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Abstract. The aim of this paper is to investigate and give a new family of Apell type polynomials, which
are related to the Euler, Frobenius-Euler and Apostol-Bernoulli polynomials and numbers and also the
generalized Stirling numbers of the second kind etc. The results presented in this paper are based upon
the theory of the generating functions. By using functional equations of these generating functions, we
drive some identities and relations for these numbers and polynomials. Moreover, we give a computation
algorithm these numbers.

1. Introduction

The motivation of this paper is to give a new family of the special numbers and polynomials. This
family is related very well-known numbers and polynomials, which are the Euler, Frobenius-Euler and
Apostol-Bernoulli polynomials and numbers, etc. We investigate their properties by using generating
functions, related to nonnegative real parameters. It is also well-known that the generating functions have
been many applications in almost all branches of mathematics and statistics. These functions are related to
the many known and unkonw numbers and polynomials. In the literature there are various studies related
to the generating functions for well-known numbers and polynomials: the Bernoulli, Euler and Genocchi
numbers and polynomials and also their generalizations, the λ-Stirling numbers of the second kind etc. In
[8, Definition 4.1, p. 9], we defined the Eulerian type polynomials and numbers, related to nonnegative real
parameters by the following definition:

Definition 1.1. Let a, b ∈ R+ (a , b and a ≥ 1), x ∈ R, λ ∈ C and u ∈ C� {1}. The generalized Eulerian type
polynomialsHn(x; u; a, b, c;λ) are defined by means of the following generating function:

Fλ(t, x; u, a, b, c) =

(
at
− u

)
cxt

λbt − u
=

∞∑
n=0

Hn(x; u; a, b, c;λ)
tn

n!
. (1)

By substituting x = 0 into (1), the Eulerian type polynomials reduce to the Eulerian type numbers
Hn(u; a, b;λ):

Hn(0; u; a, b, c;λ) = Hn(u; a, b;λ).
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In [8, Eq-(37), p. 21], we also defined a new family of polynomials Yn (x,u; a) by means of the following
generating functions:

Let a ∈ R+ with a ≥ 1 and u ∈ C\ {1}. We have

GY (t, a,u) =
1

at − u
(2)

=

∞∑
n=0

Yn (u; a)
tn

n!

and

GY (x, t, a,u) = GY (t, a,u) atx (3)

=

∞∑
n=0

Yn (x,u; a)
tn

n!
.

By using (2), we have

Y0 (u; a) =
1

1 − u
.

We define the polynomials Y(v)
n (x,u; a) of higher order as follows:

( 1
at − u

)v

atx =

∞∑
n=0

Y(v)
n (x,u; a)

tn

n!
,

where v is an integer. Furthermore,we have

Y(v)
n (u; a) = Y(v)

n (0,u; a) .

The λ-Stirling type numbers of the second kind S(n, v; 1, b;λ), related to nonnegative real parameters,
are defined by means of the following generating function :(

λbt
− 1

)v

v!
=

∞∑
n=0

S(n, v; 1, b;λ)
tn

n!
, (4)

cf. ([8]). If b = e, then S(n, v; 1, b;λ) reduces to the λ-Stirling numbers of the second kind:

S(n, v;λ) = S(n, v; 1, e;λ)

and also if λ = 1, then S(n, v;λ) reduces to the Stirling numbers of the second kind:

S(n, v) = S(n, v; 1, e; 1),

cf. ([1], [6], [8], [11], [12]).
Other than the introduction, this paper consists of three sections. In Section 2, by using generating

functions for the numbers Yn (u; a), we derive not only recurrence relation and identities, but also a compu-
tation algorithm for these numbers. In Section 3, we give some properties and identities of the polynomials
Yn (x,u; a). In Section 4, we give relationships between these numbers and he Euler, Frobenius-Euler and
Apostol-Bernoulli numbers, etc.
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2. Computation Algorithm for the Numbers Yn (u; a)

In this section, by using generating functions for the numbers Yn (u; a), we derive some new identities,
formulas and relations. We give a recurrence relation for this numbers. We also give a computation
algorithm of the numbers Yn (u; a). By using this computation algorithm, we give a few values of these
numbers.

By using the Umbral Calculus convention, we derive a recurrence relation for the numbers Yn (u; a). Using
(2), we get

1 =

∞∑
n=0

(
(Y (u; a) + ln a)n

− uYn (u; a)
) tn

n!
,

where Yn (u; a) is replaced conventionally by Yn (u; a). By using the above equation, we get the following
theorem:

Theorem 2.1. If n = 0, we have

Y0 (u; a) =
1

1 − u
.

If n ≥ 1, we have

Yn (u; a) =
1

u − 1

n−1∑
j=0

(
n
j

)
Y j (u; a) (ln a)n− j . (5)

Theorem 2.2.

∂
∂u

Yn (u; a) =

n∑
j=0

(
n
j

)
Y j (u; a) Yn− j (u; a)

= Y(2)
n (u; a) .

Proof. We differentiate (2) with respect to the variable u to derive the following partial differential equations

∂
∂u

GY (t, a,u) = G2
Y (t, a,u) .

By using this function with (2), we get

∞∑
n=1

∂
∂u

Yn (u; a)
tn

n!
=

∞∑
n=1

Y(2)
n (u; a)

tn

n!
.

After some elementary calculations, comparing the coefficients of tn

n! on both sides of the above equation,
we arrive at the desired result.

Now, we are going to differentiate (2) with respect to the variable t to derive a recurrence relation for
the numbers Yn (u; a). Therefore, we obtain the following partial differential equations:

∂
∂t

GY (t, a,u) = −at (ln a) G2
Y (t, a,u) .

By using this equation, we arrive at the following theorem:
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Theorem 2.3.

Yn+1 (u; a) = −

n∑
j=0

j∑
k=0

(
n
j

) (
j
k

)
Yk (u; a) Y j−k (u; a) (ln a)n+1− j .

Theorem 2.4. Let n be a positive integer. Then we have

uv
n∑

j=0

(
n
j

)
Y(v)

n− j (u; a) S
(
j, v; a;

1
u

)
= 0

Proof. By using (2), we get(
at
− u

)v
∞∑

n=0

Y(v)
n (u; a)

tn

n!
= 1

By using (4), we get

v!uv
∞∑

n=0

S
(
n, v; a;

1
u

)
(ln a)n tn

n!

∞∑
n=0

Y(v)
n (u; a)

tn

n!
= 1.

Therefore
∞∑

n=0

uvv!
n∑

j=0

(
n
j

)
Y(v)

n− j (u; a) (ln a) j S
(
j, v; a;

1
u

) tn

n!
= 1.

From the above equation, we get the desired result.

Algorithms are very important not only in Mathematics, but also in Computer Science and also Com-
munications Systems. There are many applications of the algorithms in the related areas. Here we compute
our numbers via an algorithm. Therefore, we are ready to give a computation algorithm for computing the
values of the numbers Yn (u; a). The numbers Yn (u; a) has the following initial value:

Y0 (u; a) =
1

1 − u
as follows:

Algorithm 1 Let a be a real number with a ≥ 1 and let u ∈ C� {1}. This algorithm will return the value of
Yn (u, a) recursively.

procedure CALCULATE Y(integer value n,u, a)
Begin
Inputs:
Y0 ← 1/ (1 − u)
Yn ← 0
Outputs:
Yn (u, a)← Yn
if n = 0 then

Yn = Y0
end if
for all j in {1, 2, . . . ,n − 1} do

Yn = Yn + Binomial Coef
(
n, j

)
∗ Y

(
j,u, a

)
∗ Power

(
ln (a) ,n − j

)
end for
Yn = Yn ∗ 1/ (1 − u)
return Yn

end procedure
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By using this computation algorithm, we compute the following a few values of the numbers Yn (u; a)
as follows:

Y1 (u; a) = −
ln a

(1 − u)2

Y2 (u; a) =
(ln a)2 (−1 − u)

(1 − u)3 ,

Y3 (u; a) =

(
5 + 2u − u2

)
(ln a)3

(1 − u)4 · · ·

If we take a = e and u = −1 in the above, we have

Y0 (−1; e) =
1
2
,

Y1 (−1; e) = −
1
4
,

Y2 (−1; e) = 0,

Y3 (−1; e) =
1
8
· · · .

3. Some Properties of the Polynomials Yn (x, u; a)

In this section, we investigate some properties of the polynomials Yn (x,u; a).
By using (3), we easily get the following relation:

∞∑
n=0

Yn (x,u; a)
tn

n!
=

∞∑
n=0

Yn (u; a)
tn

n!

∞∑
n=0

(x ln a)n tn

n!
.

Therefore

∞∑
n=0

Yn (x,u; a)
tn

n!
=

∞∑
n=0

 n∑
j=0

(
n
j

)
xn− j (ln a)n− j Y j (u; a)

 tn

n!
.

By comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 3.1.

Yn (x,u; a) =

n∑
j=0

(
n
j

)
xn− j (ln a)n− j Y j (u; a) .

Now, we are going to differentiate (3) with respect to the variable x to derive a derivative formula for
the polynomials Yn (x,u; a). That is

∂
∂x
GY (x, t, a,u) = t (ln a)GY (x, t, a,u) .

By using the above equation with (3), we obtain the following theorem:
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Theorem 3.2. Let n be a positive integer. Then we have

∂
∂x

Yn (x,u; a) = n (ln a) Yn−1 (x; u; a) .

The multiplication formula is very important for the normalized polynomials. Multiplication formulas
of the Bernoulli and Euler polynomials have been many application in the theory of the Dedekind sums and
the Hardy sums, etc. Therefore, we are ready to give a multiplication formula for the polynomial Yn (x,u; a)
as follows:

Theorem 3.3. Let m be a positive integer. Then we have

Yn (mx,u; a) = mn
m−1∑
k=0

1
uk−m+1

Yn

(
x +

k
m
,um; a

)
.

Proof. By using (3), we get

∞∑
n=0

Yn (x,u; a)
tn

n!
=

um−1

amt − um

m−1∑
k=0

at(x+k)

uk
.

From the above equation, we obtain

∞∑
n=0

Yn (x,u; a)
tn

n!
=

∞∑
n=0

m−1∑
k=0

1
uk−m+1

Yn

(
x + k

m
,um; a

)
mn

 tn

n!
.

Replacing x by mx into the above equation and comparing the coefficients of tn

n! on both sides of the above
equation, we arrive at the desired result.

Theorem 3.4.

Yn (x + 1; u; a) − uYn (x; u; a) = (x ln a)n .

Proof. By using (3), we have
∞∑

n=0

(Yn (x + 1; u; a) − uYn (x; u; a))
tn

n!
=

∞∑
n=0

(x ln a)n tn

n!
.

By comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the desired result.

4. Further Remarks and Observation

The numbers Yn (u; a) are related to the many well-known numbers. That is it is easy to give relationships
between these numbers and Euler, Frobenius-Euler and Apostol-Bernoulli numbers.

By using (1) and (2), we give the following functional equation:

F1(t, 0; u, a, b)GY (t, a,u) = GY (t, b,u) .

By combining this equation with (1) and (2), we obtain
∞∑

n=0

Yn (u; b)
tn

n!
=

∞∑
n=0

Yn (u; a)
tn

n!

∞∑
n=0

Hn(u; a, b; 1)
tn

n!
.

Therefore
∞∑

n=0

Yn (u; b)
tn

n!
=

∞∑
n=0

 n∑
j=0

(
n
j

)
Y j (u; a)Hn− j(u; a, b; 1)

 tn

n!
.

By comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:
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Theorem 4.1. Let a, b ∈ R+ (a , b and a ≥ 1). Then we have

Yn (u; b) =

n∑
j=0

(
n
j

)
Y j (u; a)Hn− j(u; a, b; 1). (6)

We observe that if we substitute a = 1 and b = e into (6), we get recurrence relation for the Frobenius-Euler
numbers. That is

Yn (u; e) =

n∑
j=0

(
n
j

)
Y j (u; 1) Hn− j(u),

where Hn (u) denotes the Frobenius-Euler numbers. Since Y j (u; 1) = 0 if j > 0, we get

Yn (u; e) = Y0 (u; 1) Hn(u).

By using (5), we get

Hn(u) = −

n−1∑
j=0

(
n
j

)
Y j(u; e)

where n ≥ 1.
If we take u = −1 and a = e in (2), we have

∞∑
n=0

Yn (−1; e)
tn

n!
=

1
2

∞∑
n=0

En
tn

n!
.

Thus

Yn (−1; e) =
1
2

En,

where En denotes the Euler numbers cf. ([3], [9], [13], [4], [8], [10], [5], [7], [12]).
Setting a = e in (2), we have

∞∑
n=0

Yn (u; e)
tn

n!
=

1
ut

∞∑
n=0

Bn

(1
u

) tn

n!
.

Therefore

∞∑
n=0

unYn−1 (u; e)
tn

n!
=

∞∑
n=0

Bn

(1
u

) tn

n!
.

Thus we get

Bn

(1
u

)
= unYn−1 (u; e) ,

here n ≥ 1 and Bn

(
1
u

)
denotes the Apostol-Bernoulli polynomials cf. ([2], [3], [13], [4], [7], [8], [12]).

The conclusion of this paper is to combine generating functions for some well-known numbers and
polynomials by our generating functions which are given in (2) and (3).
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