pΓq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;
zt


 (ξ)

= ξρ−1 Γ(ρ + ω + η)
Γ(ρ + η)

· p+1Γq+1

 ρ + ω + η, [a1, x], a2, · · · , ap;

ρ + η, b1, · · · , bq;
zξ

 (62)

(
ξ > 0;<(ω) = 0; <(ρ) > −min{0,<(η)}

)
,

where it is assumed that the left-sided Erdélyi-Kober fractional derivatives in (61) and (62) exist.

Corollary 6 and Corollary 7 below would follow from the Theorem 4 by first setting ν = −ω and ν = 0,
respectively, and then making use of the relationships given by (50).

Corollary 6. Under the conditions stated already with (10) and (11), the following Weyl fractional derivative formulas
hold true:WDω

∞− tρ−1
pγq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;

z
t


 (ξ)

= ξρ−ω−1 Γ(1 − ρ + ω)
Γ(1 − ρ)

· p+1γq+1

 1 − ρ + ω, (a1, x), a2, · · · , ap;

1 − ρ, b1, · · · , bq;

z
ξ

 (63)

(
ξ > 0; <(ω) = 0; <(ρ) < 1 +<(ω)

)
and WDω

∞− tρ−1
pΓq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;

z
t


 (ξ)

= ξρ−ω−1 Γ(1 − ρ + ω)
Γ(1 − ρ)

· p+1Γq+1

 1 − ρ + ω, (a1, x), a2, · · · , ap;

1 − ρ, b1, · · · , bq;

z
ξ

 (64)

(
ξ > 0; <(ω) = 0; <(ρ) < 1 +<(ω)

)
,

where it is assumed that the Weyl fractional derivatives in (63) and (64) exist.

Corollary 7. Under the conditions stated with (10) and (11), the following right-sided Erdélyi-Kober fractional
derivative formulas hold true:EKDω,η

∞−
tρ−1

pγq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;

z
t


 (ξ) = ξρ−1 Γ(1 − ρ + ω + η)

Γ(1 − ρ + η)

· p+1γq+1

 1 − ρ + ω + η, (a1, x), a2, · · · , ap;

1 − ρ + η, b1, · · · , bq;

z
ξ

 (65)

(
ξ > 0; <(ω) = 0; <(ρ) < 1 + min{−<(η),<(ω + η)}

)
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and

EKDω,η
∞−

tρ−1
pΓq

 (a1, x), a2, · · · , ap;

b1, · · · , bq;

z
t


 (ξ) = ξρ−1 Γ(1 − ρ + ω + η)

Γ(1 − ρ + η)

· p+1Γq+1

 1 − ρ + ω + η, (a1, x), a2, · · · , ap;

1 − ρ + η, b1, · · · , bq;

z
ξ

 (66)

(
ξ > 0; <(ω) = 0; <(ρ) < 1 + min{−<(η),<(ω + η)}

)
,

where it is assumed that the right-sided Erdélyi-Kober fractional derivatives in (65) and (66) exist.

5. Concluding Remarks and Observations

The family of the incomplete hypergeometric functions, which were introduced and investigated system-
atically by Srivastava et al. [27], possess the advantage that most of the known and widely-studied special
functions are expressible in terms of these incomplete hypergeometric functions. In conclusion, therefore,
we remark that the results derived in this paper are sufficiently significant and sufficiently general in nature
and are capable of yielding numerous other integral transform and fractional derivative formulas involving
various special functions by some appropriate choices of the essentially arbitrary parameters which are in-
volved in these results. Moreover, various applications of this pair of incomplete hypergeometric functions
in Communication Theory, Probability Theory and Groundwater Pumping Modeling are already shown
by Srivastava et al. [27]. Thus, naturally, the results presented in this paper are expected to lead to some
potential applications in several diverse fields of mathematical, physical, statistical and engineering sci-
ences. Such results may also find applications in the solutions of integral and integro-differential equations
occurring in applied mathematics (see also the recent works [6], [40] and [42]).
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